1
|
Wang C, Chen Z, Liu Z, Ma T, Chen X, Zhang M, Luo D, Hyun BR, Liu X. Adjusting Microscale to Atomic-Scale Structural Order in PbS Nanocrystal Superlattice for Enhanced Photodetector Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300975. [PMID: 37066743 DOI: 10.1002/smll.202300975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
An investigation is presented into the effect of the long-range order on the optoelectronic properties of PbS quantum dot (QD) superlattices, which form mesocrystals, for potential use in photodetector applications. By self-assembly of QD nanocrystals on an Si/SiOx substrate, a highly ordered and densely packed PbS QD superlattice with a microscale size is obtained. The results demonstrate that annealing treatment induces mesocrystalline superlattices with preferred growth orientation, achieved by dislodging ligands. The improved orientation and electronic coupling of the mesocrystalline superlattices exhibit superior photodetector performance compared to disordered QD structures and closely packed superlattices. This improved performance is attributed to atomic alignment between QDs, leading to enhanced electronic coupling. The findings suggest that these mesocrystalline superlattices have promising potential for the next generation of QD optoelectronic devices.
Collapse
Affiliation(s)
- Chuanglei Wang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Zhenjun Chen
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Zheng Liu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Tianchan Ma
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Xiya Chen
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Byung-Ryool Hyun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiao Liu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
2
|
Jenewein C, Schupp SM, Ni B, Schmidt-Mende L, Cölfen H. Tuning the Electronic Properties of Mesocrystals. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Christian Jenewein
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Stefan M. Schupp
- Department of Physics University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Bing Ni
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Lukas Schmidt-Mende
- Department of Physics University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| | - Helmut Cölfen
- Department of Chemistry University of Konstanz Universitätsstraße 10 78462 Konstanz Germany
| |
Collapse
|
3
|
Lv ZP, Kapuscinski M, Járvás G, Yu S, Bergström L. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106768. [PMID: 35523733 DOI: 10.1002/smll.202106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Structural transformations and lattice expansion of oleate-capped iron oxide nanocube superlattices are studied by time-resolved small-angle X-ray scattering (SAXS) during solvent removal. The combination of conductor-like screening model for real solvents (COSMO-RS) theory with computational fluid dynamics (CFD) modeling provides information on the solvent composition and polarity during droplet evaporation. Evaporation-driven poor-solvent enrichment in the presence of free oleic acid results in the formation of superlattices with a tilted face-centered cubic (fcc) structure when the polarity reaches its maximum. The tilted fcc lattice expands subsequently during the removal of the poor solvent and eventually transforms to a regular simple cubic (sc) lattice during the final evaporation stage when only free oleic acid remains. Comparative studies show that both the increase in polarity as the poor solvent is enriched and the presence of a sufficient amount of added oleic acid is required to promote the formation of structurally diverse superlattices with large domain sizes.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Martin Kapuscinski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
- Department of Materials Science and Engineering, Uppsala University, Uppsala, SE-75103, Sweden
| | - Gábor Járvás
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, HU-8200, Hungary
| | - Shun Yu
- Department of Materials and Surface Design, RISE Research Institute of Sweden, Lund, SE-22370, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
4
|
Affiliation(s)
- Jason S. Kahn
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Oleg Gang
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Department of Applied Physics and Applied Mathematics Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
5
|
Cherniukh I, Rainò G, Sekh TV, Zhu C, Shynkarenko Y, John RA, Kobiyama E, Mahrt RF, Stöferle T, Erni R, Kovalenko MV, Bodnarchuk MI. Shape-Directed Co-Assembly of Lead Halide Perovskite Nanocubes with Dielectric Nanodisks into Binary Nanocrystal Superlattices. ACS NANO 2021; 15:16488-16500. [PMID: 34549582 PMCID: PMC8552496 DOI: 10.1021/acsnano.1c06047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/25/2023]
