1
|
Wang J, Wang Z, Huang PJJ, Bai F, Liu J. Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3553-3560. [PMID: 35258306 DOI: 10.1021/acs.langmuir.2c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porphyrin assemblies have controllable morphology, high biocompatibility, and good optical properties and were widely used in biomedical diagnosis and treatment. With the development of DNA biotechnology, combining DNA with porphyrin assemblies can broaden the biological applications of porphyrins. Porphyrin assemblies can serve as nanocarriers for DNA, although the fundamental interactions between them are not well understood. In this work, zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) assemblies were prepared in the presence of various surfactants and at different pH values, yielding a variety of aggregation forms. Among them, the hexagonal stacking form exposes more pyridine substituents, and the hydrogen bonding force between the substituents and the DNA bases allows the DNA to be quickly adsorbed on the surface of the assemblies. The effects of DNA sequence and length were systematically tested. In particular, the adsorption of duplex DNA was less efficient compared to the adsorption of single-stranded DNA. This fundamental study is useful for the further combination of DNA and porphyrin assemblies to prepare new functional hybrid nanomaterials.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zhen Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
3
|
Liu W, Lin C, Weber JA, Stern CL, Young RM, Wasielewski MR, Stoddart JF. Cyclophane-Sustained Ultrastable Porphyrins. J Am Chem Soc 2020; 142:8938-8945. [PMID: 32243141 DOI: 10.1021/jacs.0c02311] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the encapsulation of free-base and zinc porphyrins by a tricyclic cyclophane receptor with subnanomolar binding affinities in water. The high affinities are sustained by the hydrophobic effect and multiple [CH···π] interactions covering large [π···π] stacking surfaces between the substrate porphyrins and the receptor. We discovered two co-conformational isomers of the 1:1 complex, where the porphyrin is orientated differently inside the binding cavity of the receptor on account of its tricyclic nature. The photophysical properties and chemical reactivities of the encapsulated porphyrins are modulated to a considerable extent by the receptor. Improved fluorescence quantum yields, red-shifted absorptions and emissions, and nearly quantitative energy transfer processes highlight the emergent photophysical enhancements. The encapsulated porphyrins enjoy unprecedented chemical stabilities, where their D/H exchange, protonation, and solvolysis under extremely acidic conditions are completely blocked. We anticipate that the ultrahigh stabilities and improved optical properties of these encapsulated porphyrins will find applications in single-molecule materials, artificial photodevices, and biomedical appliances.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenjian Lin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jacob A Weber
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Romero-Pérez S, López-Martín I, Martos-Maldonado MC, Somoza Á, González-Rodríguez D. Synthesis of Phosphoramidite Monomers Equipped with Complementary Bases for Solid-Phase DNA Oligomerization. Org Lett 2020; 22:41-45. [PMID: 31860314 DOI: 10.1021/acs.orglett.9b03801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the preparation of two monomers that bear complementary nucleobases at the edges (guanine-2'-deoxycytidine and 2-aminoadenine-2'-deoxyuridine) and that are conveniently protected and activated for solid-phase automated DNA synthesis. We report the optimized synthetic routes leading to the four nucleobase derivatives involved, their cross-coupling reactions into dinucleobase-containing monomers, and their oligomerization in the DNA synthesizer.
