1
|
Bello AK, Abdullahi MT, Tahir MN, Al-Saadi AA. SERS activity of silver nanoparticles and silver-modified 2D graphitic carbon nitride towards ciprofloxacin drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125237. [PMID: 39378830 DOI: 10.1016/j.saa.2024.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Herein, silver nanoparticles (AgNPs) and silver-loaded graphitic carbon nitride (Ag@g-C3N4) nanocomposites have been synthesized and used as an effective surface-enhanced Raman scattering (SERS) substrates for the detection of low concentrations (10-14 M) of ciprofloxacin (CIP), a commonly bioactive medication used to treat bacterial illnesses. A combined approach of vibrational spectroscopy and density functional theory (DFT) has been developed to understand the possible modes of analyte (CIP) and SERS substrate (AgNPs and Ag@g-C3N4) interactions. Furthermore, it has been noticed that the behavior of drug molecules in terms of SERS response and energetics of interaction changed significantly when interacted with the noble metal AgNPs decorated onto the g-C3N4 framework in comparison to only AgNPs as substrate. The most prominent interaction scenario between AgNPs and CIP is likely to be through the -NH moiety of drug molecule with an interaction energy of -306 kcal/mol. Whereas, the CIP molecules adsorbed onto Ag@g-C3N4 nanocomposite were more flexible with interaction energy of -107 kcal/mol, suggesting a greater association of analyte with the skeletal modes of substrate leading to Raman enhancements in the low wavenumber region i.e. below 600 cm-1. Hence, the Ag@g-C3N4 nanocomposite-based SERS substrates investigated served two distinct spectral ranges, making them complementary of each other in terms of SERS detection of CIP. The characteristics of the computed frontier molecular orbitals indicated a pronounced amount of charge transfer between the drug and the substrate, highlighting the significance of the chemical mechanism of the overall process. These results represent a successful approach to have an extended spectral range that covers lower wavenumber shifts by applying simple and meaningful modifications to the normally utilized noble metal-based nanoparticles, which can lead to more effective and reliable detection of bioactive drugs.
Collapse
Affiliation(s)
- Abdulraheem K Bello
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Mohammed T Abdullahi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Muhammad N Tahir
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Li Z, Zhang L, Wang Z, Kang X, Jin H, Zhao W, Zhang J, Su H. Quantification of Phosphatidylserine Molecules on the Surface of Individual Cells Using Single-Molecule Force Spectroscopy. Anal Chem 2024; 96:676-684. [PMID: 38173079 DOI: 10.1021/acs.analchem.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Identification of the phosphatidylserine (PS) discrepancies occurring on the cellular membrane during apoptotic processes is of the utmost importance. However, monitoring the quantity of PS molecules in real-time at a single-cell level currently remains a challenging task. Here, we demonstrate this objective by leveraging the specific binding and reversible interaction exhibited by the zinc(II) dipyridinamine complex (ZnDPA) with PS. Lipoic acid-functionalized ZnDPA (LP-ZnDPA) was subsequently immobilized onto the surface of an atomic force microscopy cantilever to form a force probe, ALP-ZnDPA, enabling a PS-specific dynamic imaging and detection mode. By utilizing this technique, we can not only create a heat map of the expression level of PS with submicron resolution but also quantify the number of molecules present on a single cell's surface with a detection limit of 1.86 × 104 molecules. The feasibility of the proposed method is demonstrated through the analysis of PS expression levels in different cancer cell lines and at various stages of paclitaxel-induced apoptosis. This study represents the first application of a force probe to quantify PS molecules on the surface of individual cells, providing insight into dynamic changes in PS content during apoptosis at the molecular level and introducing a novel dimension to current detection methodologies.
Collapse
Affiliation(s)
- Zhirong Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Lulu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhanzhong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Xiongli Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Huiying Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Wenjie Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Jun Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Haiquan Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
3
|
Cai J, Wu Y, Bai H, He Y, Qin Y. SERS and machine learning based effective feature extraction for detection and identification of amphetamine analogs. Heliyon 2023; 9:e23109. [PMID: 38144349 PMCID: PMC10746470 DOI: 10.1016/j.heliyon.2023.e23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is extensively researched in diverse disciplines due to its sensitivity and non-destructive nature. It is particularly considered a potential and promising technology for rapid on-site screening in drug detection. In this investigation, a technique was developed for fabricating nanocrystals of Ag@Au SNCs. Ag@Au SNCs, as the basic material of SERS, can detect amphetamine at concentrations as low as 1 μg/mL. The Ag@Au SNCs exhibits a strong surface plasmon resonance effect, which amplifies molecular signals. The SERS spectra of ten substances, including amphetamine and its analogs, showed a strong peak signal. To establish a qualitative distinction, we examined the Raman spectra and conducted density functional theory (DFT) calculations on the ten aforementioned species. The DFT calculation enabled us to determine the vibrational frequency and assign normal modes, thereby facilitating the qualitative differentiation of amphetamines and its analogs. Furthermore, the SERS spectrum of the ten mentioned substances was analysed using the support vector machine learning algorithm, which yielded a discrimination accuracy of 98.0 %.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yulun Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Haohao Bai
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yingsheng He
- Key Laboratory of Drug Control and Monitoring, National Anti-Drug Laboratory Zhejiang Regional Center, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, 555 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, PR China
| |
Collapse
|
4
|
Moretti M, Limongi T, Testi C, Milanetti E, De Angelis MT, Parrotta EI, Scalise S, Santamaria G, Allione M, Lopatin S, Torre B, Zhang P, Marini M, Perozziello G, Candeloro P, Pirri CF, Ruocco G, Cuda G, Di Fabrizio E. Direct Visualization and Identification of Membrane Voltage-Gated Sodium Channels from Human iPSC-Derived Neurons by Multiple Imaging and Light Enhanced Spectroscopy. SMALL METHODS 2022; 6:e2200402. [PMID: 35595684 DOI: 10.1002/smtd.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.