Abstract
Self-assembly of colloidal nanocrystals (NCs) holds great promise in the multiscale engineering of solid-state materials, whereby atomically engineered NC building blocks are arranged into long-range ordered structures-superlattices (SLs)-with synergistic physical and chemical properties. Thus far, the reports have by far focused on single-component and binary systems of spherical NCs, yielding SLs isostructural with the known atomic lattices. Far greater structural space, beyond the realm of known lattices, is anticipated from combining NCs of various shapes. Here, we report on the co-assembly of steric-stabilized CsPbBr3 nanocubes (5.3 nm) with disk-shaped LaF3 NCs (9.2-28.4 nm in diameter, 1.6 nm in thickness) into binary SLs, yielding six columnar structures with AB, AB2, AB4, and AB6 stoichiometry, not observed before and in our reference experiments with NC systems comprising spheres and disks. This striking effect of the cubic shape is rationalized herein using packing-density calculations. Furthermore, in the systems with comparable dimensions of nanocubes (8.6 nm) and nanodisks (6.5 nm, 9.0 nm, 12.5 nm), other, noncolumnar structures are observed, such as ReO3-type SL, featuring intimate intermixing and face-to-face alignment of disks and cubes, face-centered cubic or simple cubic sublattice of nanocubes, and two or three disks per one lattice site. Lamellar and ReO3-type SLs, employing large 8.6 nm CsPbBr3 NCs, exhibit characteristic features of the collective ultrafast light emission-superfluorescence-originating from the coherent coupling of emission dipoles in the excited state.
Collapse
Affiliation(s)
- Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Yevhen Shynkarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | | | | | - Thilo Stöferle
- IBM
Research Europe—Zurich, Rüschlikon CH-8803, Switzerland
| | - Rolf Erni
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
6
|
Liu J, Enomoto K, Takeda K, Inoue D, Pu YJ. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography. Chem Sci 2021; 12:10354-10361. [PMID: 34377421 PMCID: PMC8336479 DOI: 10.1039/d1sc02096j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
The geometry in self-assembled superlattices of colloidal quantum dots (QDs) strongly affects their optoelectronic properties and is thus of critical importance for applications in optoelectronic devices. Here, we achieve the selective control of the geometry of colloidal quasi-spherical PbS QDs in highly-ordered two and three dimensional superlattices: Disordered, simple cubic (sc), and face-centered cubic (fcc). Gel permeation chromatography (GPC), not based on size-exclusion effects, is developed to quantitatively and continuously control the ligand coverage of PbS QDs. The obtained QDs can retain their high stability and photoluminescence on account of the chemically soft removal of the ligands by GPC. With increasing ligand coverage, the geometry of the self-assembled superlattices by solution-casting of the GPC-processed PbS QDs changed from disordered, sc to fcc because of the finely controlled ligand coverage and anisotropy on QD surfaces. Importantly, the highly-ordered sc supercrystal usually displays unique superfluorescence and is expected to show high charge transporting properties, but it has not yet been achieved for colloidal quasi-spherical QDs. It is firstly accessible by fine-tuning the QD ligand density using the GPC method here. This selective formation of different geometric superlattices based on GPC promises applications of such colloidal quasi-spherical QDs in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Jianjun Liu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Kotaro Takeda
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS) Wako Saitama 351-0198 Japan
| |
Collapse
|
7
|
Kahn JS, Gang O. Designer Nanomaterials through Programmable Assembly. Angew Chem Int Ed Engl 2021; 61:e202105678. [PMID: 34128306 DOI: 10.1002/anie.202105678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Nanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs. Here, we discuss how developments in structural DNA nanotechnology have enabled greater control over 1D, 2D, and 3D particle organizations through programmable assembly. This Review focuses on how the use of DNA binding between nanocomponents and DNA structural motifs has progressively allowed the rational formation of prescribed particle organizations. We offer insight into how DNA-based motifs and elements can be further developed to control particle organizations and how particles and DNA can be integrated into nanoscale building blocks, so-called "material voxels", to realize designer nanomaterials with desired functions.