Collapse
Affiliation(s)
- Sonia Romero-Pérez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain.,NanoBiotechnology Research Group , Instituto IMDEA Nanociencia , 28049 Madrid , Spain
| | - Isabel López-Martín
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Manuel C Martos-Maldonado
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Álvaro Somoza
- NanoBiotechnology Research Group , Instituto IMDEA Nanociencia , 28049 Madrid , Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica , Universidad Autónoma de Madrid , 28049 Madrid , Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem) , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
5
|
Ohmann A, Göpfrich K, Joshi H, Thompson RF, Sobota D, Ranson NA, Aksimentiev A, Keyser UF. Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Res 2019; 47:11441-11451. [PMID: 31642494 PMCID: PMC6868430 DOI: 10.1093/nar/gkz914] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
DNA nanotechnology allows for the design of programmable DNA-built nanodevices which controllably interact with biological membranes and even mimic the function of natural membrane proteins. Hydrophobic modifications, covalently linked to the DNA, are essential for targeted interfacing of DNA nanostructures with lipid membranes. However, these hydrophobic tags typically induce undesired aggregation eliminating structural control, the primary advantage of DNA nanotechnology. Here, we study the aggregation of cholesterol-modified DNA nanostructures using a combined approach of non-denaturing polyacrylamide gel electrophoresis, dynamic light scattering, confocal microscopy and atomistic molecular dynamics simulations. We show that the aggregation of cholesterol-tagged ssDNA is sequence-dependent, while for assembled DNA constructs, the number and position of the cholesterol tags are the dominating factors. Molecular dynamics simulations of cholesterol-modified ssDNA reveal that the nucleotides wrap around the hydrophobic moiety, shielding it from the environment. Utilizing this behavior, we demonstrate experimentally that the aggregation of cholesterol-modified DNA nanostructures can be controlled by the length of ssDNA overhangs positioned adjacent to the cholesterol. Our easy-to-implement method for tuning cholesterol-mediated aggregation allows for increased control and a closer structure-function relationship of membrane-interfacing DNA constructs - a fundamental prerequisite for employing DNA nanodevices in research and biomedicine.
Collapse
Affiliation(s)
- Alexander Ohmann
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Kerstin Göpfrich
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | | | - Diana Sobota
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Neil A Ranson
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
6
|
Ren N, Sun R, Xia K, Zhang Q, Li W, Wang F, Zhang X, Ge Z, Wang L, Fan C, Zhu Y. DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26704-26710. [PMID: 31264833 DOI: 10.1021/acsami.9b08652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clinical need for treating allergic conjunctivitis (AC) is rapidly increasing. However, AC-relevant anti-inflammatory compounds are generally difficult to solubilize in water, thus limiting their therapeutic potential. Solubility-improved eye drop formulations of these compounds have poor bioavailability and a short retention time in ophthalmic tissues. Herein, we report a DNA/poly(lactic-co-glycolicacid) (PLGA) hybrid hydrogel (HDNA) for water-insoluble ophthalmic therapeutic delivery. PLGA pre-encapsulation enables loading of water-insoluble therapeutics. HDNA's porous structure is capable of sustained delivery of therapeutics. Dexamethasone (DEX), with demonstrated activities in attenuating inflammatory symptom in AC, was used as a model system. The designed HDNA hybrid hydrogels significantly improved the DEX accumulation and mediated the gradual DEX release in ophthalmic cells and tissues. Using the HDNA-DEX complexes, potent efficacy in two animal models of AC was acquired. Given this performance, demonstrable biocompatibility, and biodegradability of DNA hydrogel, the HDNA-based ophthalmic therapeutic delivery system enables novel treatment paradigms, which will have widespread applications in the treatment of various eye diseases.
Collapse
Affiliation(s)
- Ning Ren
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Rui Sun
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Kai Xia
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Qi Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Wei Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Fei Wang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine , Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital , Shanghai 201499 , China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ying Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai 201800 , China
| |
Collapse
|
7
|
Huo S, Li H, Boersma AJ, Herrmann A. DNA Nanotechnology Enters Cell Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900043. [PMID: 31131200 PMCID: PMC6523375 DOI: 10.1002/advs.201900043] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Indexed: 05/19/2023]
Abstract
DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.
