1
|
Huang R, Wan P, Hu S, Zhang C, Miao W. Silver Nanoclusters-Decorated Porous Microneedles Coupling Duplex-Specific Nuclease-Assisted Signal Amplification for Sampling and Detection of MicroRNA in Interstitial Fluid. ACS Sens 2024; 9:5604-5612. [PMID: 39388367 DOI: 10.1021/acssensors.4c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
MicroRNAs (miRNAs) in dermal interstitial fluid (ISF) have recently been recognized as clinically promising biomarkers for the diagnosis and prognosis of cancer. However, the detection poses significant challenges, primarily due to the low abundance of miRNAs and the limitations of current sampling techniques. To address this issue, we develop novel porous microneedles (PMNs) array-based sensor composed of poly(vinyl alcohol) porous hydrogel and DNA-templated silver nanoclusters (AgNCs) to facilitate the enrichment and highly sensitive detection of ISF miRNA. Leveraging the capillary action facilitated by its unique porous structure and the swelling properties of the hydrogel, the PMNs array can efficiently extract 2.7 ± 0.3 mg of ISF within 5 min. Additionally, the interconnected pores within the PMNs array contribute to an increased specific surface area, thereby offering a convenient platform for the decoration of DNA-templated AgNCs. The immobilized large amount of AgNCs effectively capture the target miRNA from the extracted ISF, resulting in miRNA-induced fluorescence quenching of AgNCs. Subsequently, the introduction of the duplex-specific nuclease leads to the cleavage of DNA in DNA-RNA heteroduplexes, which release miRNA to interact with other AgNCs. This process of target recycling triggers a further reduction in fluorescence intensity, thereby enabling sensitive detection of the low-abundant miRNA down to 1.6 pM. Both in vitro and in vivo experiments validate the efficacy of the AgNCs immobilized PMNs array for the detection of miRNA biomarkers in ISF within minutes. These results indicate that the proposed PMNs array-based sensor holds great potential for the development of noninvasive personalized diagnostic strategies.
Collapse
Affiliation(s)
- Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peipei Wan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shengjie Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chenyang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
3
|
Liasi Z, Jensen L, Mikkelsen KV. A Combined Quantum Mechanics and Molecular Mechanics Approach for Simulating the Optical Properties of DNA-Stabilized Silver Nanoclusters. J Chem Theory Comput 2024; 20:937-945. [PMID: 38164716 DOI: 10.1021/acs.jctc.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
DNA-stabilized silver nanoclusters have emerged as an intriguing type of nanomaterial due to their unique optical and electronic properties, with potential applications in areas such as biosensing and imaging. The development of efficient methods for modeling these properties is paramount for furthering the understanding and utilization of these clusters. In this study, a hybrid quantum mechanical and molecular mechanical approach for modeling the optical properties of a DNA-templated silver nanocluster is evaluated. The influence of different parameters, including ligand fragmentation, damping, embedding potential, basis set, and density functional, is investigated. The results demonstrate that the most important parameter is the type of atomic properties used to represent the ligands, with isotropic dipole-dipole polarizabilities outperforming the rest. This underscores the importance of an appropriate representation of the ligands, particularly through the selection of the properties used to represent them. Moreover, the results are compared to experimental data, showing that the applied methodology is reliable and effective for the modeling of DNA-stabilized silver nanoclusters. These findings offer valuable insights that may guide future computational efforts to explore and harness the potential of these novel systems.