Collapse
Affiliation(s)
- Jason S Kahn
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.,Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
8
|
Yue X, Liu X, Yan N, Jiang W. Self-assembly of gold nanocubes into three-dimensional hollow colloidosomes and two-dimensional superlattices. Chem Commun (Camb) 2020; 56:12737-12740. [PMID: 32966383 DOI: 10.1039/d0cc05163b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Self-assembly of metal nanocubes (NCs) into periodic structures has applications in the fabrication of functional materials. Here, we propose a facile yet robust strategy for the fabrication of three-dimensional (3D) hollow colloidosomes and two-dimensional (2D) superlattices with highly ordered face-to-face configuration of gold NCs (AuNCs) via the hierarchical assembly of polymer-tethered AuNCs at the emulsion interface, providing a universal route for the preparation of hierarchical NC superstructures with applications in various fields.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Xuejie Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Nitka TA, Král P, Vuković L. Configurations of Nanocubes Floating and Clustering on Liquid Surfaces. J Phys Chem Lett 2019; 10:3592-3597. [PMID: 31184895 DOI: 10.1021/acs.jpclett.9b01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The configurations of nanoparticles (NPs) floating on liquid surfaces can be largely affected by the NP shapes in combination with different NP-liquid coupling strengths. Here, the behavior of ligated nanocubes (NCs) on liquid surfaces is studied as an example of such NP floating by analytical methods and molecular dynamics simulations. Depending on the NC-liquid coupling strength, NCs can sit on the liquid surface (weak), be partly immersed in a tilted orientation (intermediate), or be fully immersed except for the top facet (strong). The simulations reveal that configurations of clusters of self-assembled NCs on liquid surfaces can be even more complex and also determined by the NC-liquid and NC-NC coupling strengths, thus providing a rich spectrum of possible superstructures formed.
Collapse
Affiliation(s)
- Tara A Nitka
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Petr Král
- Departments of Chemistry, Physics, and Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| |
Collapse
|
11
|
Lu F, Vo T, Zhang Y, Frenkel A, Yager KG, Kumar S, Gang O. Unusual packing of soft-shelled nanocubes. SCIENCE ADVANCES 2019; 5:eaaw2399. [PMID: 31114807 PMCID: PMC6524981 DOI: 10.1126/sciadv.aaw2399] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Space-filling generally governs hard particle packing and the resulting phases and interparticle orientations. Contrastingly, hard-shaped nanoparticles with grafted soft-ligands pack differently since the energetically interacting soft-shell is amenable to nanoscale sculpturing. While the interplay between the shape and soft-shell can lead to unforeseen packing effects, little is known about the underlying physics. Here, using electron microscopy and small-angle x-ray scattering, we demonstrate that nanoscale cubes with soft, grafted DNA shells exhibit remarkable packing, distinguished by orientational symmetry breaking of cubes relative to the unit cell vectors. This zigzag arrangement occurs in flat body-centered tetragonal and body-centered cubic phases. We ascribe this unique arrangement to the interplay between shape and a spatially anisotropic shell resulting from preferential grafting of ligands to regions of high curvature. These observations reveal the decisive role played by shell-modulated anisotropy in nanoscale packing and suggest a plethora of new spatial organizations for molecularly decorated shaped nanoparticles.
Collapse
Affiliation(s)
- Fang Lu
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thi Vo
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Yugang Zhang
- National Synchrotron Light Source II, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alex Frenkel
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanat Kumar
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Corresponding author. (S.K.); (O.G.)
| | - Oleg Gang
- Center for Functional Nanomaterials, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Corresponding author. (S.K.); (O.G.)