Collapse
Affiliation(s)
- Shuaidong Huo
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Hongyan Li
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Arnold J. Boersma
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
8
|
Czogalla A, Franquelim HG, Schwille P. DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophys J 2017; 110:1698-1707. [PMID: 27119630 PMCID: PMC4850321 DOI: 10.1016/j.bpj.2016.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/26/2015] [Accepted: 03/07/2016] [Indexed: 11/12/2022] Open
Abstract
Over the last decade, functionally designed DNA nanostructures applied to lipid membranes prompted important achievements in the fields of biophysics and synthetic biology. Taking advantage of the universal rules for self-assembly of complementary oligonucleotides, DNA has proven to be an extremely versatile biocompatible building material on the nanoscale. The possibility to chemically integrate functional groups into oligonucleotides, most notably with lipophilic anchors, enabled a widespread usage of DNA as a viable alternative to proteins with respect to functional activity on membranes. As described throughout this review, hybrid DNA-lipid nanostructures can mediate events such as vesicle docking and fusion, or selective partitioning of molecules into phase-separated membranes. Moreover, the major benefit of DNA structural constructs, such as DNA tiles and DNA origami, is the reproducibility and simplicity of their design. DNA nanotechnology can produce functional structures with subnanometer precision and allow for a tight control over their biochemical functionality, e.g., interaction partners. DNA-based membrane nanopores and origami structures able to assemble into two-dimensional networks on top of lipid bilayers are recent examples of the manifold of complex devices that can be achieved. In this review, we will shortly present some of the potentially most relevant avenues and accomplishments of membrane-anchored DNA nanostructures for investigating, engineering, and mimicking lipid membrane-related biophysical processes.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
9
|
Antipina AY, Gurtovenko AA. Molecular-level insight into the interactions of DNA with phospholipid bilayers: barriers and triggers. RSC Adv 2016. [DOI: 10.1039/c6ra05607e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A zwitterionic phospholipid bilayer represents a repulsive barrier for DNA binding; this barrier can be overcome through adsorption of divalent cations to the bilayer surface.
Collapse
Affiliation(s)
- A. Yu. Antipina
- Faculty of Physics
- St. Petersburg State University
- St. Petersburg 198504
- Russia
- Department of Photonics and Optical Information Technology
| | - A. A. Gurtovenko
- Faculty of Physics
- St. Petersburg State University
- St. Petersburg 198504
- Russia
- Institute of Macromolecular Compounds
| |
Collapse
|
10
|
Lee DS, Qian H, Tay CY, Leong DT. Cellular processing and destinies of artificial DNA nanostructures. Chem Soc Rev 2016; 45:4199-225. [DOI: 10.1039/c5cs00700c] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review gives a panoramic view of the many DNA nanotechnology applications in cells, mechanistic understanding of how and where their interactions occur and their subsequent outcomes.
Collapse
Affiliation(s)
- Di Sheng Lee
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Department of Materials Science and Engineering
| | - Hang Qian
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- School of Materials Science and Engineering
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
11
|
Seifert A, Göpfrich K, Burns JR, Fertig N, Keyser UF, Howorka S. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS NANO 2015; 9:1117-26. [PMID: 25338165 PMCID: PMC4508203 DOI: 10.1021/nn5039433] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.
Collapse
Affiliation(s)
| | - Kerstin Göpfrich
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jonathan R. Burns
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Niels Fertig
- Nanion Technologies GmbH, D-80636 Munich, Germany
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Address correspondence to ;
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
- Address correspondence to ;
| |
Collapse
|
12
|
Burns JR, Al-Juffali N, Janes SM, Howorka S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew Chem Int Ed Engl 2014; 53:12466-70. [PMID: 25294680 PMCID: PMC4282124 DOI: 10.1002/anie.201405719] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/10/2014] [Indexed: 01/24/2023]
Abstract
DNA-based cytotoxic agents: Nanopores composed of folded DNA featuring a hydrophobic belt of ethyl phosphorothioate groups insert into bilayer membranes and kill cancer cells. The mode by which the pores achieve cell killing is elucidated with confocal microscopy.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, University College London, Institute of Structural and Molecular Biology, 20 Gordon StreetLondon WC1H OAJ (UK)
| | - Noura Al-Juffali
- Lungs for Living Research Centre, Division of Medicine, University College LondonLondon WC1E 6JF (UK)
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College LondonLondon WC1E 6JF (UK)
| | - Stefan Howorka
- Department of Chemistry, University College London, Institute of Structural and Molecular Biology, 20 Gordon StreetLondon WC1H OAJ (UK)
| |
Collapse
|
13
|