Collapse
Affiliation(s)
- Manola Moretti
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Maria Teresa De Angelis
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Elvira I Parrotta
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Stefania Scalise
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Gianluca Santamaria
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Marco Allione
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- King Abdullah University of Science and Technology, Imaging and Characterization Core lab, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bruno Torre
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peng Zhang
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Gerardo Perozziello
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Patrizio Candeloro
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Giovanni Cuda
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
5
|
Tian Y, Xu W, Ma K, Cong L, Shen Y, Han X, Liang C, Liang L, Qi G, Jin Y, Xu S. Label-Free Analysis of Cell Membrane Proteins via Evanescent Field Excited Surface-Enhanced Raman Scattering. J Phys Chem Lett 2021; 12:10720-10727. [PMID: 34709838 DOI: 10.1021/acs.jpclett.1c02966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Challenges in studying the structures and functions of cell membrane proteins lie in their lipophilicity, which makes them hard to be stabilized, crystallized, and expressed by E. coli. Herein, we propose an evanescent field excited surface-enhanced Raman scattering (EF-SERS) strategy for label-free analysis of membrane proteins in situ. Extracted cell membranes tightly wrapped the metal nanoparticles by an extruder, which ensures the SERS signals of the membrane proteins precisely benefit from the localized surface plasmons (LSPs). The leaky mode of a waveguide was employed to improve the plasmon excitation coupling. Thus, the LSPs and waveguide modes together enable the achievement of high-quality SERS profiles of membrane proteins. By spectral analysis, the structural changes of membrane proteins can be deeply understood at the molecular level. This method has broader applicability in establishing the Ramanomics of membrane proteins and unraveling the exact changes of membrane proteins during physiological processes.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, 1163 Xinmin Avenue, Changchun 130021, P.R. China
| | - Lijia Liang
- Cardiovascular Research Center of Chongqing College, University of Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing 400700, P.R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, Jilin, P.R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, Jilin, P.R. China
| |
Collapse
|
6
|
|
7
|
Zhang C, Siddhanta S, Paria D, Li Y, Zheng C, Barman I. Spectroscopy-Assisted Label-free Molecular Analysis of Live Cell Surface with Vertically Aligned Plasmonic Nanopillars. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100161. [PMID: 33942486 PMCID: PMC8363029 DOI: 10.1002/smll.202100161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Indexed: 05/31/2023]
Abstract
A generalized label-free platform for surface-selective molecular sensing in living cells can transform the ability to examine complex events in the cell membrane. While vertically aligned semiconductor and metal-semiconductor hybrid nanopillars have rapidly surfaced for stimulating and probing the intracellular environment, the potential of such constructs for selectively interrogating the cell membrane is surprisingly underappreciated. In this work, a new platform, entitled nano-PROD (nano-pillar based Raman optical detection), enables molecular recording by probing fundamental vibrational modes of membrane constituents of cells adherent on a large-area silver-coated silicon nanopillar substrate fabricated using a precursor solution-based nanomanufacturing process. It is shown that the nano-PROD platform sustains live cells in near-physiological conditions, which can be directly profiled using surface-enhanced Raman spectroscopy due to the confined electromagnetic field enhancement. The experimental results highlight the utility of the platform in probing specific cell surface markers for accurately recognizing the phenotypically identical prostate cancer cells, differing only in prostate-specific membrane antigen expression. Due to its tunability, nano-PROD has the promise to be readily extendable to other applications that can leverage its unique combination of nanoscale topographic features and molecular sensing capabilities, from stain-free cytopathology inspection to understanding spatio-mechanical regulation in membrane receptor function.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yaozheng Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Qi G, Wang J, Ma K, Zhang Y, Zhang J, Xu W, Jin Y. Label-Free Single-Particle Surface-Enhanced Raman Spectroscopy Detection of Phosphatidylserine Externalization on Cell Membranes with Multifunctional Micron-Nano Composite Probes. Anal Chem 2021; 93:2183-2190. [DOI: 10.1021/acs.analchem.0c04038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Ren X, Nam W, Ghassemi P, Strobl JS, Kim I, Zhou W, Agah M. Scalable nanolaminated SERS multiwell cell culture assay. MICROSYSTEMS & NANOENGINEERING 2020; 6:47. [PMID: 34567659 PMCID: PMC8433130 DOI: 10.1038/s41378-020-0145-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 12/30/2019] [Indexed: 05/23/2023]
Abstract
This paper presents a new cell culture platform enabling label-free surface-enhanced Raman spectroscopy (SERS) analysis of biological samples. The platform integrates a multilayered metal-insulator-metal nanolaminated SERS substrate and polydimethylsiloxane (PDMS) multiwells for the simultaneous analysis of cultured cells. Multiple cell lines, including breast normal and cancer cells and prostate cancer cells, were used to validate the applicability of this unique platform. The cell lines were cultured in different wells. The Raman spectra of over 100 cells from each cell line were collected and analyzed after 12 h of introducing the cells to the assay. The unique Raman spectra of each cell line yielded biomarkers for identifying cancerous and normal cells. A kernel-based machine learning algorithm was used to extract the high-dimensional variables from the Raman spectra. Specifically, the nonnegative garrote on a kernel machine classifier is a hybrid approach with a mixed nonparametric model that considers the nonlinear relationships between the higher-dimension variables. The breast cancer cell lines and normal breast epithelial cells were distinguished with an accuracy close to 90%. The prediction rate between breast cancer cells and prostate cancer cells reached 94%. Four blind test groups were used to evaluate the prediction power of the SERS spectra. The peak intensities at the selected Raman shifts of the testing groups were selected and compared with the training groups used in the machine learning algorithm. The blind testing groups were correctly predicted 100% of the time, demonstrating the applicability of the multiwell SERS array for analyzing cell populations for cancer research.
Collapse
Affiliation(s)
- Xiang Ren
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Wonil Nam
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Parham Ghassemi
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Jeannine S. Strobl
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Inyoung Kim
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061 USA
| | - Wei Zhou
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Masoud Agah
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
10
|
He XN, Wang YN, Wang Y, Xu ZR. Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe. Talanta 2020; 209:120579. [DOI: 10.1016/j.talanta.2019.120579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023]
|
11
|
Li D, Yu H, Guo Z, Li S, Li Y, Guo Y, Zhong H, Xiong H, Liu Z. SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets. NANOSCALE 2020; 12:2133-2141. [PMID: 31913376 DOI: 10.1039/c9nr08754k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs), one of the most important components of a tumor microenvironment (TME), play a significant role in the complex tumorigenesis process. Herein, the evolution of CAFs in TME is elaborately investigated by surface-enhanced Raman spectroscopy (SERS), a molecular fingerprint technique. Two-dimensional (2D) nanocomposites consisting of gold nanoparticles and a supramolecular "PCsheet" self-assembled between 2D nanosheets and oxidized phosphatidylcholine (PC) are fabricated as SERS-active probes to specifically recognize the CD36 receptor on the cytomembrane of the fibroblasts, a reliable landmark of CAF development. The 2D SERS substrates can also illuminate the fingerprint information around the CD36 protein with high detection sensitivity, which helps elucidate the biochemical component transition in the protein mini-domain during carcinoma progression. Visualized data are then supplied by label-free SERS imaging to exploit the distribution of biomolecules on the plasma membrane. In addition, the repressed expression of CD36 in TME is detected in lung metastasis tumor-bearing mice. This study based on the 2D SERS technique opens up an alternative avenue for unveiling carcinoma-associated molecular events.
