1
|
Zhu K, Lu H, Xue Q, Zhou F, Guo W, Sun C, Duan X. A FET-based flexible biosensor system for dynamic behavior observation of lipid membrane with nanoparticles in vitro. LAB ON A CHIP 2025; 25:393-402. [PMID: 39749404 DOI: 10.1039/d4lc00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nanoparticles have become widely used materials in various fields, yet their mechanism of action at the cellular level after entering the human body remains unclear. Accurately observing the effect of nanosize dimensions on particle internalization and toxicity in cells is crucial, particularly under the conditions of biological activity. With the aim of helping to study the interactions between nanoparticles of varying sizes and active cell membranes, we propose a flexible biosensor system based on a field effect transistor (FET). We constructed lipid bilayers on the device in vitro to simulate the interaction between nanoparticles and lipid membranes under active conditions, with the aim of investigating the effect of differently sized nanoparticles on the cell membrane. The experimental results revealed that nanoparticles with a diameter smaller than 50 nm tend to induce mild strain and repairable damage to the membrane, whereas nanoparticles larger than 50 nm may cause more severe damage, and even transmembrane penetration, by creating unrecoverable pores. The stretching of the lipid membrane exacerbated the deformation and destruction caused by nanoparticles, even in the case of smaller particles. These above results are consistent with previous theories on the interactions between cell membranes and nanoparticles. The proposed biosensors provide a valuable tool for investigating how the nanosize dimensions of particles affect their ability to penetrate and cause destruction in dynamic cell membranes, contributing to the improvement of a more comprehensive theoretical system for understanding the interaction process between nanoparticles and cell membranes.
Collapse
Affiliation(s)
- Keyi Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hanjing Lu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Qiannan Xue
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Feng Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenlan Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chen Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Tüçer ME, Tunç N, Tüçer S, Acar R, Usta DD, Salimi K, Konu Ö, Şeker UÖŞ. Transcriptomic investigation of NP toxicity on HepaRG spheroids. Chem Biol Interact 2025; 405:111303. [PMID: 39515631 DOI: 10.1016/j.cbi.2024.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles (NPs) are commonly used nanomaterials, however concerns have been raised about their toxicity. Although a few studies have reported the toxicity of NPs on cells, they have generally been restricted to a limited variety of NPs, inappropriate cell lines, or culture methods. Thus, the adverse effects remain inadequately understood, necessitating further analysis. This study focuses on assessing the impacts of diverse NPs of varying materials and sizes on HepaRG spheroids to determine the genes that respond to acute NP toxicity. HepaRG cells, the most appropriate alternative to primary hepatocytes, were cultured in 3D spheroids to better mimic the cellular microenvironment of the liver. To elucidate the toxicity mechanisms of NPs on HepaRG spheroids, transcriptome analysis was conducted by using RNA sequencing (RNA-seq). Among all NPs, lowest and highest numbers of differentially expressed genes (DEGs) were found for 40 nm AuNP (118 genes) and InP/ZnS (1904 genes), respectively. Remarkably, processes such as drug metabolism, sensitivity to metal ions, oxidative stress, endothelial-mesenchymal transition (EMT) and apoptosis consistently exhibited significant enrichment across all NPs of different materials. Pathways related to stress responses of the cells such as the MAPK, p53 and mTOR pathways are found to be dysregulated upon exposure to various NPs. The genes that are common and unique between DEGs of different NPs were identified. These results provide novel insights into the toxicological mechanisms of NPs on HepaRG spheroids.
Collapse
Affiliation(s)
- Merve Erden Tüçer
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Nazlıcan Tunç
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Suat Tüçer
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Rana Acar
- Bilkent University, Department of Molecular Biology and Genetics, 06800, Ankara, Turkey
| | - Duygu Deniz Usta
- Gazi University, Faculty of Medicine, Department of Medical Biology and Genetics, 06500, Ankara, Turkey
| | - Kouroush Salimi
- Ankara Yildirim Beyazit University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, 06010, Ankara, Turkey
| | - Özlen Konu
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Bilkent University, Department of Molecular Biology and Genetics, 06800, Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
3
|
Nakamura H, Okamura T, Tajima M, Kawano R, Yamaji M, Ohsaki S, Watano S. Enhancement of cell membrane permeability by using charged nanoparticles and a weak external electric field. Phys Chem Chem Phys 2023; 25:32356-32363. [PMID: 37975520 DOI: 10.1039/d3cp03281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Because the cell membrane is the main barrier of intracellular delivery, it is important to facilitate and control the translocation of extracellular compounds across it. Our earlier molecular dynamics simulations suggested that charged nanoparticles under a weak external electric field can enhance the permeability of the cell membrane without disrupting it. However, this membrane permeabilization approach has not been tested experimentally. This study investigated the membrane crossing of a model compound (dextran with a Mw of 3000-5000) using charged nanoparticles and a weak external electric field. A model bilayer lipid membrane was prepared by using a droplet contact method. The permeability of the membrane was evaluated using the electrophysiological technique. Even when the applied electric field was below the critical strength for membrane breakdown, dextran was able to cross the membrane without causing membrane breakdown. These results indicate that adding nanomaterials under a weak electric field may enhance the translocation of delivery compounds across the cell membrane with less damage, suggesting a new strategy for intracellular delivery systems.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Takumi Okamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
4
|
Ning X, Li X, Ma K, Pang H, Tian T, Hao H, Hou Q, Li M, Liu T, Hou S, Du H, Song X, Sun Z, Zhao C, Jin M. VDAC1 Protein Regulation of Oxidative Damage and Mitochondrial Dysfunction-Mediated Cytotoxicity by Silica Nanoparticles in SH-SY5Y Cells. Mol Neurobiol 2023; 60:6542-6555. [PMID: 37458989 DOI: 10.1007/s12035-023-03491-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.