| |
Collapse
|
12
|
Huang X, Zhu J, Ge B, Deng K, Wu X, Xiao T, Jiang T, Quan Z, Cao YC, Wang Z. Understanding Fe 3O 4 Nanocube Assembly with Reconstruction of a Consistent Superlattice Phase Diagram. J Am Chem Soc 2019; 141:3198-3206. [PMID: 30685973 DOI: 10.1021/jacs.8b13082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanocube (NC) assemblies display complex superlattice behaviors, which require a systematic understanding of their nucleation and growth as well transformation toward construction of a consistent superlattice phase diagram. This work made use of Fe3O4 NCs with controlled environments, and assembled NCs into three-dimensional (3D) superlattices of simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), acute and obtuse rhombohedral (rh) polymorphs, and 2D superlattices of square and hexagon. Controlled experiments and computations of in situ and static small-angle X-ray scattering (SAXS) as well as electron microscopic imaging revealed that the fcc and bcc polymorphs preferred a primary nucleation at the early stage of NC assembly, which started from the high packing planes of fcc(111) and bcc(110), respectively, in both 3D and 2D cases. Upon continuous growth of superlattice grain (or domain), a confinement stress appeared and distorted fcc and bcc into acute and obtuse rh polymorphs, respectively. The variable magnitudes of competitive interactions between configurational and directional entropy determine the primary superlattice polymorph of either fcc or bcc, while emergent enhancement of confinement effect on enlarged grains attributes to late developed superlattice transformations. Differently, the formation of a sc polymorph requires a strong driving force that either emerges simultaneously or is applied externally so that one easy case of the sc formation can be achieved in 2D thin films. Unlike the traditional Bath deformation pathway that involves an intermediate body-centered tetragonal lattice, the observed superlattice transformations in NC assembly underwent a simple rhombohedral distortion, which was driven by a growth-induced in-plane compressive stress. Establishment of a consistent phase diagram of NC-based superlattices and reconstruction of their assembly pathways provide critical insight and a solid base for controlled design and scalable fabrication of nanocube-based functional materials with desired superlattices and collective properties for real-world applications.
Collapse
Affiliation(s)
- Xin Huang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| | - Jinlong Zhu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Beijing 100090 , P. R. China
| | - Binghui Ge
- Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 Anhui , P. R. China
| | - Kerong Deng
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Xiaotong Wu
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Tianyuan Xiao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Tian Jiang
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zewei Quan
- Department of Chemistry , Southern University of Science and Technology (SUSTech) , Shenzhen , Guangdong 518055 , P. R. China
| | - Y Charles Cao
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
13
|
Bouju X, Duguet É, Gauffre F, Henry CR, Kahn ML, Mélinon P, Ravaine S. Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706558. [PMID: 29740924 DOI: 10.1002/adma.201706558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Quantum strongly correlated systems that exhibit interesting features in condensed matter physics often need an unachievable temperature or pressure range in classical materials. One solution is to introduce a scaling factor, namely, the lattice parameter. Synthetic heterostructures named superlattices or supracrystals are synthesized by the assembling of colloidal atoms. These include semiconductors, metals, and insulators for the exploitation of their unique properties. Most of them are currently limited to dense packing. However, some of desired properties need to adjust the colloidal atoms neighboring number. Here, the current state of research in nondense packing is summarized, discussing the benefits, outlining possible scenarios and methodologies, describing examples reported in the literature, briefly discussing the challenges, and offering preliminary conclusions. Penetrating such new and intriguing research fields demands a multidisciplinary approach accounting for the coupling of statistic physics, solid state and quantum physics, chemistry, computational science, and mathematics. Standard interactions between colloidal atoms and emerging fields, such as the use of Casimir forces, are reported. In particular, the focus is on the novelty of patchy colloidal atoms to meet this challenge.