Burns JR, Al-Juffali N, Janes SM, Howorka S. Membrane-Spanning DNA Nanopores with Cytotoxic Effect. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Vybornyi M, Nussbaumer AL, Langenegger SM, Häner R. Assembling multiporphyrin stacks inside the DNA double helix. Bioconjug Chem 2014; 25:1785-93. [PMID: 25186936 DOI: 10.1021/bc500297e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Double stranded DNA hybrids containing up to four consecutive, face-to-face stacked porphyrins are described. Non-nucleosidic, 5,15-bisphenyl-substituted porphyrin building blocks were incorporated into complementary oligonucleotide strands. Upon hybridization multiple porphyrins are well accommodated inside the DNA scaffold without disturbing the overall B-DNA structure. The formation of double strands containing up to four free base porphyrins is enabled without compromising duplex stability. UV/vis, fluorescence, and CD spectroscopy demonstrate the formation of porphyrins H-aggregates inside the DNA double helix and provide evidence for the existence of strong excitonic coupling between interstrand stacked porphyrins. H-aggregation results in considerable fluorescence quenching. Most intense CD effects are observed in stacks containing four porphyrins. The findings demonstrate the value of DNA for the controlled formation of molecularly defined porphyrin aggregates.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
15
|
Conway JW, Madwar C, Edwardson TG, McLaughlin CK, Fahkoury J, Lennox RB, Sleiman HF. Dynamic Behavior of DNA Cages Anchored on Spherically Supported Lipid Bilayers. J Am Chem Soc 2014; 136:12987-97. [PMID: 25140890 DOI: 10.1021/ja506095n] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. W. Conway
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - C. Madwar
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - T. G. Edwardson
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - C. K. McLaughlin
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - J. Fahkoury
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - R. B. Lennox
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - H. F. Sleiman
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
16
|
Makishi S, Shibata T, Okazaki M, Dohno C, Nakatani K. Modulation of binding properties of amphiphilic DNA containing multiple dodecyl phosphotriester linkages to lipid bilayer membrane. Bioorg Med Chem Lett 2014; 24:3578-81. [DOI: 10.1016/j.bmcl.2014.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
17
|
Langecker M, Arnaut V, List J, Simmel FC. DNA nanostructures interacting with lipid bilayer membranes. Acc Chem Res 2014; 47:1807-15. [PMID: 24828105 DOI: 10.1021/ar500051r] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on membranes and can dynamically associate into higher order complexes. Hydrophobic modification of DNA nanostructures can further result in intra- or intermolecular aggregation, which can also be utilized as a structural switching mechanism. Appropriate design and chemical modification even allows insertion of DNA nanostructures into lipid bilayer membranes, resulting in artificial ion channel mimics made from DNA. Interactions of DNA nanodevices with living cells also involve interactions with membrane structures. DNA-based nanostructures can be directed to cell surfaces via antibody-antigen interactions, and their cellular uptake can be stimulated by modification with appropriate receptor ligands. In the future, membrane-embedded DNA nanostructures are expected to find application in diverse areas ranging from basic biological research over nanotechnology to synthetic biology.
Collapse
Affiliation(s)
- Martin Langecker
- Physics
Department − E14 and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Vera Arnaut
- Physics
Department − E14 and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Jonathan List
- Physics
Department − E14 and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Physics
Department − E14 and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
- Nanosystems Initiative
Munich, Schellingstr. 4, 80539 Munich, Germany
| |
Collapse
|
18
|
Schade M, Berti D, Huster D, Herrmann A, Arbuzova A. Lipophilic nucleic acids--a flexible construction kit for organization and functionalization of surfaces. Adv Colloid Interface Sci 2014; 208:235-51. [PMID: 24650567 DOI: 10.1016/j.cis.2014.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 11/19/2022]
Abstract
Lipophilic nucleic acids have become a versatile tool for structuring and functionalization of lipid bilayers and biological membranes as well as cargo vehicles to transport and deliver bioactive compounds, like interference RNA, into cells by taking advantage of reversible hybridization with complementary strands. This contribution reviews the different types of conjugates of lipophilic nucleic acids, and their physicochemical and self-assembly properties. Strategies for choosing a nucleic acid, lipophilic modification, and linker are discussed. Interaction with lipid membranes and its stability, dynamic structure and assembly of lipophilic nucleic acids upon embedding into biological membranes are specific points of the review. A large diversity of conjugates including lipophilic peptide nucleic acid and siRNA provides tailored solutions for specific applications in bio- and nanotechnology as well as in cell biology and medicine, as illustrated through some selected examples.