Collapse
Affiliation(s)
- Xiaofan Ning
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shanshan Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
5
|
Moratin H, Thöle A, Lang J, Ehret Kasemo T, Stöth M, Hagen R, Scherzad A, Hackenberg S. Ag- but Not ZnO-Nanoparticles Disturb the Airway Epithelial Barrier at Subtoxic Concentrations. Pharmaceutics 2023; 15:2506. [PMID: 37896266 PMCID: PMC10610507 DOI: 10.3390/pharmaceutics15102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Inhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles. The aim of this study was to investigate whether subtoxic concentrations of zinc oxide (ZnO)- and silver (Ag)-NPs have an influence on upper airway barrier integrity. Nasal epithelial cells from 17 donors were cultured at the air-liquid interface and exposed to ZnO- and Ag-NPs. Barrier function, quantified by transepithelial electrical resistance (TEER), decreased after treatment with 10 µg/mL Ag-NPs, but FITC-dextran permeability remained stable and no change in mRNA levels of tight junction proteins and E-cadherin was detected by real-time quantitative PCR (RT-qPCR). The results indicate that subtoxic concentrations of Ag-NPs may already induce damage of the upper airway epithelial barrier in vitro. The lack of similar disruption by ZnO-NPs of similar size suggests a specific effect by Ag-NPs.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany (S.H.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gupta G, Kaur J, Bhattacharya K, Chambers BJ, Gazzi A, Furesi G, Rauner M, Fuoco C, Orecchioni M, Delogu LG, Haag L, Stehr JE, Thomen A, Bordes R, Malmberg P, Seisenbaeva GA, Kessler VG, Persson M, Fadeel B. Exploiting Mass Spectrometry to Unlock the Mechanism of Nanoparticle-Induced Inflammasome Activation. ACS NANO 2023; 17:17451-17467. [PMID: 37643371 PMCID: PMC10510732 DOI: 10.1021/acsnano.3c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Nanoparticles (NPs) elicit sterile inflammation, but the underlying signaling pathways are poorly understood. Here, we report that human monocytes are particularly vulnerable to amorphous silica NPs, as evidenced by single-cell-based analysis of peripheral blood mononuclear cells using cytometry by time-of-flight (CyToF), while silane modification of the NPs mitigated their toxicity. Using human THP-1 cells as a model, we observed cellular internalization of silica NPs by nanoscale secondary ion mass spectrometry (nanoSIMS) and this was confirmed by transmission electron microscopy. Lipid droplet accumulation was also noted in the exposed cells. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed specific changes in plasma membrane lipids, including phosphatidylcholine (PC) in silica NP-exposed cells, and subsequent studies suggested that lysophosphatidylcholine (LPC) acts as a cell autonomous signal for inflammasome activation in the absence of priming with a microbial ligand. Moreover, we found that silica NPs elicited NLRP3 inflammasome activation in monocytes, whereas cell death transpired through a non-apoptotic, lipid peroxidation-dependent mechanism. Together, these data further our understanding of the mechanism of sterile inflammation.
Collapse
Affiliation(s)
- Govind Gupta
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jasreen Kaur
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kunal Bhattacharya
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Arianna Gazzi
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Giulia Furesi
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department
of Medicine III and Center for Healthy Aging, TU Dresden, 01307 Dresden, Germany
| | - Claudia Fuoco
- Department
of Biology, University of Rome Tor Vergata, Rome 00173, Italy
| | - Marco Orecchioni
- Division
of Inflammation Biology, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Lucia Gemma Delogu
- Department
of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Lars Haag
- Department
of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jan Eric Stehr
- Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Romain Bordes
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Per Malmberg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Vadim G. Kessler
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Michael Persson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Bengt Fadeel
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Leibe R, Fritsch-Decker S, Gussmann F, Wagbo AM, Wadhwani P, Diabaté S, Wenzel W, Ulrich AS, Weiss C. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207593. [PMID: 37098631 DOI: 10.1002/smll.202207593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.
Collapse
Affiliation(s)
- Regina Leibe
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Susanne Fritsch-Decker
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Gussmann
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ane Marit Wagbo
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Sun Z, Wen Y, Zhang F, Fu Z, Yuan Y, Kuang H, Kuang X, Huang J, Zheng L, Zhang D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114796. [PMID: 36948006 DOI: 10.1016/j.ecoenv.2023.114796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In this study, TM3 mouse Leydig cells were in vitro exposed to polystyrene nanoparticles (PS-NPs, size 20 nm) at dosages of 50, 100 and 150 μg/mL to investigate their cytotoxicity. Our results demonstrated that PS-NPs can be internalized into TM3 Leydig cells and led to a concentration-dependent decline in cell viability. Furthermore, PS-NPs stimulation amplified ROS generation and initiated cellular oxidative stress and apoptosis. Moreover, PS-NPs treatment affected the mitochondrial DNA copy number and collapsed the mitochondrial membrane potential, accompanied by a disrupted energy metabolism. The cells exposed to PS-NPs also displayed a down-regulated expression of steroidogenesis-related genes StAR, P450scc and 17β-HSD, along with a decrease in testosterone secretion. In addition, treatment with PS-NPs destructed plasma membrane integrity, as presented by increase in lactate dehydrogenase release and depolarization of cell membrane potential. In summary, these data indicated that exposure to PS-NPs in vitro produced cytotoxic effect on Leydig cells by inducing oxidative injury, mitochondrial impairment, apoptosis, and cytomembrane destruction. Our results provide new insights into male reproductive toxicity caused by NPs.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Haibin Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China
| | - Liping Zheng
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| |
Collapse
|
9
|
Anosov A, Koplak O, Smirnova E, Borisova E, Korepanova E, Derunets A. Effect of Cobalt Ferrite Nanoparticles in a Hydrophilic Shell on the Conductance of Bilayer Lipid Membrane. MEMBRANES 2022; 12:1106. [PMID: 36363661 PMCID: PMC9692745 DOI: 10.3390/membranes12111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
We measured the conductance of bilayer lipid membranes of diphytanoylphosphatidylcholine induced by interaction with cubic magnetic nanoparticles (MNPs) of cobalt ferrite 12 and 27 nm in size and coated with a hydrophilic shell. The MNP coating is human serum albumin (HSA) or polyethylene glycol (PEG). The interaction of nanoparticles added to the bulk solution with the lipid bilayer causes the formation of metastable conductive pores, which, in turn, increases the integral conductance of the membranes. The increase in conductance with increasing MNP concentration was practically independent of the particle size. The dependence of the bilayer conductance on the concentration of PEG-coated MNPs was much weaker than that on the concentration with a shell of HSA. Analyzing the current traces, we believe that the conductive pores formed as a result of the interaction of nanoparticles with the membrane can change their size, remaining metastable. The form of multilevel current traces allows us to assume that there are several metastable pore states close in energy. The average radius of the putative cylindrical pores is in the range of 0.4-1.3 nm.
Collapse
Affiliation(s)
- Andrey Anosov
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | - Oksana Koplak
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Elena Smirnova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Elizaveta Borisova
- The Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Eugenia Korepanova
- The Department of General and Medical Biophysics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alice Derunets
- National Research Center Kurchatov Institute, Kurchatov Genomic Center, Academician Kurchatov Square 1, 123098 Moscow, Russia
| |
Collapse
|
10
|
McDougall RM, Cahill HF, Power ME, MacCormack TJ, Meli MV, Rourke JL. Multiparametric cytotoxicity assessment: the effect of gold nanoparticle ligand functionalization on SKOV3 ovarian carcinoma cell death. Nanotoxicology 2022; 16:355-374. [PMID: 35787735 DOI: 10.1080/17435390.2022.2095312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (AuNP) are promising anti-cancer agents because of their modifiable properties and high biocompatibility. This study used multiple parallel analyses to investigate the cytotoxic properties of 5 nm AuNP conjugated to four different ligands with distinct surface chemistry: polyethylene glycol (PEG), trimethylammonium bromide (TMAB), 4-dimethylaminopyridine (DMAP), and carboxyl (COOH). We used a range of biochemical and high-content microscopy methods to evaluate the metabolic function, oxidative stress, cell health, cell viability, and cell morphology in SKOV3 ovarian cancer cells. Each AuNP displayed a distinct cytotoxicity profile. All AuNP species assessed exhibited signs of dose-dependent cytotoxicity when morphology, clonogenic survival, lysosomal uptake, or cell number were measured as the marker of toxicity. All particles except for AuNP-COOH increased SKOV3 apoptosis. In contrast, AuNP-TMAB was the only particle that did not alter the metabolic function or induce significant signs of oxidative stress. These results demonstrate that AuNP surface chemistry impacts the magnitude and mechanism of SKOV3 cell death. Together, these findings reinforce the important role for multiparametric cytotoxicity characterization when considering the utility of novel particles and surface chemistries.