Collapse
Affiliation(s)
- Dongling Li
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Darienzo RE, Wang J, Chen O, Sullivan M, Mironava T, Kim H, Tannenbaum R. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS APPLIED NANO MATERIALS 2019; 2:6960-6970. [PMID: 34308266 PMCID: PMC8297918 DOI: 10.1021/acsanm.9b01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of surface-enhanced Raman spectroscopy (SERS) to delineate between the breast epithelial cell lines MCF10A, SK-BR-3, and MDA-MB-231 is explored utilizing varied morphologies of gold nanoparticles. The nanoparticles studied had spherical, star-like, and quasi-fractal (nanocaltrop) morphologies and possessed varying degrees of surface inhomogeneity and complexity. The efficacy of Raman enhancement of these nanoparticles was a function of their size, their surface morphology, and the associated density of "hot spots," as well as their cellular uptake. The spherical and star-like nanoparticles provided strong signal enhancement that allowed for the discernment among the three cell phenotypes based solely on the acquired Raman spectra. The presence of overlapping Raman band spectral regions, as well as unique spectral bands, suggests that the underlying biological differences between these cells can be accessed without the need for tagging the nanoparticles or for specific cell targeting, demonstrating the potential ubiquity of this technique in imaging any cancer. This work provides clear evidence for the potential application of SERS as a tool for mapping cancerous lesions, possibly during surgery and under histopathological analysis.
Collapse
Affiliation(s)
- Richard E. Darienzo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Olivia Chen
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maurinne Sullivan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tatsiana Mironava
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, United States
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
13
|
Cao X, Chen S, Wang Z, Liu Y, Luan X, Hou S, Li W, Shi H. The label-free detection and distinction of CYP2C9-expressing and non-expressing cells by surface-enhanced Raman scattering substrates based on bimetallic AuNPs-AgNWs. RSC Adv 2019; 9:13304-13315. [PMID: 35520768 PMCID: PMC9063916 DOI: 10.1039/c9ra02046b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is capable of catalyzing the biotransformation of endogenous compounds in cells, indicating that this enzyme could change the intracellular environment and is related to the pathogenesis of diseases. Currently, it is still a challenge to study the differences in cellular components between CYP2C9-expressing and non-expressing cells. In this study, employing a Au nanoparticles-Ag nanowires (AuNPs-AgNWs) decorated silicon wafer as a novel non-destructive and label-free tool, we applied surface-enhanced Raman scattering (SERS) spectroscopy to detect and distinguish the cellular composition of CYP2C9-expressing cells (293T-Mig-2C9) and non-expressing cells (293T-Mig-R1). AgNWs with high surface roughness were formed by modification of AuNPs onto their surface by electrostatic interactions, which enabled them to exhibit greatly enhanced SERS ability. Then, they were employed to fabricate SERS substrates via an electrostatically assisted 3-aminopropyltriethoxysilane (APTES)-functionalized surface-assembly method. The SERS substrates exhibited high sensitivity with a detection limit of 1 × 10-9 M for 4-mercaptobenzoic acid (4-MBA). Meanwhile, the SERS substrates exhibited good uniformity and reproducibility. The cytotoxicity assay demonstrated that the SERS substrates displayed good biocompatibility with 293T cells. Before SERS measurements, CYP2C9 constantly expressed cells (293T-Mig-2C9 cells) and control cells (293T-Mig-R1 cells) were constructed. The expression of CYP2C9 and the catalytic activity in the cells were checked. Using the AuNPs-AgNWs substrates as a high-performance in vitro sensing platform allowed us to obtain fingerprint spectra of 293T-Mig-R1 and 293T-Mig-2C9 cells. The difference spectra between the two cell lines were studied to interpret the spectral differences and gain insight into the biochemical variations. Finally, principal component analysis (PCA) score plots of the SERS spectra were also used to better view the differences between the two cell lines. SERS detection based on the AuNPs-AgNWs substrates provides a sensitive, non-destructive and label-free method for differentiation between 293T-Mig-R1 and 293T-Mig-2C9 cells.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine Yangzhou 225001 PR China
| | - Shuai Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| | - Zhenyu Wang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology Panjin 124221 China
| | - Xiaowei Luan
- School of Life Science and Medicine, Dalian University of Technology Panjin 124221 China
| | - Sicong Hou
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
| | - Wei Li
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| |
Collapse
|
14
|
Xu W, Paidi SK, Qin Z, Huang Q, Yu CH, Pagaduan JV, Buehler MJ, Barman I, Gracias DH. Self-Folding Hybrid Graphene Skin for 3D Biosensing. NANO LETTERS 2019; 19:1409-1417. [PMID: 30433789 PMCID: PMC6432654 DOI: 10.1021/acs.nanolett.8b03461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biological samples such as cells have complex three-dimensional (3D) spatio-molecular profiles and often feature soft and irregular surfaces. Conventional biosensors are based largely on 2D and rigid substrates, which have limited contact area with the entirety of the surface of biological samples making it challenging to obtain 3D spatially resolved spectroscopic information, especially in a label-free manner. Here, we report an ultrathin, flexible skinlike biosensing platform that is capable of conformally wrapping a soft or irregularly shaped 3D biological sample such as a cancer cell or a pollen grain, and therefore enables 3D label-free spatially resolved molecular spectroscopy via surface-enhanced Raman spectroscopy (SERS). Our platform features an ultrathin thermally responsive poly( N-isopropylacrylamide)-graphene-nanoparticle hybrid skin that can be triggered to self-fold and wrap around 3D micro-objects in a conformal manner due to its superior flexibility. We highlight the utility of this 3D biosensing platform by spatially mapping the 3D molecular signatures of a variety of microparticles including silica microspheres, spiky pollen grains, and human breast cancer cells.