Collapse
Affiliation(s)
- Xavier Bouju
- Centre d'élaboration de matériaux et d'études structurales (CEMES), CNRS, Université de Toulouse, UPR CNRS 8011, 29 Rue J. Marvig, F-31055, Toulouse, France
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
| | - Étienne Duguet
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600, Pessac, France
| | - Fabienne Gauffre
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut des sciences chimiques de Rennes (ISCR), CNRS, Université de Rennes, UMR CNRS 6226, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Claude R Henry
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Centre interdisciplinaire de nanoscience de Marseille (CINAM), CNRS, Aix-Marseille Université, UMR CNRS 7325, Campus de Luminy, F-13288, Marseille, France
| | - Myrtil L Kahn
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Laboratoire de chimie de coordination (LCC), CNRS, Université de Toulouse, UPR CNRS 8241, F-31000, Toulouse, France
| | - Patrice Mélinon
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut Lumière Matière (ILM), CNRS, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, F-69622, Villeurbanne, France
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600, Pessac, France
| |
Collapse
|
14
|
Yu Y, Yu D, Orme CA. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices. NANO LETTERS 2017; 17:3862-3869. [PMID: 28511013 DOI: 10.1021/acs.nanolett.7b01323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanocrystal superlattices are typically fabricated by either solvent evaporation or destabilization methods that require long time periods to generate highly ordered structures. In this paper, we report for the first time the use of electric fields to reversibly drive nanocrystal assembly into superlattices without changing solvent volume or composition, and show that this method only takes 20 min to produce polyhedral colloidal crystals, which would otherwise need days or weeks. This method offers a way to control the lattice constants and degree of preferential orientation for superlattices and can suppress the uniaxial superlattice contraction associated with solvent evaporation. In situ small-angle X-ray scattering experiments indicated that nanocrystal superlattices were formed while solvated, not during drying.
Collapse
Affiliation(s)
- Yixuan Yu
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | - Dian Yu
- University of California Los Angeles , Los Angeles, California 90095, United States
| | - Christine A Orme
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
15
|
Zhang J, Zhu J, Li R, Fang J, Wang Z. Entropy-Driven Pt 3Co Nanocube Assembles and Thermally Mediated Electrical Conductivity with Anisotropic Variation of the Rhombohedral Superlattice. NANO LETTERS 2017; 17:362-367. [PMID: 27936796 DOI: 10.1021/acs.nanolett.6b04295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the shape-dependent superlattices and resultant anisotropies of both structure and property allows for rational design of materials processing and engineering to fabricate transformative materials with useful properties for applications. This work shows the structural evolution from square lattice of two-dimensional (2D) thin film to rhombic lattice of large three-dimensional (3D) assembles of Pt3Co nanocubes (NCs). Synchrotron-based X-ray supercrystallography determines the superlattice of large 3D supercrystal into an obtuse rhombohedral (Rh) symmetry, which holds a long-range coherence of both NC translation and atomic crystallographic orientation. The Rh superlattice has a trigonal cell angle of 104°, and the constitute NCs orient their atomic Pt3Co(111) planes to the superlattice Rh[111] direction. The temperature-dependent in situ small and wide-angle X-ray scattering (SAXS/WAXS) measurements reveal a thermally induced superlattice contraction of supercrystal, which maintains translational ordering but slightly develops orientational disordering. The observed increases of both the packing density and the rotation magnitude of NCs indicate a rational compromise between configurational and rotational entropies of NCs. The resultant minimization of the total free energy is responsible for the formation and stability of the obtuse Rh superlattice. The temperature-dependent in situ measurements of SAXS and electrical resistance reveal that, in conjunction with the thermally induced sharp contraction of superlattice at 160 °C, the supercrystal becomes measurable of electrical resistance, which was followed by a temperature-dependent linear increase. Upon rapid annealing from 250 °C, the supercrystal remains almost constant in both structure and electrical resistance. The heating-enabled electrical conductivity of the supercrystal at high temperature implies the formation of a NC-interconnected architecture. The experiments and overall analysis provide solid evidence and essential information for the use of shape-dependent structural anisotropies of supercrystal to create nanobased novel architecture with desired properties.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum , Qingdao 266580, China
| | - Jinlong Zhu
- Department of Physics and Astronomy, University of Nevada , Las Vegas, Nevada 89154, United States
- Center for High Pressure Science and Technology and Advanced Research , Beijing 100094, China
| | - Ruipeng Li
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University , Ithaca, New York 14850, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University , Ithaca, New York 14850, United States
| |
Collapse
|
16
|
Agthe M, Plivelic TS, Labrador A, Bergström L, Salazar-Alvarez G. Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops. NANO LETTERS 2016; 16:6838-6843. [PMID: 27779885 DOI: 10.1021/acs.nanolett.6b02586] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.