Collapse
Affiliation(s)
- Rachel M McDougall
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Hannah F Cahill
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Madeline E Power
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Jillian L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| |
Collapse
|
11
|
Mohd Faheem M, Bhagat M, Sharma P, Anand R. Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant). Int J Pharm 2022; 619:121710. [PMID: 35367334 DOI: 10.1016/j.ijpharm.2022.121710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022]
Abstract
The biological synthesis of nanoparticles is a growing research trend because it has numerous pharmaceutical and biomedical applications. The present study describes the preparation, characterization and anti-cancer evaluation of silver nanoparticles synthesized using an aqueous extract of Bergenia ligulata whole plant as a reducing agent. The physiochemical properties of the Bergenia ligulata silver nanoparticles (BgAgNPs) were measured by ultraviolet-visible spectrophotometry, Fourier transform infrared spectrophotmetry (FTIR), X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM) analysis for identifying functional groups, crystallinity, structural and morphological features, respectively. Further, BgAgNps, along with the Bergenia ligulata aqueous extract (BgAE), were investigated for their effects on cell proliferation and apoptosis through MTT, colony-forming assay, wound-healing assay and flow cytometry-based approaches. The cytotoxic effects were more pronounced in cells treated with BgAgNps in comparison to BgAE. These effects were evidenced by the decreasing cell viability, migration capacity and loss of characteristic morphological features. In addition, BgAgNps unveiled significant induction of apoptosis in human breast cancer (MCF-7) cells, possibly through oxidative stress-mediated reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential (MMP). Moreover, molecular mechanism-based studies revealed that BgAgNps robustly augmented p53 levels and pro-apoptotic downstream targets of p53 like Bax and cleaved caspase 3 in MCF-7 cells. Of note, BgAgNps had little or no cytotoxic effect on p53-deficient cancer cells (Mda-mb-231 and SW-620). These findings confirm that the BgAgNPs exhibited superior anti-cancer potential and could be exploited as a promising, cost-effective, and environmentally benign strategy in treating this disease in the future.
Collapse
Affiliation(s)
- Mir Mohd Faheem
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India.
| | - Pooja Sharma
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| | - Rythem Anand
- School of Biotechnology, University of Jammu, Jammu, J&K 180006, India
| |
Collapse
|
12
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
13
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
14
|
El-Demerdash FM, El-Magd MA, El-Sayed RA. Panax ginseng modulates oxidative stress, DNA damage, apoptosis, and inflammations induced by silicon dioxide nanoparticles in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:1362-1374. [PMID: 33749107 DOI: 10.1002/tox.23132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are extensively used in cosmetics, food, and drug delivery. The main mechanism of SiO2 NPs toxicities depends on oxidative stress. Ginseng (Panax ginseng Meyer) is used in various medicinal applications because of its antioxidant efficiency. Therefore, the present study was carried out to investigate the possible combated role of ginseng against SiO2 NPs toxicity in rat liver. Thirty-five male rats (160-180 g) were allocated into five groups of seven rats each, randomly. The first group was used as a control while groups 2, 3, 4, and 5 were treated orally with ginseng (Gin; 75 mg/kg, 1/10 LD50 ), SiO2 NPs, (200 mg/kg, 1/10 LD50 ), Gin + SiO2 NPs (protection group), and SiO2 NPs + Gin (therapeutic group) for 5 weeks, respectively. Treatment with SiO2 NPs increased lipid peroxidation, liver function enzymes, and decreased antioxidant enzymes (SOD, CAT, GPx, GST) activity and non-enzymatic antioxidant (GSH) level. SiO2 NPs administration motivated liver apoptosis as revealed by the upregulation of the apoptotic genes, Bcl2-associated x protein (Bax), and Beclin 1 and downregulation of the anti-apoptotic gene, B-cell lymphoma 2 (Bcl2) as well as increase in DNA damage. Also, SiO2 NPs administration caused inflammation as indicated by upregulation of the inflammation-related genes (interleukin 1 beta [IL1β], tumor necrosis factor-alpha [TNFα], nuclear factor kappa B [NFκB], cyclooxygenase 2 [Cox2], transforming growth factor-beta 1 [TGFβ1]) as well as cell cycle arrest in the G0/G1 phase of liver cells. Moreover, histopathological examination proved the biochemical and molecular perturbations occurred due to SiO2 NPs toxicity. On the other hand, ginseng caused a significant modulation on the deleterious effects induced by SiO2 NPs in rat liver. In conclusion, ginseng has a potent preventive effect than the therapeutic one and might be used in the treatment of SiO2 NPs hepatotoxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Kozień D, Szermer-Olearnik B, Rapak A, Szczygieł A, Anger-Góra N, Boratyński J, Pajtasz-Piasecka E, Bućko MM, Pędzich Z. Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells. MATERIALS 2021; 14:ma14113010. [PMID: 34199341 PMCID: PMC8199563 DOI: 10.3390/ma14113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
The aim of the work was to study the interaction between boron-rich boron carbide nanoparticles and selected tumor and immune phagocytic cells. Experiments were performed to investigate the feasibility of the application of boron carbide nanoparticles as a boron carrier in boron neutron capture therapy. Boron carbide powder was prepared by the direct reaction between boron and soot using the transport of reagents through the gas phase. The powder was ground, and a population of nanoparticles with an average particle size about 80 nm was selected by centrifugation. The aqueous suspension of the nanoparticles was functionalized with human immunoglobulins or FITC-labeled human immunoglobulins and was then added to the MC38 murine colon carcinoma and to the RAW 264.7 cell line of mouse macrophages. Flow cytometry analysis was used to determine interactions between the functionalized boron carbide nanoparticles and respective cells. It was shown that B4C–IgG nanoconjugates may bind to phagocytic cells to be internalized by them, at least partially, whereas such nanoconjugates can only slightly interact with molecules on the cancer cells’ surface.
Collapse
Affiliation(s)
- Dawid Kozień
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; (M.M.B.); (Z.P.)