Collapse
Affiliation(s)
- Weinan Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Santosh K. Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chi-Hua Yu
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jayson V. Pagaduan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Corresponding Author:
| |
Collapse
|
15
|
Rusciano G, Sasso E, Capaccio A, Zambrano N, Sasso A. Revealing membrane alteration in cellsoverexpressing CA IX and EGFR by Surface-Enhanced Raman Scattering. Sci Rep 2019; 9:1832. [PMID: 30755643 PMCID: PMC6372785 DOI: 10.1038/s41598-018-37997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Sensitive detection of altered proteins expression in plasma membranes is of fundamental importance, for both diagnostic and prognostic purposes. Surface-Enhanced Raman Scattering (SERS) has proven to be a quite sensitive approach to detect proteins, even in very diluted samples. However, proteins detection in complex environment, such as the cellular membrane, is still a challenge. Herein, we demonstrate a SERS-based platform to reveal the overexpression of target proteins in cell membranes. As a proof of concept, we implemented ectopic expression of carbonic anhydrase IX (CA IX) and epidermal growth factor receptor (EGFR) in the plasma membrane of the SKOV3 tumor cell line. Our outcomes demonstrate that SERS signals from cells put in contact with a hyperuniform SERS substrate allow highlighting subtle differences in the biochemical composition of cell membranes, normally hidden in spontaneous Raman confocal microscopy. This opens new opportunities for a label-free membrane analysis and bio-sensing in a broader sense.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy. .,National Institute of Optics (INO)-National Research Council (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, NA, Italy.
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, I-80131, Naples, Italy.,CEINGE Advanced Biotechnologies S.C.aR.L., Via G. Salvatore 486, I-80145, Naples, Italy.,Nouscom SRL, Rome, Italy
| | - Angela Capaccio
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Nicola Zambrano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, I-80131, Naples, Italy. .,CEINGE Advanced Biotechnologies S.C.aR.L., Via G. Salvatore 486, I-80145, Naples, Italy.
| | - Antonio Sasso
- Department of Physics E. Pancini, University of Naples Federico II, Complesso Univesitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy.,National Institute of Optics (INO)-National Research Council (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, NA, Italy
| |
Collapse
|
16
|
Li SS, Guan QY, Meng G, Chang XF, Wei JW, Wang P, Kang B, Xu JJ, Chen HY. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes. Sci Rep 2017; 7:2296. [PMID: 28536451 PMCID: PMC5442120 DOI: 10.1038/s41598-017-02510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 01/18/2023] Open
Abstract
Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.
Collapse
Affiliation(s)
- Shan-Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi-Yuan Guan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Xiao-Feng Chang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ji-Wu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy. PLoS One 2017; 12:e0175581. [PMID: 28419111 PMCID: PMC5395151 DOI: 10.1371/journal.pone.0175581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS). This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA), we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS) for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization of cell culture conditions and the functional state of cells over time.
Collapse
|
18
|
Aybeke EN, Belliot G, Lemaire-Ewing S, Estienney M, Lacroute Y, Pothier P, Bourillot E, Lesniewska E. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600918. [PMID: 28044439 DOI: 10.1002/smll.201600918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Studies on human norovirus are severely hampered by the absence of a cell culture system until the discovery of murine norovirus (MNV). The cell membrane domains called lipid rafts have been defined as a port of entry for viruses. This study is conducted to investigate murine norovirus binding on the mouse leukemic monocyte macrophage cell line. Lipid raft related structures are extracted from cells by detergent treatment resulting detergent-resistant membrane (DRMs) domains. The real-time polymerase chain reaction technique is performed to detect the viral genome, thereby the MNV binding on the DRMs. The interactions between MNV and DRMs are investigated by high-speed atomic force microscopy (HS-AFM) combined with surface-enhanced Raman spectroscopy (SERS). The inoculation of the virus onto cells results in the aggregations of detergent-resistant membrane domains significantly. The characteristic Raman band of MNV is found in inoculated samples. To be sure that these results are originated from specific interactions between DRM and MNV, methyl-β-cyclo-dextrin (MβCD) is applied to disrupt lipid rafts. The MNV binding on DRMs is precluded by the MβCD treatment. The cholesterols chains are defined as a key factor in the interactions between norovirus and DRMs. The authors conclude that the MNV binding involves the presence of DRMs and cholesterol dependent.
Collapse
Affiliation(s)
- Ece N Aybeke
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Gaël Belliot
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | | | - Marie Estienney
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Yvon Lacroute
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Pierre Pothier
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| |
Collapse
|
19
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
La Rocca R, Messina GC, Dipalo M, Shalabaeva V, De Angelis F. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4632-7. [PMID: 26114644 DOI: 10.1002/smll.201500891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Indexed: 05/25/2023]
Abstract
Out-of-plane plasmonic nanoantennas protruding from the substrate are exploited to perform very sensitive surface enhanced Raman scattering analysis of living cells. Cells cultured on three-dimensional surfaces exhibit tight adhesion with nanoantenna tips where the plasmonic hot-spot resides. This fact provides observable cell adhesion sites combined with high plasmonic enhancement, resulting in an ideal system for Raman investigation of cell membranes.
Collapse
Affiliation(s)
- Rosanna La Rocca
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | | | - Michele Dipalo
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | | | | |
Collapse
|
21
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
22
|
Langer J, Novikov SM, Liz-Marzán LM. Sensing using plasmonic nanostructures and nanoparticles. NANOTECHNOLOGY 2015; 26:322001. [PMID: 26207013 DOI: 10.1088/0957-4484/26/32/322001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticles are widely used in various fields of science and technology as well as in everyday life. In particular, gold and silver nanoparticles display unique optical properties that render them extremely attractive for various applications. In this review, we focus on the use of noble metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single molecule detection. Sensors based on plasmon resonance shifts, as well as the use of surface-enhanced Raman scattering and surface-enhanced fluorescence, will be considered in this work.
Collapse
Affiliation(s)
- Judith Langer
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, E-20009 Donostia-San Sebastián, Spain
| | | | | |
Collapse
|
23
|
Zito G, Rusciano G, Pesce G, Dochshanov A, Sasso A. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. NANOSCALE 2015; 7:8593-606. [PMID: 25898990 DOI: 10.1039/c5nr01341k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (∼10(4) μm(-2)), superior spatial reproducibility (SD < 1% over 2500 μm(2)) and single-molecule sensitivity (Gav ∼ 10(9)), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.
