1
|
Li Z, Zhang Z, Zhou X. Chemical Modulation of Metal-Insulator Transition toward Multifunctional Applications in Vanadium Dioxide Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305234. [PMID: 37394705 DOI: 10.1002/smll.202305234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The metal-insulator transition (MIT) of vanadium dioxide (VO2 ) has been of great interest in materials science for both fundamental understanding of strongly correlated physics and a wide range of applications in optics, thermotics, spintronics, and electronics. Due to the merits of chemical interaction with accessibility, versatility, and tunability, chemical modification provides a new perspective to regulate the MIT of VO2 , endowing VO2 with exciting properties and improved functionalities. In the past few years, plenty of efforts have been devoted to exploring innovative chemical approaches for the synthesis and MIT modulation of VO2 nanostructures, greatly contributing to the understanding of electronic correlations and development of MIT-driven functionalities. Here, this comprehensive review summarizes the recent achievements in chemical synthesis of VO2 and its MIT modulation involving hydrogen incorporation, composition engineering, surface modification, and electrochemical gating. The newly appearing phenomena, mechanism of electronic correlation, and structural instability are discussed. Furthermore, progresses related to MIT-driven applications are presented, such as the smart window, optoelectronic detector, thermal microactuator, thermal radiation coating, spintronic device, memristive, and neuromorphic device. Finally, the challenges and prospects in future research of chemical modulation and functional applications of VO2 MIT are also provided.
Collapse
Affiliation(s)
- Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Hong WK, Jang HS, Yoon J, Choi WJ. Modulation of Switching Characteristics in a Single VO 2 Nanobeam with Interfacial Strain via the Interconnection of Multiple Nanoscale Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11296-11303. [PMID: 36787543 DOI: 10.1021/acsami.2c21367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO2 nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO2 devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO2 channels. The observed results can be attributed to the difference in the spatial distribution and fraction ratios of M-I domains due to interfacial strain in the nanoscale VO2 channels during the metal-insulator transition process. Moreover, we demonstrate the electrically activated resistive switching characteristics based on the hysteresis behaviors of the interconnected nanoscale channels, implying the possibility of manipulating multiple resistive states. Our results may offer insights into the nanoscale engineering of correlated phases in VO2 as the key materials of neuromorphic computing for which nonlinear conductance is essential.
Collapse
Affiliation(s)
- Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hun Soo Jang
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jongwon Yoon
- Department of Energy & Electronic Materials, Surface & Nano Materials Division, Korea Institute of Materials Science, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
3
|
Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys Chem Chem Phys 2022; 24:2527-2533. [PMID: 35023523 DOI: 10.1039/d1cp04974g] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terahertz functional devices have been instrumental in the development of terahertz technology. Moreover, the advent of metamaterials has greatly contributed to the advancement of terahertz devices. However, most of today's metamaterials in the terahertz band exhibit poor performance and are mono-functional. This greatly limits the scalability and application potential of the devices. To achieve diversification and tunability of device functionality, we propose a combination of metamaterial structures and vanadium dioxide film. A metamaterial absorber based on the thermotropic phase change material VO2 has been designed. Flexible switching of absorption performance (complete reflection and ultra-broadband perfect absorption) can be achieved through temperature adjustment. Moreover, the perfectly absorbed bandwidth is a staggering 3.3 THz. The thermal tuning of spectral absorbance has a maximal range of 0.01 to 0.999. The shift in absorption properties is explained by the phase change process of vanadium oxide (MIT). The electric field intensity on the absorber surface at different temperatures was monitored and analysed as a way to correlate the VO2 film phase transition process. The impedance matching theory is applied to explain the high level of absorption generated by the absorber. Finally, the effects of the structural parameters on the performance of the absorber are analysed. This work will have many applications in the terahertz field and offers a wide range of ideas for the design of terahertz-enabled devices.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ying Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China
| | - Zhimin Liu
- School of Science, East China Jiaotong University, Nanchang 330013, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yang Yu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
4
|
Li D, Wang Q, Xu X. Thermal Conductivity of VO 2 Nanowires at Metal-Insulator Transition Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2428. [PMID: 34578742 PMCID: PMC8472604 DOI: 10.3390/nano11092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Vanadium dioxide (VO2) nanowires endowed with a dramatic metal-insulator transition have attracted enormous attention. Here, the thermal conductance of VO2 nanowires with different sizes, measured using the thermal bridge method, is reported. A size-dependent thermal conductivity was observed where the thicker nanowire showed a higher thermal conductivity. Meanwhile, the thermal conductivity jump at metal-insulator transition temperature was measured to be much higher in the thicker samples. The dominant heat carriers were phonons both at the metallic and the insulating regimes in the measured samples, which may result from the coexistence of metal and insulator phases at high temperature. Our results provide a window into exploring the mechanism of the metal-insulator transition of VO2 nanowires.