- Correspondence:
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Natalia Anger-Góra
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Janusz Boratyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (B.S.-O.); (A.R.); (A.S.); (N.A.-G.); (J.B.); (E.P.-P.)
| | - Mirosław M. Bućko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; (M.M.B.); (Z.P.)
| | - Zbigniew Pędzich
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicz Av., 30-059 Kraków, Poland; (M.M.B.); (Z.P.)
| |
Collapse
|
16
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
17
|
Boyadzhiev A, Avramescu ML, Wu D, Williams A, Rasmussen P, Halappanavar S. Impact of copper oxide particle dissolution on lung epithelial cell toxicity: response characterization using global transcriptional analysis. Nanotoxicology 2021; 15:380-399. [PMID: 33507836 DOI: 10.1080/17435390.2021.1872114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The in vitro and in vivo toxicity of copper oxide nanoparticles (CuO NPs) is attributed to both particle and dissolved copper ion species. However, a clear understanding of (1) the specific cellular responses that are modulated by the two species and (2) the temporal dynamics in toxicity, as the proportional amount of particulate and ionic forms change over time, is lacking. In the current study, in vitro responses to microparticulate CuO (CuO MPs), CuO NPs, and dissolved Cu2+ were characterized in order to elucidate particle and ion-induced kinetic effects. Particle dissolution experiments were carried out in a relevant cell culture medium, using CuO NPs and MPs. Mouse lung epithelial cells were exposed for 2-48 h with 1-25 µg/mL CuO MPs, CuO NPs, or 7 and 54 µg/mL CuCl2. Cellular viability and genome-wide transcriptional responses were assessed. Dose and time-dependent cytotoxicity were observed in CuO NP exposed cells, which was delayed and subtle in CuCl2 and not observed in CuO MPs treated cells. Analyses of differentially expressed genes and associated pathway perturbations showed that dissolved ions released by CuO NPs in the extracellular medium are insufficient to account for the observed potency and cytotoxicity. Further organization of gene expression results in an Adverse Outcome Pathway (AOP) framework revealed a series of key events potentially involved in CuO NPs toxicity. The AOP is applicable to toxicity induced by metal oxide nanoparticles of varying solubility, and thus, can facilitate the development of in vitro alternative strategies to screen their toxicity.
Collapse
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Earth and Environmental Sciences Department, University of Ottawa, Ottawa, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.,Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Karanth S, Meesaragandla B, Delcea M. Changing surface properties of artificial lipid membranes at the interface with biopolymer coated gold nanoparticles under normal and redox conditions. Biophys Chem 2020; 267:106465. [DOI: 10.1016/j.bpc.2020.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022]
|
19
|
Genova J, Chamati H, Petrov M. Study of SOPC with embedded pristine and amide-functionalized single wall carbon nanotubes by DSC and FTIR spectroscopy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901719. [PMID: 31921557 PMCID: PMC6947711 DOI: 10.1002/advs.201901719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/04/2019] [Indexed: 05/05/2023]
Abstract
The bottom-up construction of synthetic cells with user-defined chemical organization holds considerable promise in the creation of bioinspired materials. Complex emulsions, droplet networks, and nested vesicles all represent platforms for the engineering of segregated chemistries with controlled communication, analogous to biological cells. Microfluidic manufacture of such droplet-based materials typically results in radial or axisymmetric structures. In contrast, biological cells frequently display chemical polarity or gradients, which enable the determination of directionality, and inform higher-order interactions. Here, a dual-material, 3D-printing methodology to produce microfluidic architectures that enable the construction of functional, asymmetric, hierarchical, emulsion-based artificial cellular chassis is developed. These materials incorporate droplet networks, lipid membranes, and nanoparticle components. Microfluidic 3D-channel arrangements enable symmetry-breaking and the spatial patterning of droplet hierarchies. This approach can produce internal gradients and hemispherically patterned, multilayered shells alongside chemical compartmentalization. Such organization enables incorporation of organic and inorganic components, including lipid bilayers, within the same entity. In this way, functional polarization, that imparts individual and collective directionality on the resulting artificial cells, is demonstrated. This approach enables exploitation of polarity and asymmetry, in conjunction with compartmentalized and networked chemistry, in single and higher-order organized structures, thereby increasing the palette of functionality in artificial cellular materials.
Collapse
Affiliation(s)
- Jin Li
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Divesh Kamal Baxani
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - William David Jamieson
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - Wen Xu
- Cardiff Business School Cardiff UniversityAberconway Building, Colum DrCardiffCF10 3EUUK
| | - Victoria Garcia Rocha
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - David Anthony Barrow
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Oliver Kieran Castell
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| |
Collapse
|
21
|
Ouyang S, Li K, Zhou Q, Hu X. Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide. WATER RESEARCH 2019; 165:114987. [PMID: 31450222 DOI: 10.1016/j.watres.2019.114987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The environmental behaviors and risks associated with graphene oxide (GO, a popular 2D nanomaterial) have attracted considerable attention. GO released to aquatic systems will most likely interact with ubiquitous nanocolloids (Nc) in surface water. However, the effects of Nc on the fate and risk of GO remain largely unknown in water. Herein, the binding of Nc onto GO was investigated via electron microscopy, electron paramagnetic resonance, 2D correlation spectroscopy and biolayer interferometry. The results revealed that electron charge transfers, hydrophilic effects and π-π stacking contributed to a strong affinity (KD = 5.6 nM) and high adsorption capacity (159.8 mg/g) of Nc onto the GO surface. Moreover, GO nanosheets transformed to a scroll morphology or multiple GO particles bridging by Nc, which remarkably reduced the aggregation and sedimentation rates after binding with Nc. Interestingly, co-exposure with Nc greatly alleviated the toxicity (e.g., tail malformation, yolk sac edema and oxidative stress) of GO to zebrafish embryos. Morphological and structural alterations of GO after binding to Nc contributed to the mechanisms for the antagonistic effects on the zebrafish embryos toxicity. The present work provides insights into the environmental fate and risk of GO by ubiquitous Nc in natural water.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kaiwen Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
22
|
Saito ML. NanoTouch: intracellular recording using transmembrane conductive nanoparticles. J Neurophysiol 2019; 122:2016-2026. [PMID: 31483705 PMCID: PMC6879961 DOI: 10.1152/jn.00359.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Observations of the electrophysiological properties of cells are important for understanding cellular functions and their underlying mechanisms. Short action potentials in axons are essential to rapidly deliver signals from the neuronal cell body to the terminals, whereas longer action potentials are required for sufficient calcium influx for transmitter release at the synaptic terminals and for cardiomyocyte and smooth muscle contractions. To accurately observe the shape and timing of depolarizations, it is essential to measure changes in the intracellular membrane potential. The ability to record action potentials and intracellular membrane potentials from mammalian cells and neurons was made possible by Ling and Gerard's discovery in 1949, when they introduced sharp glass electrode with a submicron sized tip. Because of the small tip size, the sharp glass electrode could penetrate the cell membrane with little damage, which was one of the major breakthroughs in cellular electrophysiology and is the basic principle of the intracellular recording technique to date, providing the basis for further innovation of patch-clamp electrophysiology. I report a proof-of-principle demonstration of a novel method for recording intracellular potentials without penetrating the cell membrane using glass electrodes. We discovered that magnetically held transmembrane conductive nanoparticles can function as an intracellular electrode to detect transmembrane membrane potentials similar to those obtained by the conventional patch-clamp recording method.NEW & NOTEWORTHY To accurately observe the shape of action potentials, it is essential to perform intracellular recordings. I present a method to record intracellular potentials using magnetically held magnetic conductive nanoparticles in the membrane as an electrode. These nanoparticles function similarly to a conventional intracellular microelectrode. This is the first report to apply conductive nanoparticles to detect action potentials in the form of electrical signals.