Collapse
Affiliation(s)
- Michael Agthe
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Tomás S Plivelic
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Ana Labrador
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - German Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Zhao J, Baibuz E, Vernieres J, Grammatikopoulos P, Jansson V, Nagel M, Steinhauer S, Sowwan M, Kuronen A, Nordlund K, Djurabekova F. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS NANO 2016; 10:4684-94. [PMID: 26962973 DOI: 10.1021/acsnano.6b01024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.
Collapse
Affiliation(s)
- Junlei Zhao
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Ekaterina Baibuz
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Jerome Vernieres
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan
| | - Panagiotis Grammatikopoulos
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan
| | - Ville Jansson
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Morten Nagel
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Stephan Steinhauer
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan
| | - Mukhles Sowwan
- Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan
- Nanotechnology Research Laboratory, Al-Quds University , East Jerusalem, P.O. Box 51000, Palestine
| | - Antti Kuronen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Kai Nordlund
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| | - Flyura Djurabekova
- Department of Physics and Helsinki Institute of Physics, University of Helsinki , P.O. Box 43, FI-00014 Helsinki, Finland
| |
Collapse
|
18
|
Abstract
X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research where X-ray scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.
Collapse
Affiliation(s)
- Tao Li
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Andrew J Senesi
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
19
|
Liu Y, Zhou J, Zhou L, Yue-Bun Pun E, Jiang T, Petti L, Mormile P. Self-assembled structures of polyhedral gold nanocrystals: shape-directive arrangement and structure-dependent plasmonic enhanced characteristics. RSC Adv 2016. [DOI: 10.1039/c6ra12868h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Self-assembly structures of different types of polyhedral nanocrystals through drop casting method and their plasmonic enhancement characteristics and SERS performances due to the nano-antenna effect.
Collapse
Affiliation(s)
- Yanting Liu
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- China
| | - Jun Zhou
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- China
| | - Lu Zhou
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- China
| | - Edwin Yue-Bun Pun
- Department of Electronic Engineering
- State Key Laboratory of Millimeter Waves
- City University of Hong Kong
- Kowloon
- China
| | - Tao Jiang
- Institute of Photonics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- China
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR
- 80078 Pozzuoli
- Italy
| | - Pasquale Mormile
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR
- 80078 Pozzuoli
- Italy
| |
Collapse
|
20
|
Wei J, Schaeffer N, Pileni MP. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices. J Am Chem Soc 2015; 137:14773-84. [DOI: 10.1021/jacs.5b09959] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Wei
- Sorbonne Universités,
UPMC Université Paris 06, UMR 8233,
MONARIS, F-75005 Paris, France
- CNRS, UMR 8233,
MONARIS, F-75005 Paris, France
| | - Nicolas Schaeffer
- Sorbonne Universités,
UPMC Université Paris 06, UMR 8233,
MONARIS, F-75005 Paris, France
- CNRS, UMR 8233,
MONARIS, F-75005 Paris, France
| | - Marie-Paule Pileni
- Sorbonne Universités,
UPMC Université Paris 06, UMR 8233,
MONARIS, F-75005 Paris, France
- CNRS, UMR 8233,
MONARIS, F-75005 Paris, France
- CEA/IRAMIS, CEA
Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Caruntu D, Rostamzadeh T, Costanzo T, Parizi SS, Caruntu G. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals. NANOSCALE 2015; 7:12955-12969. [PMID: 26168304 DOI: 10.1039/c5nr00737b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.