Collapse
Affiliation(s)
| | | | - Xiangfan Xu
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (D.L.); (Q.W.)
| |
Collapse
|
5
|
Investigation of Statistical Metal-Insulator Transition Properties of Electronic Domains in Spatially Confined VO2 Nanostructure. CRYSTALS 2020. [DOI: 10.3390/cryst10080631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional oxides with strongly correlated electron systems, such as vanadium dioxide, manganite, and so on, show a metal-insulator transition and an insulator-metal transition (MIT and IMT) with a change in conductivity of several orders of magnitude. Since the discovery of phase separation during transition processes, many researchers have been trying to capture a nanoscale electronic domain and investigate its exotic properties. To understand the exotic properties of the nanoscale electronic domain, we studied the MIT and IMT properties for the VO2 electronic domains confined into a 20 nm length scale. The confined domains in VO2 exhibited an intrinsic first-order MIT and IMT with an unusually steep single-step change in the temperature dependent resistivity (R-T) curve. The investigation of the temperature-sweep-rate dependent MIT and IMT properties revealed the statistical transition behavior among the domains. These results are the first demonstration approaching the transition dynamics: the competition between the phase-transition kinetics and experimental temperature-sweep-rate in a nano scale. We proposed a statistical transition model to describe the correlation between the domain behavior and the observable R-T curve, which connect the progression of the MIT and IMT from the macroscopic to microscopic viewpoints.
Collapse
|
6
|
Thermal hysteresis measurement of the VO 2 emissivity and its application in thermal rectification. Sci Rep 2018; 8:8479. [PMID: 29855507 PMCID: PMC5981426 DOI: 10.1038/s41598-018-26687-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 11/08/2022] Open
Abstract
Hysteresis loops in the emissivity of VO2 thin films grown on sapphire and silicon substrates by a pulsed laser deposition process are experimentally measured through the thermal-wave resonant cavity technique. Remarkable variations of about 43% are observed in the emissivity of both VO2 films, within their insulator-to-metal and metal-to-insulator transitions. It is shown that: i) The principal hysteresis width (maximum slope) in the VO2 emissivity of the VO2 + silicon sample is around 3 times higher (lower) than the corresponding one of the VO2 + sapphire sample. VO2 synthesized on silicon thus exhibits a wider principal hysteresis loop with slower MIT than VO2 on sapphire, as a result of the significant differences on the VO2 film microstructures induced by the silicon or sapphire substrates. ii) The hysteresis width along with the rate of change of the VO2 emissivity in a VO2 + substrate sample can be tuned with its secondary hysteresis loop. iii) VO2 samples can be used to build a radiative thermal diode able to operate with a rectification factor as high as 87%, when the temperature difference of its two terminals is around 17 °C. This record-breaking rectification constitutes the highest one reported in literature, for a relatively small temperature change of diode terminals.
Collapse
|
7
|
Li M, Magdassi S, Gao Y, Long Y. Hydrothermal Synthesis of VO 2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701147. [PMID: 28722273 DOI: 10.1002/smll.201701147] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Vanadium dioxide (VO2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τc ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τc , low luminous transmittance (Tlum ), and undesirable solar modulation ability (ΔTsol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO2 . This Review focuses on hydrothermal synthesis, physical properties of VO2 polymorphs, and their transformation to thermochromic VO2 (M), and discusses the advantages, challenges, and prospects of VO2 (M) in energy-efficient smart windows application.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Jerusalem, 91904, Israel
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Sohn JI, Cha SN, Son SB, Kim JM, Welland ME, Hong WK. Metastable state-induced consecutive step-like negative differential resistance behaviors in single crystalline VO 2 nanobeams. NANOSCALE 2017; 9:8200-8206. [PMID: 28580984 DOI: 10.1039/c7nr00318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate the current-dependent consecutive appearance of two different negative differential resistance (NDR) transitions in a single crystalline VO2 nanobeam epitaxially grown on a c-cut sapphire substrate. It is revealed that the first NDR occurs at an approximately constant current level as a result of the carrier injection-induced transition, independent of a thermally induced phase transition. In contrast, it is observed that the second NDR exhibits a temperature-dependent behavior and current values triggering the metal-insulator transition (MIT) are strongly mediated by Joule heating effects in a phase coexisting temperature range. Moreover, we find that the electrically and thermally triggered MIT behavior can be closely related with the alternate occurrence of current-induced multiple insulating and metallic phase coexistence in the nanobeam. These findings indicate that the current density passing through VO2 plays a critical role in both the electrical and structural phase transitions.