Collapse
|
23
|
Goda T, Imaizumi Y, Hatano H, Matsumoto A, Ishihara K, Miyahara Y. Translocation Mechanisms of Cell-Penetrating Polymers Identified by Induced Proton Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8167-8173. [PMID: 31094202 DOI: 10.1021/acs.langmuir.9b00856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unlike the majority of nanomaterials designed for cellular uptake via endocytic pathways, some of the functional nanoparticles and nanospheres directly enter the cytoplasm without overt biomembrane injuries. Previously, we have shown that a water-soluble nanoaggregate composed of amphiphilic random copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA), poly(MPC- random-BMA) (PMB), passes live cell membranes in an endocytosis-free manner. Yet, details in its translocation mechanism remain elusive due to the lack of proper analytical methods. To understand this phenomenon experimentally, we elaborated the original pH perturbation assay that is extremely sensitive to the pore formation on cell membranes. The ultimate sensitivity originates from the detection of the smallest indicator H+ (H3O+) passed through the molecularly sized transmembrane pores upon challenge by exogenous reagents. We revealed that water-soluble PMB at the 30 mol % MPC unit (i.e., PMB30W) penetrated into the cytosol of model mammalian cells without any proton leaks, in contrast to conventional cell-penetrating peptides, TAT and R8 as well as the surfactant, Triton X-100. While exposure of PMB30W permeabilized cytoplasmic lactate dehydrogenase out of the cells, indicating the alteration of cell membrane polarity by partitioning of amphiphilic PMB30W into the lipid bilayers. Nevertheless, the biomembrane alterations by PMB30W did not exhibit cytotoxicity. In summary, elucidating translocation mechanisms by proton dynamics will guide the design of nanomaterials with controlled permeabilization to cell membranes for bioengineering applications.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Nano Innovation Institute , Inner Mongolia University for Nationalities , No. 22 HuoLinHe Street , Tongliao , Inner Mongolia 028000 , P. R. China
| | - Yuki Imaizumi
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Hiroaki Hatano
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) , 705-1 Shimoimaizumi , Ebina , Kanagawa 243-0435 , Japan
| | | | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| |
Collapse
|
24
|
Pirbhai M, Chandrasekar S, Zheng M, Ignatova T, Rotkin SV, Jedlicka SS. Augmentation of C17.2 Neural Stem Cell Differentiation via Uptake of Low Concentrations of ssDNA‐Wrapped Single‐Walled Carbon Nanotubes. ACTA ACUST UNITED AC 2019; 3:e1800321. [DOI: 10.1002/adbi.201800321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Massooma Pirbhai
- Department of Physics Susquehanna University 514 University Ave. Selinsgrove PA 17870 USA
| | - Swetha Chandrasekar
- Department of Bioengineering Lehigh University 111 Research Drive Bethlehem PA 18015 USA
| | - Ming Zheng
- National Institute of Standards and Technology 1000 Bureau Drive, M/S 8542 Gaithersburg MD 20899 USA
| | - Tetyana Ignatova
- Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro 2907 East Gate City Blvd. Greensboro NC 27401 USA
| | - Slava V. Rotkin
- Department of Engineering Science and Mechanics Materials Research Institute The Pennsylvania State University N‐332 Millennium Science Complex University Park PA 16802 USA
| | - Sabrina S. Jedlicka
- Department of Materials Science and Engineering Department of Bioengineering Lehigh University 5 E. Packer Ave. Bethlehem PA 18015 USA
| |
Collapse
|
25
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|
26
|
Kadiyala U, Turali-Emre ES, Bahng JH, Kotov NA, VanEpps JS. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). NANOSCALE 2018; 10:4927-4939. [PMID: 29480295 PMCID: PMC5847298 DOI: 10.1039/c7nr08499d] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are attractive as broad-spectrum antibiotics, however, their further engineering as antimicrobial agents and clinical translation is impeded by controversial data about their mechanism of activity. It is commonly reported that ZnO-NP's antimicrobial activity is associated with the production of reactive oxygen species (ROS). Here we disprove this concept by comparing the antibacterial potency of ZnO-NPs and their capacity to generate ROS with hydrogen peroxide (H2O2). Then, using gene transcription microarray analysis, we provide evidence for a novel toxicity mechanism. Exposure to ZnO-NPs resulted in over three-log reduction in colonies of methicillin resistant S. aureus with minimal increase in ROS or lipid peroxidation. The amount of ROS required for the same amount of killing by H2O2 was much greater than that generated by ZnO-NPs. In contrast to H2O2, ZnO-NP mediated killing was not mitigated by the antioxidant, N-acetylcysteine. ZnO-NPs caused significant up-regulation of pyrimidine biosynthesis and carbohydrate degradation. Simultaneously, amino acid synthesis in S. aureus was significantly down-regulated indicating a complex mechanism of antimicrobial action involving multiple metabolic pathways. The results of this study point to the importance of specific experimental controls in the interpretation of antimicrobial mechanistic studies and the need for targeted molecular mechanism studies. Continued investigation on the antibacterial mechanisms of biomimetic ZnO-NPs is essential for future clinical translation.
Collapse
Affiliation(s)
- Usha Kadiyala
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| | - Emine Sumeyra Turali-Emre
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - Joong Hwan Bahng
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
| | - Nicholas A. Kotov
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor, USA
- Department of Materials Science and Engineering; University of Michigan; Ann Arbor, USA
- Department of Macromolecular Science and Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine; University of Michigan; Ann Arbor, USA
- Department of Chemical Engineering; University of Michigan; Ann Arbor, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, USA
- Michigan Center for Integrative Research in Critical Care (MCIRCC); University of Michigan; Ann Arbor, USA
| |
Collapse
|
27
|
Zou W, Zhou Q, Zhang X, Hu X. Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2638-2648. [PMID: 29425036 DOI: 10.1021/acs.est.7b04397] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The environmental transformations of nanomaterials are correlated with their behaviors and ecological risks. The applications of single-layer molybdenum disulfide (SLMoS2) have rapidly developed in environmental fields, but the potential transformations and biological effects of SLMoS2 remain largely unknown. This study revealed that humic acid (HA, over 10 mg/L) induced the scrolling of SLMoS2 with light irradiation over a 56-day incubation. The colloidal stability of SLMoS2 increased, and the aggregation ratio decreased from 0.59 ± 0.07 to 0.08 ± 0.01 nm/min after HA hybridization. Besides, compared with pristine SLMoS2, the chemical dissolution rate of SLMoS2 was up to 4.6-fold faster with HA exposure. These results demonstrate that HA affects the environmental fate and transformations of SLMoS2. SLMoS2-HA possessed a significantly widened direct band gap (2.06 eV) compared with that of SLMoS2 (1.8 eV). SLMoS2 acted as an electronic acceptor from HA, resulting in the separation of electron-hole pairs. Consequently, SLMoS2-HA exhibited stronger peroxidase-like catalytic activity, which was approximately 2-fold higher than that of SLMoS2. Moreover, the morphology and layered structure of SLMoS2 changed, and the damage SLMoS2 inflicted on microalgae was significantly reduced. This work provides insights into the behaviors and related biological risks of SLMoS2 in aqueous environments.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control , College of Environmental Science and Engineering, Nankai University , Tianjin 300071 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control , College of Environmental Science and Engineering, Nankai University , Tianjin 300071 , China
| | - Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control , College of Environmental Science and Engineering, Nankai University , Tianjin 300071 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control , College of Environmental Science and Engineering, Nankai University , Tianjin 300071 , China
| |
Collapse
|
28
|
Venkatesan GA, Taylor GJ, Basham CM, Brady NG, Collier CP, Sarles SA. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids. BIOMICROFLUIDICS 2018; 12:024101. [PMID: 29576833 PMCID: PMC5832467 DOI: 10.1063/1.5016523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
In this article, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%-16% reduction in area per lipid for DOPC and POPC, respectively. Finally, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupture potential, and specific capacitance.