Collapse
Affiliation(s)
- Daniela Caruntu
- Department of Chemistry and Biochemistry, Central Michigan University, 1200, S. Franklin St., Mt. Pleasant, MI 48858, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Small-angle scattering formulae for crystalline assemblies of arbitrary particles are derived from powder diffraction theory using the decoupling approximation. To do so, the pseudo-lattice factor is defined, and methods to overcome the limitations of the decoupling approximation are investigated. Further, approximated equations are suggested for the diffuse scattering from various defects of the first kind due to non-ideal particles, including size polydispersity, orientational disorder and positional fluctuation about their ideal positions. Calculated curves using the formalism developed herein are compared with numerical simulations computed without any approximation. For a finite-sized assembly, the scattering from the whole domain of the assembly must also be included, and this is derived using the correlation function approach.
Collapse
|
23
|
Bergström L, Sturm (née Rosseeva) EV, Salazar-Alvarez G, Cölfen H. Mesocrystals in Biominerals and Colloidal Arrays. Acc Chem Res 2015; 48:1391-402. [PMID: 25938915 DOI: 10.1021/ar500440b] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesocrystals, which originally was a term to designate superstructures of nanocrystals with a common crystallographic orientation, have now evolved to a materials concept. The discovery that many biominerals are mesocrystals generated a large research interest, and it was suggested that mesocrystals result in better mechanical performance and optical properties compared to single crystalline structures. Mesocrystalline biominerals are mainly found in spines or shells, which have to be mechanically optimized for protection or as a load-bearing skeleton. Important examples include red coral and sea urchin spine as well as bones. Mesocrystals can also be formed from purely synthetic components. Biomimetic mineralization and assembly have been used to produce mesocrystals, sometimes with complex hierarchical structures. Important examples include the fluorapatite mesocrystals with gelatin as the structural matrix, and mesocrystalline calcite spicules with impressive strength and flexibility that could be synthesized using silicatein protein fibers as template for calcium carbonate deposition. Self-assembly of nanocrystals can also result in mesocrystals if the nanocrystals have a well-defined size and shape and the assembly conditions are tuned to allow the nanoparticles to align crystallographically. Mesocrystals formed by assembly of monodisperse metallic, semiconducting, and magnetic nanocrystals are a type of colloidal crystal with a well-defined structure on both the atomic and mesoscopic length scale.Mesocrystals typically are hybrid materials between crystalline nanoparticles and interspacing amorphous organic or inorganic layers. This structure allows to combine disparate materials like hard but brittle nanocrystals with a soft and ductile amorphous material, enabling a mechanically optimized structural design as realized in the sea urchin spicule. Furthermore, mesocrystals can combine the properties of individual nanocrystals like the optical quantum size effect, surface plasmon resonance, and size dependent magnetic properties with a mesostructure and morphology tailored for specific applications. Indeed, mesocrystals composed of crystallographically aligned polyhedral or rodlike nanocrystals with anisotropic properties can be materials with strongly directional properties and novel collective emergent properties. An additional advantage of mesocrystals is that they can combine the properties of nanoparticles with a structure on the micro- or macroscale allowing for much easier handling.
Collapse
Affiliation(s)
- Lennart Bergström
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | | | - German Salazar-Alvarez
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Helmut Cölfen
- Physical
Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457 Konstanz, Germany
| |
Collapse
|
24
|
|
25
|
Cho YS, Lee SH, Kim MJ, Huh YD. Solvothermal Synthesis of Supercrystals of Hematite via the Self-assembly of Nanocubes. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhao L, Wang C, Liu J, Wen B, Tu Y, Wang Z, Fang H. Reversible state transition in nanoconfined aqueous solutions. PHYSICAL REVIEW LETTERS 2014; 112:078301. [PMID: 24579638 DOI: 10.1103/physrevlett.112.078301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 06/03/2023]
Abstract
Using molecular dynamics simulations, we find a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, which is not observed in macroscopic systems. The nanoscale confinement also leads to a significant increase of the critical aggregation concentration (CAC). A theoretical model based on Gibbs free energy calculation is developed to describe the simulation results. It indicates that the reversible state transition is attributed to the low free energy barrier (of order kBT) in between two energy minima corresponding to the dispersion and aggregation states, and the enhancement of the CAC results from the fact that at lower concentrations the number of solute molecules is not large enough to allow the formation of a stable cluster in the confined systems.