Collapse
Affiliation(s)
- Jung Inn Sohn
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban JJ, Zhang X, Dames C, Hartnoll SA, Delaire O, Wu J. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017; 355:371-374. [DOI: 10.1126/science.aag0410] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/22/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sangwook Lee
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Kedar Hippalgaonkar
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, 08-03, 138634 Singapore
| | - Fan Yang
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiawang Hong
- School of Aerospace Engineering and Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Changhyun Ko
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Joonki Suh
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kai Liu
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, LBNL, Berkeley, CA 94720, USA
| | - Kevin Wang
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeffrey J. Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiang Zhang
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, LBNL, Berkeley, CA 94720, USA
- Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chris Dames
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, LBNL, Berkeley, CA 94720, USA
| | - Sean A. Hartnoll
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Olivier Delaire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, LBNL, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Augmentation of thermoelectric performance of VO2 thin films irradiated by 200MeV Ag9+-ions. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Xue X, Zhou Z, Peng B, Zhu MM, Zhang YJ, Ren W, Ye ZG, Chen X, Liu M. Review on nanomaterials synthesized by vapor transport method: growth and their related applications. RSC Adv 2015. [DOI: 10.1039/c5ra13349a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanostructures with different dimensions, including bulk crystals, thin films, nanowires, nanobelts and nanorods, have received considerable attention due to their novel functionalities and outstanding applications in various areas.
Collapse
Affiliation(s)
- X. Xue
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - Z. Zhou
- Energy Systems Division
- Argonne National Laboratory
- Lemont, USA
| | - B. Peng
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - M. M. Zhu
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - Y. J. Zhang
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - W. Ren
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - Z. G. Ye
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| | - X. Chen
- Energy Systems Division
- Argonne National Laboratory
- Lemont, USA
| | - M. Liu
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049, China
| |
Collapse
|
12
|
Wang M, Bi C, Li L, Long S, Liu Q, Lv H, Lu N, Sun P, Liu M. Thermoelectric Seebeck effect in oxide-based resistive switching memory. Nat Commun 2014; 5:4598. [PMID: 25141267 PMCID: PMC4143917 DOI: 10.1038/ncomms5598] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/05/2014] [Indexed: 11/09/2022] Open
Abstract
Reversible resistive switching induced by an electric field in oxide-based resistive switching memory shows a promising application in future information storage and processing. It is believed that there are some local conductive filaments formed and ruptured in the resistive switching process. However, as a fundamental question, how electron transports in the formed conductive filament is still under debate due to the difficulty to directly characterize its physical and electrical properties. Here we investigate the intrinsic electronic transport mechanism in such conductive filament by measuring thermoelectric Seebeck effects. We show that the small-polaron hopping model can well describe the electronic transport process for all resistance states, although the corresponding temperature-dependent resistance behaviours are contrary. Moreover, at low resistance states, we observe a clear semiconductor-metal transition around 150 K. These results provide insight in understanding resistive switching process and establish a basic framework for modelling resistive switching behaviour.
Collapse
Affiliation(s)
- Ming Wang
- 1] Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China [2]
| | - Chong Bi
- 1] Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China [2]
| | - Ling Li
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shibing Long
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qi Liu
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hangbing Lv
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Nianduan Lu
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pengxiao Sun
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ming Liu
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
13
|
Favaloro T, Suh J, Vermeersch B, Liu K, Gu Y, Chen LQ, Wang KX, Wu J, Shakouri A. Direct observation of nanoscale Peltier and Joule effects at metal-insulator domain walls in vanadium dioxide nanobeams. NANO LETTERS 2014; 14:2394-2400. [PMID: 24735496 DOI: 10.1021/nl500042x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.
Collapse
Affiliation(s)
- Tela Favaloro
- Baskin School of Engineering, University of California , Santa Cruz, California 95064, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films. Sci Rep 2014; 4:4854. [PMID: 24798056 PMCID: PMC4010922 DOI: 10.1038/srep04854] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/14/2014] [Indexed: 11/09/2022] Open
Abstract
Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications.