Collapse
Affiliation(s)
- Guru A Venkatesan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Colin M Basham
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Nathan G Brady
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
29
|
Cruz Gomes da Silva RL, Oliveira da Silva HF, da Silva Gasparotto LH, Caseli L. How the interaction of PVP-stabilized Ag nanoparticles with models of cellular membranes at the air-water interface is modulated by the monolayer composition. J Colloid Interface Sci 2018; 512:792-800. [DOI: 10.1016/j.jcis.2017.10.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
|
30
|
Su L, Li R, Khan S, Clanton R, Zhang F, Lin YN, Song Y, Wang H, Fan J, Hernandez S, Butters AS, Akabani G, MacLoughlin R, Smolen J, Wooley KL. Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. J Am Chem Soc 2018; 140:1438-1446. [PMID: 29350522 DOI: 10.1021/jacs.7b11462] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although nanomedicines have been pursued for nearly 20 years, fundamental chemical strategies that seek to optimize both the drug and drug carrier together in a concerted effort remain uncommon yet may be powerful. In this work, two block polymers and one dimeric prodrug molecule were designed to be coassembled into degradable, functional nanocarriers, where the chemistry of each component was defined to accomplish important tasks. The result is a poly(ethylene glycol) (PEG)-protected redox-responsive dimeric paclitaxel (diPTX)-loaded cationic poly(d-glucose carbonate) micelle (diPTX@CPGC). These nanostructures showed tunable sizes and surface charges and displayed controlled PTX drug release profiles in the presence of reducing agents, such as glutathione (GSH) and dithiothreitol (DTT), thereby resulting in significant selectivity for killing cancer cells over healthy cells. Compared to free PTX and diPTX, diPTX@CPGC exhibited improved tumor penetration and significant inhibition of tumor cell growth toward osteosarcoma (OS) lung metastases with minimal side effects both in vitro and in vivo, indicating the promise of diPTX@CPGC as optimized anticancer therapeutic agents for treatment of OS lung metastases.
Collapse
Affiliation(s)
- Lu Su
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Sarosh Khan
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Ryan Clanton
- Departments of Nuclear Engineering and Veterinary Integrative Biosciences and Texas A&M Institute for Preclinical Studies, Texas A&M University , College Station, Texas 77842, United States
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Yen-Nan Lin
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States.,College of Medicine, Texas A&M University , Bryan, Texas 77807, United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Jingwei Fan
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Soleil Hernandez
- Departments of Nuclear Engineering and Veterinary Integrative Biosciences and Texas A&M Institute for Preclinical Studies, Texas A&M University , College Station, Texas 77842, United States
| | - Andrew S Butters
- Departments of Nuclear Engineering and Veterinary Integrative Biosciences and Texas A&M Institute for Preclinical Studies, Texas A&M University , College Station, Texas 77842, United States
| | - Gamal Akabani
- Departments of Nuclear Engineering and Veterinary Integrative Biosciences and Texas A&M Institute for Preclinical Studies, Texas A&M University , College Station, Texas 77842, United States
| | - Ronan MacLoughlin
- Aerogen , IDA Business Park, Dangan, Galway, Ireland .,School of Pharmacy, Royal College of Surgeons , Dublin, Ireland .,School of Pharmacy and Pharmaceutical Sciences, Trinity College , Dublin, Ireland
| | - Justin Smolen
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University , College Station, Texas 77842, United States
| |
Collapse
|
31
|
Wu H, Tito N, Giraldo JP. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS NANO 2017; 11:11283-11297. [PMID: 29099581 DOI: 10.1021/acsnano.7b05723] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m-2 s-1, 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce3+/Ce4+ ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce3+/Ce4+ ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce3+/Ce4+ ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Nicholas Tito
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Juan P Giraldo
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
32
|
Bo Z, Avsar SY, Corliss MK, Chung M, Cho NJ. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:264-273. [PMID: 28654791 DOI: 10.1016/j.jhazmat.2017.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/31/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles.
Collapse
Affiliation(s)
- Zhang Bo
- Shanghai Jiao Tong University Environment Science Building, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| | - Michael K Corliss
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
33
|
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017; 46:4218-4244. [PMID: 28585944 PMCID: PMC5593313 DOI: 10.1039/c6cs00636a] [Citation(s) in RCA: 1534] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Collapse
Affiliation(s)
- Shahed Behzadi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Soriano GB, da Silva Oliveira R, Camilo FF, Caseli L. Interaction of non-aqueous dispersions of silver nanoparticles with cellular membrane models. J Colloid Interface Sci 2017; 496:111-117. [DOI: 10.1016/j.jcis.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
35
|
Ren N, Atyah M, Chen WY, Zhou CH. The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med 2017; 15:110. [PMID: 28532423 PMCID: PMC5440915 DOI: 10.1186/s12967-017-1218-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Genotoxicity refers to the ability of harmful substances to damage genetic information in cells. Being exposed to chemical and biological agents can result in genomic instabilities and/or epigenetic alterations, which translate into a variety of diseases, cancer included. This concise review discusses, from both a genetic and epigenetic point of view, the current detection methods of different agents’ genotoxicity, along with their basic and clinical relation to human cancer, chemotherapy, germ cells and stem cells.
Collapse
Affiliation(s)
- Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Manar Atyah
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Wan-Yong Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Chen-Hao Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| |
Collapse
|
36
|
Ignatova T, Chandrasekar S, Pirbhai M, Jedlicka SS, Rotkin SV. Micro-Raman spectroscopy as an enabling tool for long-term intracellular studies of nanomaterials at nanomolar concentration levels. J Mater Chem B 2017; 5:6536-6545. [DOI: 10.1039/c7tb00766c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imaging of individual SWCNTs inside neural stem cells has been demonstrated using confocal scanning Raman microscopy. Hyperspectral Raman imaging allowed detection of nanomaterials applied to the cell in ultra-low doses in long-term studies.