Collapse
Affiliation(s)
- Matthias Schade
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115 Berlin, Germany
| | - Debora Berti
- Dipartimento di Chimica, Universita' di Firenze & CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Daniel Huster
- Universität Leipzig, Institut für Medizinische Physik und Biophysik, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115 Berlin, Germany
| | - Anna Arbuzova
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
19
|
de Souza MC, Pedrosa LF, Cazagrande GS, Ferreira VF, Neves MGPMS, Cavaleiro JAS. From porphyrin benzylphosphoramidate conjugates to the catalytic hydrogenation of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. Beilstein J Org Chem 2014; 10:628-33. [PMID: 24778713 PMCID: PMC3999763 DOI: 10.3762/bjoc.10.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 12/01/2022] Open
Abstract
Three new porphyrin aminoalkyl dibenzylphosphoramidates were synthesized by nucleophilic aromatic substitution of one p-fluorine atom of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPPF20) by primary aminoalkyl dibenzylphosphoramidates. The nucleophilic aromatic substitution was promoted by microwave irradiation in N-methyl-2-pyrrolidinone. Attempts to remove the benzyl groups of the phosphoramidate moiety by hydrogenolysis with 10% Pd/C led to the cleavage of the P–N bond and the reduction of the macrocycle to hydroporphyrin-type derivatives. The extent of the effect of the catalytic hydrogenation to TPPF20 with 10% Pd/C was then studied with a variety of solvents. The results showed that ethanol/DMF is the solvent of choice to produce chlorin TPCF20 and an ethanol/DMF/NEt3 mixture is more adequate to produce isobacteriochlorin (TPIF20).
Collapse
Affiliation(s)
- Marcos C de Souza
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil, ; Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro F Pedrosa
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Géssica S Cazagrande
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Vitor F Ferreira
- Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brasil
| | - Maria G P M S Neves
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Pan K, Boulais E, Yang L, Bathe M. Structure-based model for light-harvesting properties of nucleic acid nanostructures. Nucleic Acids Res 2014; 42:2159-70. [PMID: 24311563 PMCID: PMC3936709 DOI: 10.1093/nar/gkt1269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022] Open
Abstract
Programmed self-assembly of DNA enables the rational design of megadalton-scale macromolecular assemblies with sub-nanometer scale precision. These assemblies can be programmed to serve as structural scaffolds for secondary chromophore molecules with light-harvesting properties. Like in natural systems, the local and global spatial organization of these synthetic scaffolded chromophore systems plays a crucial role in their emergent excitonic and optical properties. Previously, we introduced a computational model to predict the large-scale 3D solution structure and flexibility of nucleic acid nanostructures programmed using the principle of scaffolded DNA origami. Here, we use Förster resonance energy transfer theory to simulate the temporal dynamics of dye excitation and energy transfer accounting both for overall DNA nanostructure architecture as well as atomic-level DNA and dye chemical structure and composition. Results are used to calculate emergent optical properties including effective absorption cross-section, absorption and emission spectra and total power transferred to a biomimetic reaction center in an existing seven-helix double stranded DNA-based antenna. This structure-based computational framework enables the efficient in silico evaluation of nucleic acid nanostructures for diverse light-harvesting and photonic applications.