Collapse
|
15
|
Lin W, Li Q, Sales BC, Jesse S, Sefat AS, Kalinin SV, Pan M. Direct probe of interplay between local structure and superconductivity in FeTe₀.₅₅Se₀.₄₅. ACS NANO 2013; 7:2634-2641. [PMID: 23413999 DOI: 10.1021/nn400012q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The relationship between atomically defined structures and physical properties in functional materials remains a subject of constant interest. We explore the interplay between local crystallographic structure, composition, and local superconductive properties in iron chalcogenide superconductors. Direct structural analysis of scanning tunneling microscopy data allows local lattice distortions and structural defects across an FeTe0.55Se0.45 surface to be explored on a single unit-cell level. Concurrent superconducting gap (SG) mapping reveals suppression of the SG at well-defined structural defects, identified as a local structural distortion. The strong structural distortion causes the vanishing of the superconducting state. This study provides insight into the origins of superconductivity in iron chalcogenides by providing an example of atomic-level studies of the structure-property relationship.
Collapse
Affiliation(s)
- Wenzhi Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Wu C, Feng F, Xie Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 2013; 42:5157-83. [DOI: 10.1039/c3cs35508j] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kasırga TS, Sun D, Park JH, Coy JM, Fei Z, Xu X, Cobden DH. Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. NATURE NANOTECHNOLOGY 2012; 7:723-7. [PMID: 23085645 DOI: 10.1038/nnano.2012.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/13/2012] [Indexed: 05/08/2023]
Abstract
The generation of a current by light is a key process in optoelectronic and photovoltaic devices. In band semiconductors, depletion fields associated with interfaces separate long-lived photo-induced carriers. However, in systems with strong electron-electron and electron-phonon correlations it is unclear what physics will dominate the photoresponse. Here, we investigate photocurrent in VO(2), an exemplary strongly correlated material known for its dramatic metal-insulator transition at T(c) ≈ 68 °C, which could be useful for optoelectronic detection and switching up to ultraviolet wavelengths. Using scanning photocurrent microscopy on individual suspended VO(2) nanobeams we observe a photoresponse peaked at the metal-insulator boundary but extending throughout both insulating and metallic phases. We determine that the response is photothermal, implying efficient carrier relaxation to a local equilibrium in a manner consistent with strong correlations. Temperature-dependent measurements reveal subtle phase changes within the insulating state. We further demonstrate switching of the photocurrent by optical control of the metal-insulator boundary arrangement. Our work shows the value of applying scanning photocurrent microscopy to nanoscale crystals in the investigation of strongly correlated materials, and the results are relevant for designing and controlling optoelectronic devices employing such materials.
Collapse
Affiliation(s)
- T Serkan Kasırga
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Strelcov E, Davydov AV, Lanke U, Watts C, Kolmakov A. In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets. ACS NANO 2011; 5:3373-3384. [PMID: 21428376 DOI: 10.1021/nn2007089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Direct in situ optical and photoelectron emission microscopy observations of the nucleation and growth of VO(2) meso- and nanostructures using thermal transport of V(2)O(5) precursor in a vacuum or in an inert-gas environment were conducted. During nanostructure reductive growth, the formation, coexistence, and transformation of the intermediate oxide phases and morphologies were observed and characterized structurally and compositionally. The composition, structure, and morphology of the resultant nanostructures appeared to be a product of the interplay between kinetic and thermodynamic factors during multiple phase transformations. By rationally "navigating" the growth parameters using knowledge of the vanadium-oxygen temperature-composition phase diagram, wetting behavior, and epitaxial relationships of the intermediate phases with the substrate, control over growth direction, faceting, shape, and elastic strain of the nanostructures can be achieved. Such versatile control over the properties of single-crystal VO(2) nano- and mesostructures will facilitate their application in MEMS, sensors, and optoelectronics.
Collapse
Affiliation(s)
- Evgheni Strelcov
- Department of Physics, Southern Illinois University at Carbondale, Illinois 62901-4401, USA
| | | | | | | | | |
Collapse
|
19
|
Hu B, Ding Y, Chen W, Kulkarni D, Shen Y, Tsukruk VV, Wang ZL. External-strain induced insulating phase transition in VO₂nanobeam and its application as flexible strain sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:5134-5139. [PMID: 20842663 DOI: 10.1002/adma.201002868] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Bin Hu
- Georgia Institute of Technology, Atlanta, 30332-0245, USA
| | | | | | | | | | | | | |
Collapse
|