Collapse
Affiliation(s)
- T. Ignatova
- Department of Materials Science and Engineering
- Lehigh University
- USA
| | - S. Chandrasekar
- Department of Materials Science and Engineering
- Lehigh University
- USA
| | - M. Pirbhai
- Department of Physics
- Susquehanna University
- Selinsgrove
- USA
| | - S. S. Jedlicka
- Department of Materials Science and Engineering
- Lehigh University
- USA
- Bioengineering Program
- Lehigh University
| | - S. V. Rotkin
- Department of Materials Science and Engineering
- Lehigh University
- USA
- Center for Advanced Materials & Nanotechnology
- Lehigh University
| |
Collapse
|
37
|
Rejman J, Nazarenus M, Jimenez de Aberasturi D, Said AH, Feliu N, Parak WJ. Some thoughts about the intracellular location of nanoparticles and the resulting consequences. J Colloid Interface Sci 2016; 482:260-266. [DOI: 10.1016/j.jcis.2016.07.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
|
38
|
Venkatesan GA, Sarles SA. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability. LAB ON A CHIP 2016; 16:2116-2125. [PMID: 27164314 DOI: 10.1039/c6lc00391e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The droplet interface bilayer (DIB) is a promising technique for assembling lipid membrane-based materials and devices using water droplets in oil, but it has largely been limited to laboratory environments due to its liquid construction. With a vision to transform this lab-based technique into a more-durable embodiment, we investigate the use of a polymer-based organogel to encapsulate DIBs within a more-solid material matrix to improve their handling and portability. Specifically, a temperature-sensitive organogel formed from hexadecane and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer is used to replace the liquid solvent that surrounds the lipid-coated droplets to establish a novel liquid-in-gel DIB system. Through specific capacitance measurements and single-channel recordings of the pore forming peptide alamethicin, we verify that the structural and functional membrane properties are retained when DIBs are assembled within SEBS organogel. In addition, we demonstrate that organogel encapsulation offers improved handling of droplets and yields DIBs with a near 3× higher bilayer durability, as quantified by the lateral acceleration required to rupture the membrane, compared to liquid-in-liquid DIBs in oil. This encapsulated DIB system provides a barrier against contamination from the environment and offers a new material platform for supporting multilayered DIB-based devices as well as other digital microfluidic systems that feature water droplets in oil.
Collapse
Affiliation(s)
- Guru A Venkatesan
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA.
| | - Stephen A Sarles
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA.
| |
Collapse
|
39
|
Rossi G, Monticelli L. Gold nanoparticles in model biological membranes: A computational perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2380-2389. [PMID: 27060434 DOI: 10.1016/j.bbamem.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 01/15/2023]
Abstract
The electronic, optical, catalytic, and magnetic properties of metal nanoparticles (NPs) make them extremely interesting for biomedical applications. In this rapidly moving field, monolayer-protected gold nanoparticles emerge both as a reference system and as promising candidates for drug and gene delivery, photothermal treatment, and imaging applications. Despite the technological relevance, there is still poor understanding of the molecular processes driving the interactions of metal nanoparticles with cells, and with cell membranes in particular. In this paper we review molecular-level computational studies of the interaction between monolayer-protected gold NPs and model lipid membranes. Our review comprises a brief description of the most relevant experimental results in this field and of the questions they raised, followed by a description of the computational achievements reported so far. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Giulia Rossi
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy.
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France.
| |
Collapse
|
40
|
Rascol E, Devoisselle JM, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. NANOSCALE 2016; 8:4780-98. [PMID: 26868717 DOI: 10.1039/c5nr07954c] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.
Collapse
Affiliation(s)
- Estelle Rascol
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Joël Chopineau
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France and Université de Nimes Rue Georges Salan, 30000 Nimes, France.
| |
Collapse
|
41
|
Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:245-57. [PMID: 26676841 DOI: 10.1111/tpj.13105] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate.
Collapse
Affiliation(s)
- Arifa Sosan
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Katsiaryna Tsiurkina
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Igor Smolich
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sunitha Subramaniam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vladimir Golovko
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - David Anderson
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Ian Colbeck
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376, St.-Petersburg, Russia
| |
Collapse
|
42
|
Costa LC, Mohmood I, Trindade T, Saleem M, Duarte AC, Pereira E, Ahmad I. Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18574-18589. [PMID: 26396010 DOI: 10.1007/s11356-015-5375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to assess the mechanisms of innate immune function responses to silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP) exposure alone and its associated mercury (Hg) in European eel (Anguilla anguilla L.) phagocytes isolated from peritoneum (P-phagocytes), gill (G-phagocytes), head kidney (HK-phagocytes) and spleen (S-phagocytes). The study evaluated viability, phagocytosis, oxidative burst activity (OBA) and lipid peroxidation (LPO). Four groups were made: (1) 2 × 10(6) phagocytes + RPMI-1640 (control), (2) 2 × 10(6) phagocytes + IONP (2.5 mg L(-1)), (3) 2 × 10(6) phagocytes + Hg (50 μg L(-1)) and (4) 2 × 10(6) phagocytes + IONP + Hg. Samplings were performed at 0, 2, 4, 8, 16, 24, 48 and 72 h of exposure. A. anguilla P-, G-, HK- and S-phagocytes in vitro exposure to IONP alone revealed either increased (except HK-phagocytes at 16 h) or no change in viability, suggesting that the cells are metabolically active and resistant to IONP exposure alone. In terms of phagocytes overactivation and reactive oxygen species (ROS) production as an indirect mechanism of immunotoxicity, the phagocytes responded in the following manner: P- > S- > HK- = G-phagocytes for IONP exposure alone, S- > HK- > P- = G-phagocytes for Hg exposure alone and HK- > G- = S- > P-phagocytes for concomitant exposure. Overall, considering Hg as a surrogate for metals and its association with IONP, as well as the likelihood that it could pose a serious threat to aquatic organisms by modulating their immune defense mechanisms if accidentally discharged into the aquatic environment, current results suggest that the step of IONP-metal complex removal must not be underrated and should be processed without any more ado.
Collapse
Affiliation(s)
- Leonor C Costa
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iram Mohmood
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry & CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammad Saleem
- Department of Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Minneapolis, MN, USA
| | - Armando C Duarte
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iqbal Ahmad
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
- Centre for Occupational and Environmental Health, Centre for Epidemiology, Institute of Population Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
43
|
Venkatesan GA, Lee J, Farimani AB, Heiranian M, Collier CP, Aluru NR, Sarles SA. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12883-12893. [PMID: 26556227 DOI: 10.1021/acs.langmuir.5b02293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The droplet interface bilayer (DIB)--a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets--has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet-oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: "lipid-in", in which phospholipids in the form of liposomes are placed in water, and "lipid-out", in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In this study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. We also clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.