Collapse
Affiliation(s)
- Keyao Pan
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Etienne Boulais
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lun Yang
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Bathe
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew Chem Int Ed Engl 2013; 52:12069-72. [PMID: 24014236 PMCID: PMC4016739 DOI: 10.1002/anie.201305765] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, University College London20 Gordon Street, London WC1H OAJ (UK)
| | - Kerstin Göpfrich
- Cavendish Laboratory, University of CambridgeCambridge CB3 0HE (UK)
| | - James W Wood
- School of Chemistry, University of SouthamptonSouthampton SO17 1BJ (UK)
| | - Vivek V Thacker
- Cavendish Laboratory, University of CambridgeCambridge CB3 0HE (UK)
| | - Eugen Stulz
- School of Chemistry, University of SouthamptonSouthampton SO17 1BJ (UK)
| | - Ulrich F Keyser
- Cavendish Laboratory, University of CambridgeCambridge CB3 0HE (UK)
| | - Stefan Howorka
- Department of Chemistry, University College London20 Gordon Street, London WC1H OAJ (UK)
| |
Collapse
|
22
|
Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S. Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305765] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Woller JG, Hannestad JK, Albinsson B. Self-Assembled Nanoscale DNA–Porphyrin Complex for Artificial Light Harvesting. J Am Chem Soc 2013; 135:2759-68. [DOI: 10.1021/ja311828v] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jakob G. Woller
- Department of Chemical and Biological
Engineering/Physical
Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Jonas K. Hannestad
- Department of Chemical and Biological
Engineering/Physical
Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemical and Biological
Engineering/Physical
Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
24
|
Albinsson B, Hannestad JK, Börjesson K. Functionalized DNA nanostructures for light harvesting and charge separation. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Woller JG, Börjesson K, Svedhem S, Albinsson B. Reversible hybridization of DNA anchored to a lipid membrane via porphyrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1944-1953. [PMID: 22201337 DOI: 10.1021/la2039976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The binding of zinc-porphyrin-anchored linear DNA to supported lipid membranes was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The hydrophobic anchor is positioned at the ninth base of 39-base-pair-long DNA sequences, ensuring that the DNA is positioned parallel to the membrane surface when bound, an important prerequisite for using this type of construct for the creation of two-dimensional (2D) DNA patterns on the surface. The anchor consists of a porphyrin group linked to the DNA via two or three phenylethynylene moieties. Double-stranded DNA where one of the strands was modified with either of these anchors displayed irreversible binding, although binding to the membrane was faster for the derivatives with the short anchor. The binding and subsequent hybridization of single-stranded constructs on the surface was demonstrated at 60 °C, for both anchors, revealing a coverage-dependent behavior. At low coverage, hybridization results in an increase in mass (as measured by QCM-D) by a factor of ~1.5, accompanied by a slight increase in the rigidity of the DNA layer. At high coverage, hybridization expels molecules from the membrane, associated with an initial increase, followed by a decrease in DNA mass (as detected both by QCM-D and by an optical technique). Melting of the DNA on the surface was performed, followed by rehybridization of the single-stranded species left on the surface with their complementary strand, demonstrating the reversibility inherent in using DNA for the formation of membrane-confined nanopatterns.
Collapse
Affiliation(s)
- Jakob G Woller
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| | | | | | | |
Collapse
|
26
|
Börjesson K, Woller JG, Parsa E, Mårtensson J, Albinsson B. A bioinspired self assembled dimeric porphyrin pocket that binds electron accepting ligands. Chem Commun (Camb) 2012; 48:1793-5. [PMID: 22215229 DOI: 10.1039/c2cc17434k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A binding pocket consisting of two zinc porphyrins self assembled by Watson-Crick base pairing is presented. The porphyrin binding pocket is located in the confined environment of a lipid membrane whereas the DNA is located in the water phase. Bidentate electron accepting ligands are shown to coordinate in-between the two porphyrins.
Collapse
Affiliation(s)
- Karl Börjesson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
27
|
Aparici Plaza L, Chojnacki J. Influence of chloroform on crystalline products yielded in reactions of 5,10,15,20-tetraphenylporphyrin with HCl and copper(II) salts. Acta Crystallogr C 2011; 68:m24-8. [DOI: 10.1107/s0108270111054102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/15/2011] [Indexed: 11/11/2022] Open
Abstract
Chloroform was found to occupy the lattice of the protonated porphyrin and to promote crystallization of a different polymorphic form of a metalloporphyrin. The structure of 5,10,15,20-tetraphenylporphyrin-21,23-diium dichloride chloroform octasolvate, C44H32N42+·2Cl−·8CHCl3, (I), in the solid state is described and compared with related solvates. The porphyrin macrocycle displays a distorted saddle shape, with chloride anions above and below the ring. Seven chloroform molecules are boundviaC—H...Cl hydrogen bonds, while the link with the eighth solvent molecule is weaker. A new monoclinic polymorph of (5,10,15,20-tetraphenylporphyrinato)copper(II), [Cu(C44H28N4)], (II), crystallized from chloroform, is also presented.