Collapse
Affiliation(s)
- Gianluigi Zito
- Department of Physics, University of Naples Federico II, via Cintia, 80126-I Naples, Italy.
| | | | | | | | | |
Collapse
|
24
|
Butler HJ, Fogarty SW, Kerns JG, Martin-Hirsch PL, Fullwood NJ, Martin FL. Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy. Analyst 2015; 140:3090-7. [PMID: 25802895 PMCID: PMC4414298 DOI: 10.1039/c4an01899k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
Abstract
As biospectroscopy techniques continue to be developed for screening or diagnosis within a point-of-care setting, an important development for this field will be high-throughput optimization. For many of these techniques, it is therefore necessary to adapt and develop parameters to generate a robust yet simple approach delivering high-quality spectra from biological samples. Specifically, this is important for surface-enhanced Raman spectroscopy (SERS) wherein there are multiple variables that can be optimised to achieve an enhancement of the Raman signal from a sample. One hypothesis is that "large" diameter (>100 nm) gold nanoparticles provide a greater enhancement at near-infrared (NIR) and infrared (IR) wavelengths than those <100 nm in diameter. Herein, we examine this notion using examples in which SERS spectra were acquired from MCF-7 breast cancer cells incubated with 150 nm gold nanoparticles. It was found that 150 nm gold nanoparticles are an excellent material for NIR/IR SERS. Larger gold nanoparticles may better satisfy the theoretical restraints for SERS enhancement at NIR/IR wavelengths compared to smaller nanoparticles. Also, larger nanoparticles or their aggregates are more readily observed via optical microscopy (and especially electron microscopy) compared to smaller ones. This allows rapid and straightforward identification of target areas containing a high concentration of nanoparticles and facilitating SERS spectral acquisition. To some extent, these observations appear to extend to biofluids such as blood plasma or (especially) serum; SERS spectra of such biological samples often exhibit a low signal-to-noise ratio in the absence of nanoparticles. With protein-rich biofluids such as serum, a dramatic SERS effect can be observed; although this might facilitate improved spectral biomarker identification in the future, it may not always improve classification between control vs. cancer. Thus, use of "large" gold nanoparticles are a good starting point in order to derive informative NIR/IR SERS analysis of biological samples.
Collapse
Affiliation(s)
- Holly J. Butler
- Centre for Biophotonics , Lancaster Environment Centre , Lancaster University , Bailrigg , Lancaster LA1 4YQ , UK . ; Tel: +44 (0)1524 510206
| | - Simon W. Fogarty
- Centre for Biophotonics , Lancaster Environment Centre , Lancaster University , Bailrigg , Lancaster LA1 4YQ , UK . ; Tel: +44 (0)1524 510206
- Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster University , UK . ; Tel: +44 (0)1524 593474
| | - Jemma G. Kerns
- Lancaster Medical School , Faculty of Health and Medicine , Lancaster University , UK
| | - Pierre L. Martin-Hirsch
- Centre for Biophotonics , Lancaster Environment Centre , Lancaster University , Bailrigg , Lancaster LA1 4YQ , UK . ; Tel: +44 (0)1524 510206
| | - Nigel J. Fullwood
- Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster University , UK . ; Tel: +44 (0)1524 593474
| | - Francis L. Martin
- Centre for Biophotonics , Lancaster Environment Centre , Lancaster University , Bailrigg , Lancaster LA1 4YQ , UK . ; Tel: +44 (0)1524 510206
| |
Collapse
|
25
|
Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. ScientificWorldJournal 2015; 2015:124582. [PMID: 25884017 PMCID: PMC4390178 DOI: 10.1155/2015/124582] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/01/2014] [Accepted: 11/02/2014] [Indexed: 01/05/2023] Open
Abstract
Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS). The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles.
Collapse
|
26
|
Theophilou G, Paraskevaidi M, Lima KMG, Kyrgiou M, Martin-Hirsch PL, Martin FL. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 2015; 15:693-713. [DOI: 10.1586/14737159.2015.1028372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015. [DOI: 10.1039/c5an01074h] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Raman-activated cell sorting (RACS) is a promising single-cell analysis technology that is able to identify and isolate individual cells of targeted type, state or environment from an isogenic population or complex consortium of cells, in a label-free and non-invasive manner.
Collapse
Affiliation(s)
- Qiang Zhang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Peiran Zhang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Honglei Gou
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Chunbo Mou
- College of Chemical Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Wei E. Huang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Menglong Yang
- Public Laboratory and CAS Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Jian Xu
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Bo Ma
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
28
|
Fan M, Cheng F, Wang C, Gong Z, Tang C, Man C, Brolo AG. SERS optrode as a “fishing rod” to direct pre-concentrate analytes from superhydrophobic surfaces. Chem Commun (Camb) 2015; 51:1965-8. [DOI: 10.1039/c4cc07928k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SERS optrodes were used to “fish” aqueous drops from superhydrophobic surfaces, which led to an improvement of 2–3 orders of magnitude in sensitivity. 20 pg of the pesticide triazophos was detected by this method.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Fansheng Cheng
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Cong Wang
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Changyu Tang
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | - Changzhen Man
- Chengdu Green Energy and Green Manufacturing R&D Centre
- Chengdu
- China
| | | |
Collapse
|
29
|
Smith NI, Mochizuki K, Niioka H, Ichikawa S, Pavillon N, Hobro AJ, Ando J, Fujita K, Kumagai Y. Laser-targeted photofabrication of gold nanoparticles inside cells. Nat Commun 2014; 5:5144. [PMID: 25298313 DOI: 10.1038/ncomms6144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022] Open
Abstract
Nanoparticle manipulation is of increasing interest, since they can report single molecule-level measurements of the cellular environment. Until now, however, intracellular nanoparticle locations have been essentially uncontrollable. Here we show that by infusing a gold ion solution, focused laser light-induced photoreduction allows in situ fabrication of gold nanoparticles at precise locations. The resulting particles are pure gold nanocrystals, distributed throughout the laser focus at sizes ranging from 2 to 20 nm, and remain in place even after removing the gold solution. We demonstrate the spatial control by scanning a laser beam to write characters in gold inside a cell. Plasmonically enhanced molecular signals could be detected from nanoparticles, allowing their use as nano-chemical probes at targeted locations inside the cell, with intracellular molecular feedback. Such light-based control of the intracellular particle generation reaction also offers avenues for in situ plasmonic device creation in organic targets, and may eventually link optical and electron microscopy.