Collapse
Affiliation(s)
- Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|
4
|
Yadavalli HC, Park S, Kim Y, Nagda R, Kim TH, Han MK, Jung IL, Bhang YJ, Yang WH, Dalgaard LT, Yang SW, Shah P. Tailed-Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306793. [PMID: 37967352 DOI: 10.1002/smll.202306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Indexed: 11/17/2023]
Abstract
MicroRNAs (miRNAs) are small RNA molecules, typically 21-22 nucleotides in size, which play a crucial role in regulating gene expression in most eukaryotes. Their significance in various biological processes and disease pathogenesis has led to considerable interest in their potential as biomarkers for diagnosis and therapeutic applications. In this study, a novel method for sensing target miRNAs using Tailed-Hoogsteen triplex DNA-encapsulated Silver Nanoclusters (DNA/AgNCs) is introduced. Upon hybridization of a miRNA with the tail, the Tailed-Hoogsteen triplex DNA/AgNCs exhibit a pronounced red fluorescence, effectively turning on the signal. It is successfully demonstrated that this miRNA sensor not only recognized target miRNAs in total RNA extracted from cells but also visualized target miRNAs when introduced into live cells, highlighting the advantages of the turn-on mechanism. Furthermore, through gel-fluorescence assays and small-angle X-ray scattering (SAXS) analysis, the turn-on mechanism is elucidated, revealing that the Tailed-Hoogsteen triplex DNA/AgNCs undergo a structural transition from a monomer to a dimer upon sensing the target miRNA. Overall, the findings suggest that Tailed-Hoogsteen triplex DNA/AgNCs hold great promise as practical sensors for small RNAs in both in vitro and cell imaging applications.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min Kyun Han
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| |
Collapse
|
5
|
Fredrick D, Yourston L, Krasnoslobodtsev AV. Detection of cancer-associated miRNA using a fluorescence switch of AgNC@NA and guanine-rich overhang sequences. LUMINESCENCE 2023; 38:1385-1392. [PMID: 36843363 DOI: 10.1002/bio.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
DNA-templated silver nanoclusters (AgNC@DNA) are a novel type of nanomaterial with advantageous optical properties. Only a few atoms in size, the fluorescence of nanoclusters can be tuned using DNA overhangs. In this study, we explored the properties of AgNCs manufactured on a short single-stranded (dC)12 when adjacent G-rich sequences (dGN , with N = 3-15) were added. The 'red' emission of AgNC@dC12 with λMAX = 660 nm dramatically changed upon the addition of a G-rich overhang with NG = 15. The pattern of the emission-excitation matrix (EEM) suggested the emergence of two new emissive states at λMAX = 575 nm and λMAX = 710 nm. The appearance of these peaks provides an effective way to design biosensors capable of detecting specific nucleic acid sequences with low fluorescence backgrounds. We used this property to construct an NA-based switch that brings AgNC and the G overhang near one another, turning 'ON' the new fluorescence peaks only when a specific miRNA sequence is present. Next, we tested this detection switch on miR-371, which is overexpressed in prostate cancer. The results presented provide evidence that this novel fluorescent switch is both sensitive and specific with a limit of detection close to 22 picomoles of the target miR-371 molecule.
Collapse
Affiliation(s)
- Dylan Fredrick
- Department of Physics, University of Nebraska Omaha, 6001 Dodge Street, Omaha, Nebraska, USA
| | - Liam Yourston
- Department of Physics, University of Nebraska Omaha, 6001 Dodge Street, Omaha, Nebraska, USA
| | | |
Collapse
|
6
|
Gupta AK, Marshall N, Yourston L, Rolband L, Beasock D, Danai L, Skelly E, Afonin KA, Krasnoslobodtsev AV. Optical, structural, and biological properties of silver nanoclusters formed within the loop of a C-12 hairpin sequence. NANOSCALE ADVANCES 2023; 5:3500-3511. [PMID: 37383066 PMCID: PMC10295035 DOI: 10.1039/d3na00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Silver nanoclusters (AgNCs) are the next-generation nanomaterials representing supra-atomic structures where silver atoms are organized in a particular geometry. DNA can effectively template and stabilize these novel fluorescent AgNCs. Only a few atoms in size - the properties of nanoclusters can be tuned using only single nucleobase replacement of C-rich templating DNA sequences. A high degree of control over the structure of AgNC could greatly contribute to the ability to fine-tune the properties of silver nanoclusters. In this study, we explore the properties of AgNCs formed on a short DNA sequence with a C12 hairpin loop structure (AgNC@hpC12). We identify three types of cytosines based on their involvement in the stabilization of AgNCs. Computational and experimental results suggest an elongated cluster shape with 10 silver atoms. We found that the properties of the AgNCs depend on the overall structure and relative position of the silver atoms. The emission pattern of the AgNCs depends strongly on the charge distribution, while all silver atoms and some DNA bases are involved in optical transitions based on molecular orbital (MO) visualization. We also characterize the antibacterial properties of silver nanoclusters and propose a possible mechanism of action based on the interactions of AgNCs with molecular oxygen.