Collapse
Affiliation(s)
- Liang Zhao
- Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Post Office Box 800-204, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Wang
- Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Post Office Box 800-204, Shanghai 201800, China
| | - Jian Liu
- Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Post Office Box 800-204, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binghai Wen
- Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Post Office Box 800-204, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusong Tu
- Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Zuowei Wang
- School of Mathematical and Physical Sciences, University of Reading, Whiteknights, Reading RG6 6AX, United Kingdom
| | - Haiping Fang
- Laboratory of Physical Biology and Division of Interfacial Water, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Post Office Box 800-204, Shanghai 201800, China
| |
Collapse
|
27
|
Quan Z, Xu H, Wang C, Wen X, Wang Y, Zhu J, Li R, Sheehan CJ, Wang Z, Smilgies DM, Luo Z, Fang J. Solvent-Mediated Self-Assembly of Nanocube Superlattices. J Am Chem Soc 2014; 136:1352-9. [DOI: 10.1021/ja408250q] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | - Ruipeng Li
- Cornell
High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | | | - Zhongwu Wang
- Cornell
High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Detlef-M. Smilgies
- Cornell
High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Zhiping Luo
- Department
of Chemistry and Physics, Fayetteville State University, Fayetteville, North Carolina 28301, United States
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
28
|
Leong GJ, Schulze MC, Strand MB, Maloney D, Frisco SL, Dinh HN, Pivovar B, Richards RM. Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.3048] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G. Jeremy Leong
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
- Hydrogen Technologies and Systems Center; National Renewable Energy Laboratory; Golden CO 80401 USA
| | - Maxwell C. Schulze
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
| | - Matthew B Strand
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
| | - David Maloney
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
| | - Sarah L. Frisco
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
| | - Huyen N. Dinh
- Hydrogen Technologies and Systems Center; National Renewable Energy Laboratory; Golden CO 80401 USA
| | - Bryan Pivovar
- Hydrogen Technologies and Systems Center; National Renewable Energy Laboratory; Golden CO 80401 USA
| | - Ryan M. Richards
- Department of Chemistry and Geochemistry; Colorado School of Mines; Golden Colorado 80401 USA
| |
Collapse
|
29
|
Disch S, Wetterskog E, Hermann RP, Korolkov D, Busch P, Boesecke P, Lyon O, Vainio U, Salazar-Alvarez G, Bergström L, Brückel T. Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. NANOSCALE 2013; 5:3969-75. [PMID: 23536023 DOI: 10.1039/c3nr33282a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.
Collapse
Affiliation(s)
- Sabrina Disch
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Choi JJ, Bian K, Baumgardner WJ, Smilgies DM, Hanrath T. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. NANO LETTERS 2012; 12:4791-4798. [PMID: 22888985 DOI: 10.1021/nl3026289] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The self-assembly of colloidal nanocrystals into ordered superstructures depends critically on the shape of the nanocrystal building blocks. We investigated the self-assembly of cubic PbSe nanocrystals from colloidal suspensions in real-time using in situ synchrotron-based X-ray scattering. We combined small-angle and wide-angle scattering to investigate the translational ordering of nanocrystals and their orientational ordering in the lattice sites, respectively. We found that cubic PbSe nanocrystals assembled into a face-up (i.e., [100] normal to the interface) configuration at the liquid/substrate interface whereas nanocubes at the liquid/air interface assume a corner-up (i.e., [111] normal to the interface) configuration. The latter nanocrystal superlattice displays polymorphism as a function inter-NC separation distance. We explain the observed superlattice structure polymorphs in terms of the interactions directing the self-assembly. Insights into the directed self-assembly of superlattices gained from this study have important implication on the future development of nanocrystals as building blocks in artificial solids.
Collapse
Affiliation(s)
- Joshua J Choi
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | |
Collapse
|