Collapse
Affiliation(s)
- Nicholas I Smith
- 1] Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan [2] PRESTO, Japan Science and Technology Agency (JST), Chiyodaku, Tokyo 102-0075, Japan
| | - Kentaro Mochizuki
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirohiko Niioka
- Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Satoshi Ichikawa
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nicolas Pavillon
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun Ando
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaro Kumagai
- Host Defense Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Fraire JC, Masseroni ML, Jausoro I, Perassi EM, Diaz Añel AM, Coronado EA. Identification, localization, and quantification of neuronal cell membrane receptors with plasmonic probes: role of protein kinase D1 in their distribution. ACS NANO 2014; 8:8942-58. [PMID: 25137054 DOI: 10.1021/nn501575c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Detecting, imaging, and being able to localize the distribution of several cell membrane receptors on a single neuron are very important topics in neuroscience research. In the present work, the distribution of metabotropic glutamate receptor 1a (mGluR1a) density on neuron cells on subcellular length scales is determined by evaluating the role played by protein kinase D1 (PKD1) in the trafficking of membrane proteins, comparing the distribution of mGluR1a in experiments performed in endogenous PKD1 expression with those in the presence of kinase-inactive protein kinase D1 (PKD1-kd). The localization, distribution, and density of cell surface mGluR1a were evaluated using 90 nm diameter Au nanoparticle (NP) probes specifically functionalized with a high-affinity and multivalent labeling function, which allows not only imaging NPs where this receptor is present but also quantifying by optical means the NP density. This is so because the NP generates a density (ρ)-dependent SERS response that facilitated a spatial mapping of the mGluR1a density distribution on subcellular length scales (dendrites and axons) in an optical microscope. The measured ρ values were found to be significantly higher on dendrites than on axons for endogenous PKD1, while an increase of ρ on axons was observed when PKD1 is altered. The spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the results obtained by fluorescence bright-field analysis and dark-field spectroscopy and provided additional structural details. In addition, it is shown using electrodynamic simulations that SERS spectroscopy could be a very sensitive tool for the spatial mapping of cell membrane receptors on subcellular length scales, as SERS signals are almost linearly dependent on NP density and therefore give indirect information on the distribution of cell membrane proteins. This result is important since the calibration of the ρ-dependent near-field enhancement of the Au immunolabels through correlation of SERS and SEM paves the way toward quantitative immunolabeling studies of cell membrane proteins involved in neuron polarity. From the molecular biology point of view, this study shows that in cultured hippocampal pyramidal cells mGluR1a is predominantly transported to dendrites and excluded from axons. Expression of kinase-inactive protein kinase D1 (PKD1-kd) dramatically and selectively alters the intracellular trafficking and membrane delivery of mGluR1a-containing vesicles.
Collapse
Affiliation(s)
- Juan C Fraire
- INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and ‡INIMEC, Laboratorio de Neurobiología, Universidad Nacional de Córdoba , Córdoba, 5000, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Fogarty SW, Patel II, Martin FL, Fullwood NJ. Surface-enhanced Raman spectroscopy of the endothelial cell membrane. PLoS One 2014; 9:e106283. [PMID: 25188340 PMCID: PMC4154719 DOI: 10.1371/journal.pone.0106283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/03/2014] [Indexed: 11/18/2022] Open
Abstract
We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.
Collapse
Affiliation(s)
- Simon W. Fogarty
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, United Kingdom
| | - Imran I. Patel
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Francis L. Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, United Kingdom
| | - Nigel J. Fullwood
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Brézillon S, Untereiner V, Lovergne L, Tadeo I, Noguera R, Maquart FX, Wegrowski Y, Sockalingum GD. Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging. Anal Bioanal Chem 2014; 406:5795-803. [PMID: 25023968 DOI: 10.1007/s00216-014-7994-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
Abstract
We recently identified vibrational spectroscopic markers characteristic of standard glycosaminoglycan (GAG) molecules. The aims of the present work were to further this investigation to more complex biological systems and to characterize, via their spectral profiles, cell types with different capacities for GAG synthesis. After recording spectral information from individual GAG standards (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate) and GAG-GAG mixtures, GAG-defective mutant Chinese hamster ovary (CHO)-745 cells, wild-type CHO cells, and chondrocytes were analyzed as suspensions by high-throughput infrared spectroscopy and as single isolated cells by infrared imaging. Spectral data were processed and interpreted by exploratory unsupervised chemometric methods based on hierarchical cluster analysis and principal component analysis. Our results showed that the spectral information obtained was discriminant enough to clearly delineate between the different cell types both at the cell suspension and single-cell levels. The abilities of the technique are to perform spectral profiling and to identify single cells with different potentials to synthesize GAGs. Infrared microspectroscopy/imaging could therefore be developed for cell screening purposes and further for identifying GAG molecules in normal tissues during physiological conditions (aging, healing process) and numerous pathological states (arthritis, cancer).
Collapse
Affiliation(s)
- Stéphane Brézillon
- Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095, Reims Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y. SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7371-9. [PMID: 24738775 DOI: 10.1021/am5006282] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heavy metal ions, such as Hg(2+) and Ag(+), pose severe risks in human health and the environment. For sensitive detection and selective removal of Hg(2+) and Ag(+) ions, here, we demonstrate a surface-enhanced Raman scattering (SERS)-active platform by employing the oligonucleotide-functionalized magnetic silica sphere (MSS)@Au nanoparticles (NPs). This system exploits mismatched T-Hg-T and C-Ag-C bridges to capture Hg(2+) and Ag(+) ions, exhibiting excellent responses for Hg(2+) ions in the range of 0.1-1000 nM and for Ag(+) in the range of 10-1000 nM. The assay is highly selective for the target ions and does not respond to other metal ions. Additionally, the Hg(2+) and Ag(+) ions in this system can be effectively removed from surrounding solutions by an external magnetic field or through spontaneous precipitation. Moreover, more than 80% of the MSS@Au NPs can be easily recycled with the help of cysteine. We anticipate that the designed strategy could be extended to other analytes that can bind to DNA molecules with a high affinity, and can be used in many potential applications such as environmental renovation, toxin detection, and groundwater analysis.
Collapse
Affiliation(s)
- Min Liu
- Advanced Photonics Center, Southeast University , 2# Sipai Lou, Nanjing 210096, Jiangsu China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Volpati D, Aoki PHB, Alessio P, Pavinatto FJ, Miranda PB, Constantino CJL, Oliveira ON. Vibrational spectroscopy for probing molecular-level interactions in organic films mimicking biointerfaces. Adv Colloid Interface Sci 2014; 207:199-215. [PMID: 24530000 DOI: 10.1016/j.cis.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023]
Abstract
Investigation into nanostructured organic films has served many purposes, including the design of functionalized surfaces that may be applied in biomedical devices and tissue engineering and for studying physiological processes depending on the interaction with cell membranes. Of particular relevance are Langmuir monolayers, Langmuir-Blodgett (LB) and layer-by-layer (LbL) films used to simulate biological interfaces. In this review, we shall focus on the use of vibrational spectroscopy methods to probe molecular-level interactions at biomimetic interfaces, with special emphasis on three surface-specific techniques, namely sum frequency generation (SFG), polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface-enhanced Raman scattering (SERS). The two types of systems selected for exemplifying the potential of the methods are the cell membrane models and the functionalized surfaces with biomolecules. Examples will be given on how SFG and PM-IRRAS can be combined to determine the effects from biomolecules on cell membrane models, which include determination of the orientation and preservation of secondary structure. Crucial information for the action of biomolecules on model membranes has also been obtained with PM-IRRAS, as is the case of chitosan removing proteins from the membrane. SERS will be shown as promising for enabling detection limits down to the single-molecule level. The strengths and limitations of these methods will also be discussed, in addition to the prospects for the near future.