Collapse
Affiliation(s)
- Guru A Venkatesan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Joonho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Amir Barati Farimani
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mohammad Heiranian
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
44
|
Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes. Anal Bioanal Chem 2015; 408:2743-58. [PMID: 26603178 DOI: 10.1007/s00216-015-9157-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
Abstract
With the boom of nanotechnology, nanomaterials (NMs) have been widely utilized in diverse applications, especially in biological and biomedical fields. Understanding how NMs interact with biomolecules, including proteins, DNA, and lipids, is of great importance for revealing the limitations posed and opportunities offered. Model lipid membrane, as a simplified cell membrane model, has been widely used to study the nanomaterial-lipid membrane interactions. In this article, current and emerging techniques, both experimental and theoretical, to investigate the interactions between NMs and model lipid membrane are summarized with each tool's capacities and limitations, along with future directions and challenges in this exciting area. This critical information will provide methodological guidance for researchers in this field.
Collapse
|
45
|
Goreham RV, Thompson VC, Samura Y, Gibson CT, Shapter JG, Köper I. Interaction of silver nanoparticles with tethered bilayer lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5868-5874. [PMID: 25950498 DOI: 10.1021/acs.langmuir.5b00586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles are well-known for their antibacterial properties. However, the detailed mechanism describing the interaction between the nanoparticles and a cell membrane is not fully understood, which can impede the use of the particles in biomedical applications. Here, a tethered bilayer lipid membrane has been used as a model system to mimic a natural membrane and to study the effect of exposure to small silver nanoparticles with diameters of about 2 nm. The solid supported membrane architecture allowed for the application of surface analytical techniques such as electrochemical impedance spectroscopy and atomic force microscopy. Exposure of the membrane to solutions of the silver nanoparticles led to a small but completely reversible perturbation of the lipid bilayer.
Collapse
Affiliation(s)
- Renee V Goreham
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Vanessa C Thompson
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Yuya Samura
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Christopher T Gibson
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Joseph G Shapter
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Ingo Köper
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| |
Collapse
|
46
|
Shyamasundar S, Ng CT, Lanry Yung LY, Dheen ST, Bay BH. Epigenetic mechanisms in nanomaterial-induced toxicity. Epigenomics 2015; 7:395-411. [DOI: 10.2217/epi.15.3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
With the growing advent of nanotechnology in medicine (therapeutic, diagnostic and imaging applications), cosmetics, electronics, clothing and food industries, exposure to nanomaterials (NMs) is on the rise and therefore exploring their toxic biological effects have gained great significance. In vitro and in vivo studies over the last decade have revealed that NMs have the potential to cause cytotoxicity and genotoxicity although some contradictory reports exist. However, there are only few studies which have explored the epigenetic mechanisms (changes to DNA methylation, histone modification and miRNA expression) of NM-induced toxicity, and there is a scarcity of information and many questions in this area remain unexplored and unaddressed. This review comprehensively describes the epigenetic mechanisms involved in the induction of toxicity of engineered NMs, and provides comparisons between similar effects observed upon exposure to small or nanometer-sized particles. Lastly, gaps in existing literature and scope for future studies that improve our understanding of NM-induced epigenetic toxicity are discussed.
Collapse
Affiliation(s)
- Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Lin Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117576
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| |
Collapse
|
47
|
Lu B, Smith T, Schmidt JJ. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays. NANOSCALE 2015; 7:7858-66. [PMID: 25853986 DOI: 10.1039/c4nr06892k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.
Collapse
Affiliation(s)
- Bin Lu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
48
|
Zhang H, Liu G, Zeng X, Wu Y, Yang C, Mei L, Wang Z, Huang L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int J Nanomedicine 2015; 10:2461-73. [PMID: 25848264 PMCID: PMC4383221 DOI: 10.2147/ijn.s78988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs), especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs, the genistein-loaded TPGS-b-PCL NPs at the same dose were more effective in inhibiting tumor growth in the subcutaneous HeLa xenograft tumor model in BALB/c nude mice. In conclusion, the results suggested that genistein-loaded biodegradable TPGS-b-PCL nanoparticles could enhance the anticancer effect of genistein both in vitro and in vivo, and may serve as a potential candidate in treating cervical cancer.
Collapse
Affiliation(s)
- Hongling Zhang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Gan Liu
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaowei Zeng
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Yanping Wu
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Chengming Yang
- Xili Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Zhongyuan Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China ; School of Medicine, Shenzhen University, Shenzhen, People's Republic of China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China ; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
49
|
Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1407-16. [PMID: 25819884 DOI: 10.1016/j.nano.2015.03.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED Monodisperse spherical silica nanoparticles (SNPs) with diameters of 20-200 nm were employed to study size, dose, and cell-type dependent cytotoxicity in A549 and HepG2 epithelial cells and NIH/3T3 fibroblasts. These uniform SNPs of precisely controlled sizes eliminated uncertainties arising from mixed sizes, and uniquely allowed the probing of effects entirely size-dependent. Cell viability, membrane disruption, oxidative stress, and cellular uptake were studied. The extent and mechanism of SNP cytotoxicity were found to be not only size and dose dependent, but also highly cell type dependent. Furthermore, the 60 nm SNPs exhibited highly unusual behavior in comparison to particles of other sizes tested, implying interesting possibilities for controlling cellular activities using nanoparticles. Specifically, the 60 nm SNPs were preferentially endocytosed by cells and, at high doses, caused a disproportionate decrease in cell viability. The present work may help elucidate certain contradictions among existing results on nanoparticle-induced cytotoxicity. FROM THE CLINICAL EDITOR Silica nanoparticles are being investigated in many research areas for their use in clinical applications. Nonetheless, the relationship between particle size and potential toxicity remains to be elucidated. In this article, the authors studied the biological effects of spherical SNPs with precise diameters between 20 and 200 nm on three different cell types and their results should provide more data on safety for better drug design.
Collapse
Affiliation(s)
- In-Yong Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth Joachim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kyekyoon Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Sultana S, Djaker N, Boca-Farcau S, Salerno M, Charnaux N, Astilean S, Hlawaty H, de la Chapelle ML. Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. NANOTECHNOLOGY 2015; 26:055101. [PMID: 25573907 DOI: 10.1088/0957-4484/26/5/055101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we propose a multi-parametric in vitro study of the cytotoxicity of gold nanoparticles (GNPs) on human endothelial cell (HUVEC). The cytotoxicity is evaluated by incubating cells with six different GNP types which have two different morphologies: spherical and flower-shaped, two sizes (∼15 and ∼50 nm diameter) and two surface chemistries (as prepared form and PEGylated form). Our results showed that by increasing the concentration of GNPs the cell viability decreases with a toxic concentration threshold of 10 pM for spherical GNPs and of 1 pM for flower-shaped GNPs. Dark field images, flow cytometry and spreading test revealed that flower-shaped GNPs have more deleterious effects on the cell mechanisms than spherical GNPs. We demonstrated that the main parameter in the evaluation of the GNPs toxicity is the GNPs roughness and that this effect is independent on the surface chemistry. We assume that this behavior is highly related to the efficiency of the GNPs internalization within the cells and that this effect is enhanced due to the specific geometry of the flower-shaped GNPs.
Collapse
Affiliation(s)
- Sadequa Sultana
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire CSPBAT, CNRS (UMR 7244), 74 rue Marcel Cachin, F-93017 Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|