Collapse
|
28
|
Liang J, Castronovo M, Scoles G. DNA as Invisible Ink for AFM Nanolithography. J Am Chem Soc 2011; 134:39-42. [DOI: 10.1021/ja2076845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Liang
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
| | - Matteo Castronovo
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
- Experimental and Clinical Pharmacology
Unit, CRO-National Center Institute, Via
Franco Gallini 2, I-33081 Aviano Pordenone, Italy
| | - Giacinto Scoles
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
29
|
Hannestad JK, Gerrard SR, Brown T, Albinsson B. Self-assembled DNA-based fluorescence waveguide with selectable output. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3178-3185. [PMID: 21901828 DOI: 10.1002/smll.201101144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Indexed: 05/31/2023]
Abstract
Using the principle of self-assembly, a fluorescence-based photonic network is constructed with one input and two spatially and spectrally distinct outputs. A hexagonal DNA nanoassembly is used as a scaffold to host both the input and output dyes. The use of DNA to host functional groups enables spatial resolution on the level of single base pairs, well below the wavelength of light. Communication between the input and output dyes is achieved through excitation energy transfer. Output selection is achieved by the addition of a mediator dye intercalating between the DNA base pairs transferring the excitation energy from input to output through energy hopping. This creates a tool for selective excitation energy transfer on the nanometer scale with spectral and spatial control. The ability to direct excitation energy in a controlled way on the nanometer scale is important for the incorporation of photochemical processes in nanotechnology.
Collapse
Affiliation(s)
- Jonas K Hannestad
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
30
|
Börjesson K, Lundberg EP, Woller JG, Nordén B, Albinsson B. Soft-surface DNA nanotechnology: DNA constructs anchored and aligned to lipid membrane. Angew Chem Int Ed Engl 2011; 50:8312-5. [PMID: 21761537 PMCID: PMC3193381 DOI: 10.1002/anie.201103338] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Bo Albinsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology41296 Göteborg (Sweden)
| |
Collapse
|
31
|
Börjesson K, Lundberg EP, Woller JG, Nordén B, Albinsson B. Soft-Surface DNA Nanotechnology: DNA Constructs Anchored and Aligned to Lipid Membrane. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Stephenson AWI, Partridge AC, Filichev VV. Synthesis of β-pyrrolic-modified porphyrins and their incorporation into DNA. Chemistry 2011; 17:6227-38. [PMID: 21503985 DOI: 10.1002/chem.201003200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Indexed: 12/20/2022]
Abstract
A synthetic methodology for the synthesis of various β-pyrrolic-functionalised porphyrins and their covalent attachment to 2'-deoxyuridine and DNA is described. Palladium(0)-catalysed Sonogashira and copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2'-deoxyuridine and DNA. Insertion of a porphyrin into the middle of single-stranded CT oligonucleotides possessing a 5'-terminal run of four cytosines was shown to trigger the formation of pH- and temperature-dependent i-motif structures. Porphyrin insertion also led to the aggregation of single-stranded purine-pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti-parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin-modified triplex-forming oligonucleotide (TFO) strands was observed, whereas anti-parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations.
Collapse
Affiliation(s)
- Adam W I Stephenson
- College of Sciences, Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | | | | |
Collapse
|
33
|
|
34
|
Pedrosa LF, de Souza MC, Faustino MAF, Neves MGPMS, Silva AMS, Tomé AC, Ferreira VF, Cavaleiro JAS. Porphyrin - Phosphoramidate Conjugates: Synthesis, Photostability and Singlet Oxygen Generation. Aust J Chem 2011. [DOI: 10.1071/ch11013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Tetrakis(pentafluorophenyl)porphyrin reacts with aminoalkylphosphoramidates to afford porphyrins substituted with one or four phosphoramidate groups in the 4-position of the meso-aryl groups. The new porphyrin derivatives show high photostability and some are better singlet oxygen generators than meso-tetrakis(1-methylpyridinium-4-yl)porphyrin, a well known good singlet oxygen producer.
Collapse
|