Collapse
Affiliation(s)
- Diogo Volpati
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | - Pedro H B Aoki
- Faculty of Science and Technology, UNESP, Presidente Prudente, CEP 19060-900 SP,Brazil
| | - Priscila Alessio
- Faculty of Science and Technology, UNESP, Presidente Prudente, CEP 19060-900 SP,Brazil
| | - Felippe J Pavinatto
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | - Paulo B Miranda
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | | | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
35
|
Yang T, Guo X, Wang H, Fu S, Yu J, Wen Y, Yang H. Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1325-1331. [PMID: 24130070 DOI: 10.1002/smll.201302604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/07/2013] [Indexed: 06/02/2023]
Abstract
A novel magnetically responsive and surface-enhanced Raman spectroscopy (SERS) active nanocomposite is designed and prepared by direct grafting of Au nanoparticles onto the surface of magnetic network nanostructure (MNN) with the help of a nontoxic and environmentally friendly reagent of inositol hexakisphosphate shortly named as IP6. The presence of IP6 as a stabilizer and a bridging agent could weave Fe3O4 nanoparticles (NPs) into magnetic network nanostructure, which is easily dotted with Au nanoparticles (Au NPs). It has been shown firstly that the huge Raman enhancement of Au-MNN is reached by an external magnetic collection. Au-MNN presenting the large surface and high detection sensitivity enables it to exhibit multifunctional applications involving sufficient adsorption of dissolved chemical species for enrichment, separation, as well as a Raman amplifier for the analysis of trace pesticide residues at femtomolar level by a portable Raman spectrometer. Therefore, such multifunctional nanocomposites can be developed as a smart and promising nanosystem that integrates SERS approach with an easy assay for concentration by an external magnet for the effective on-site assessments of agricultural and environmental safety.
Collapse
Affiliation(s)
- Tianxi Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China
| | | | | | | | | | | | | |
Collapse
|
36
|
Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL. Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. JOURNAL OF BIOPHOTONICS 2014; 7:153-165. [PMID: 24648213 DOI: 10.1002/jbio.201400018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
There remains a need for objective and cost-effective approaches capable of diagnosing early-stage disease in point-of-care clinical settings. Given an increasingly ageing population resulting in a rising prevalence of chronic diseases, the need for screening to facilitate the personalising of therapies to prevent or slow down pathology development will increase. Such a tool needs to be robust but simple enough to be implemented into clinical practice. There is interest in extracting biomarkers from biofluids (e.g., plasma or serum); techniques based on vibrational spectroscopy provide an option. Sample preparation is minimal, techniques involved are relatively low-cost, and data frameworks are available. This review explores the evidence supporting the applicability of vibrational spectroscopy to generate spectral biomarkers of disease in biofluids. We extend the inter-disciplinary nature of this approach to hypothesise a microfluidic platform that could allow such measurements. With an appropriate lightsource, such engineering could revolutionize screening in the 21(st) century.
Collapse
Affiliation(s)
- Alana L Mitchell
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
37
|
Obinaju BE, Martin FL. Novel biospectroscopy sensor technologies towards environmental health monitoring in urban environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 183:46-53. [PMID: 23257285 DOI: 10.1016/j.envpol.2012.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Biospectroscopy is an emerging inter-disciplinary field that exploits the application of sensor technologies [e.g., Fourier-transform infrared spectroscopy, Raman spectroscopy] to lend novel insights into biological questions. Methods involved are relatively non-destructive so samples can subsequently be analysed by more conventional approaches, facilitating deeper mechanistic insights. Fingerprint spectra are derived and these consist of wavenumber-absorbance intensities; within a typical biological experiment, a complex dataset is quickly generated. Biological samples range from biofluids to cytology to tissues derived from human or sentinel sources, and analyses can be carried out ex vivo or in situ in living tissue. A reference range of a designated normal state can be derived; anything outside this is potentially atypical and discriminating chemical entities identified. Computational approaches allow one to minimize within-category confounding factors. Because of ease of sample preparation, low-cost and high-throughput capability, biospectroscopy approaches herald a new greener means of environmental health monitoring in urban environments.
Collapse
Affiliation(s)
- Blessing E Obinaju
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
38
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
39
|
Drescher D, Büchner T, McNaughton D, Kneipp J. SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components. Phys Chem Chem Phys 2013; 15:5364-73. [PMID: 23426381 DOI: 10.1039/c3cp43883j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The interaction of nanoparticles with hemoglobin (Hb), a major constituent of red blood cells, is important in nanotoxicity research. We report SERS spectra of Hb using gold and silver nanoparticles at very small nanoparticle : Hb molecule ratios, that is, under conditions relevant for SERS-based nanotoxicity experiments with red blood cells at high sensitivity. We show that the structural information obtained from the experiment is highly dependent on the type of SERS substrate and the conditions under which the interaction of nanoparticles with Hb molecules takes place. In experiments with isolated red blood cells, we demonstrate that the dependence of the spectra on the type of nanoparticle used as the SERS substrate extends to whole red blood cells and red blood cell components. Regarding the applicability of SERS to red blood cells in vivo, evidence is provided that the molecular information contained in the spectra is highly dependent on the material and size of the nanoparticles. The results indicate specific interactions of gold and silver nanoparticles with Hb and the red blood cell membrane, and reflect the hemolytic activity of silver nanoparticles. The results of this study help improve our understanding of the interactions of silver and gold nanoparticles with red blood cells.
Collapse
Affiliation(s)
- Daniela Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry, Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Han XX, Schmidt AM, Marten G, Fischer A, Weidinger IM, Hildebrandt P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS NANO 2013; 7:3212-3220. [PMID: 23488820 DOI: 10.1021/nn305892j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Magnetic hybrid assemblies of Ag and Fe3O4 nanoparticles with biocompatibly immobilized myoglobin (Mb) were designed to detect and capture toxic targets (NO2-, CN-, and H2O2). Mb was covalently attached to chitosan-coated magnetic silver hybrid nanoparticles (M-Ag-C) via glutaraldehyde that serves as a linker for the amine groups of Mb and chitosan. As verified by surface-enhanced resonance Raman (SERR) spectroscopy, this immobilization strategy preserves the native structure of the bound Mb as well as the binding affinity for small molecules. On the basis of characteristic spectral markers, binding of NO2-, CN-, and H2O2 could be monitored and quantified, demonstrating the high sensitivity of this approach with detection limits of 1 nM for nitrite, 0.2 μM for cyanide, and 10 nM for H2O2. Owing to the magnetic properties, these particles were collected by an external magnet to achieve an efficient decontamination of the solutions as demonstrated by SERR spectroscopy. Thus, the present approach combines the highly sensitive analytical potential of SERR spectroscopy with an easy approach for decontamination of aqueous solutions with potential applications in food and in environmental and medical safety control.
Collapse
Affiliation(s)
- Xiao Xia Han
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
42
|
Wilson AJ, Willets KA. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:180-9. [DOI: 10.1002/wnan.1208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu CP. Interaction of silver nanoparticles with pure nitrifying bacteria. CHEMOSPHERE 2013; 90:1404-1411. [PMID: 22985593 DOI: 10.1016/j.chemosphere.2012.08.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
In this study, Nitrosomonas europaea ATCC 19718 was exposed to silver nanoparticles (AgNPs) of different particle size (7±3 and 40±14nm) and different coatings (polyvinyl alcohol and adenosine triphosphate disodium). For all different AgNPs used in the study, large aggregates were gradually formed after addition of AgNPs into the media containing N. europaea. The scanning electron microscopy and energy dispersive X-ray spectroscopy of the microstructures suggested that bacterial cells and electrolytes had significant effects on AgNP aggregation. Size- and coating-dependent inhibition of ammonia oxidation by AgNPs was observed, and our analysis suggested that the inhibition was not only due to the released dissolved silver, but also the dispersity of AgNPs in the culture media. Electron microscopy images showed AgNPs could cause the damage of cell wall of N. europaea and make the nucleoids disintegrated and condensed next to cell membrane. Surface-enhanced Raman scattering signals also implied the damage of cell membrane caused by AgNPs. Further protein expression analysis revealed that AgNPs would inhibit important protein functions, including biosynthesis, gene expression, energy production and nitrification to further cause toxicity to N. europaea. Our findings explain the susceptibility of N. europaea to inhibition by AgNPs and the possible interaction between each other. Future research is needed to characterize these effects in more complex cultures and media such as activated sludge and wastewater.
Collapse
Affiliation(s)
- Zhihua Yuan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
44
|
Yan B, Hong Y, Chen T, Reinhard BM. Monitoring enzymatic degradation of pericellular matrices through SERS stamping. NANOSCALE 2012; 4:3917-25. [PMID: 22659641 PMCID: PMC3461839 DOI: 10.1039/c2nr30747b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We introduce a surface enhanced Raman spectroscopy (SERS) stamping approach for acquiring cell-surface specific vibrational spectra of individual living cells under physiological conditions. The SERS stamping approach utilizes a nanostructured metal surface on top of a lithographically defined piston that can be translated in 3-dimensions with nanometer resolution to contact living cells in solution with a pristine metal surface. We applied this approach to characterize the chemical composition of the cellular surface of living MCF7 breast cancer cells and to monitor its change upon addition of the enzyme hyaluronidase, which degrades major constituents of the pericellular matrix. Although the cell surface spectra show significant cell-to-cell fluctuations, a statistical barcode analysis of the spectra ensembles reveals systematic changes in the cell surface SERS spectra upon addition of hyaluronidase, which are consistent with a thinning of the pericellular matrix.
Collapse
Affiliation(s)
- Bo Yan
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
45
|
Wang J, Yu X, Boriskina SV, Reinhard BM. Quantification of differential ErbB1 and ErbB2 cell surface expression and spatial nanoclustering through plasmon coupling. NANO LETTERS 2012; 12:3231-7. [PMID: 22587495 PMCID: PMC3427031 DOI: 10.1021/nl3012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell surface receptors play ubiquitous roles in cell signaling and communication and their expression levels are important biomarkers for many diseases. Expression levels are, however, only one factor that determines the physiological activity of a receptor. For some surface receptors, their distribution on the cell surface, especially their clustering, provides additional mechanisms for regulation. To access this spatial information robust assays are required that provide detailed insight into the organization of cell surface receptors on nanometer length scales. In this manuscript, we demonstrate through combination of scattering spectroscopy, electron microscopy, and generalized multiple particle Mie theory (GMT) simulations that the density- and morphology-dependent spectral response of Au nanoparticle (NP) immunolabels bound to the epidermal growth factor receptors ErbB1 and ErbB2 encodes quantitative information of both the cell surface expression and spatial clustering of the two receptors in different unliganded in vitro cancer cell lines (SKBR3, MCF7, A431). A systematic characterization of the collective spectral responses of NPs targeted at ErbB1 and ErbB2 at various NP concentrations indicates differences in the large-scale organization of ErbB1 and ErbB2 in cell lines that overexpress these receptors. Validation experiments in the scanning electron microscope (SEM) confirm that NPs targeted at ErbB1 on A431 are more strongly clustered than NPs bound to ErbB2 on SKBR3 or MCF7 at overall comparable NP surface densities. This finding is consistent with the existence of larger receptor clusters for ErbB1 than for ErbB2 in the plasma membranes of the respective cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Xinwei Yu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Svetlana V. Boriskina
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
46
|
Fraire JC, Pérez LA, Coronado EA. Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. ACS NANO 2012; 6:3441-3452. [PMID: 22452324 DOI: 10.1021/nn300474p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by self-assembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 10(7) and the capability to detect biotin concentrations lower than 1 × 10(-12) M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (10(5)) than using random aggregates (around 10(4)). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be "trapped" by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out. The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
Collapse
Affiliation(s)
- Juan C Fraire
- INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | |
Collapse
|
47
|
Ahmadzai AA, Trevisan J, Pang W, Patel II, Fullwood NJ, Bruce SW, Pant K, Carmichael PL, Scott AD, Martin FL. Classification of test agent-specific effects in the Syrian hamster embryo assay (pH 6.7) using infrared spectroscopy with computational analysis. Mutagenesis 2012; 27:375-82. [DOI: 10.1093/mutage/ges003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|