Collapse
Affiliation(s)
- Akhilesh Kumar Gupta
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Nolan Marshall
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Liam Yourston
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Elizabeth Skelly
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | | |
Collapse
|
7
|
García JF, Reguera D, Valls A, Aviñó A, Dominguez A, Eritja R, Gargallo R. Detection of pyrimidine-rich DNA sequences based on the formation of parallel and antiparallel triplex DNA and fluorescent silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122752. [PMID: 37084680 DOI: 10.1016/j.saa.2023.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.
Collapse
Affiliation(s)
- Juan Fernando García
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - David Reguera
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Andrea Valls
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Arnau Dominguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
8
|
Molaabasi F, Kefayat A, Ghasemzadeh A, Amandadi M, Shamsipur M, Alipour M, Moosavifard SE, Besharati M, Hosseinkhani S, Sarrami-Forooshani R. Role of the Probe Sequence/Structure in Developing an Ultra-Efficient Label-Free COVID-19 Detection Method Based on Competitive Dual-Emission Ratiometric DNA-Templated Silver Nanoclusters as Single Fluorescent Probes. Anal Chem 2022; 94:17757-17769. [PMID: 36512507 PMCID: PMC9762418 DOI: 10.1021/acs.analchem.2c02189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
We report the development of a label-, antibody-, enzyme-, and amplification-free ratiometric fluorescent biosensor for low-cost and rapid (less than 12 min) diagnosis of COVID-19 from isolated RNA samples. The biosensor is designed on the basis of cytosine-modified antisense oligonucleotides specific for either N gene or RdRP gene that can form silver nanoclusters (AgNCs) with both green and red emission on an oligonucleotide via a one-step synthesis process. The presence of the target RNA sequence of SARS-CoV-2 causes a dual-emission ratiometric signal transduction, resulting in a limit of detection of 0.30 to 10.0 nM and appropriate linear ranges with no need for any further amplification, fluorophore, or design with a special DNA fragment. With this strategy, five different ratiometric fluorescent probes are designed, and how the T/C ratio, the length of the stem region, and the number of cytosines in the loop structure and at the 3' end of the cluster-stabilizing template can affect the biosensor sensitivity is investigated. Furthermore, the effect of graphene oxide (GO) on the ratiometric behavior of nanoclusters is demonstrated and the concentration-/time-dependent new competitive mechanism between aggregation-caused quenching (ACQ) and aggregation-induced emission enhancement (AIE) for the developed ssDNA-AgNCs/GO nanohybrids is proposed. Finally, the performance of the designed ratiometric biosensor has been validated using the RNA extract obtained from more than 150 clinical samples, and the results have been confirmed by the FDA-approved reverse transcription-polymerase chain reaction (RT-PCR) diagnostic method. The diagnostic sensitivity and specificity of the best probe is more than >90%, with an area under the receiver operating characteristic (ROC) curve of 0.978.
Collapse
Affiliation(s)
- Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Amirhosein Kefayat
- Department
of Oncology, Cancer Prevention Research
Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abbas Ghasemzadeh
- ATMP
Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran1517964311, Iran
| | - Mojdeh Amandadi
- Department
of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Mojtaba Shamsipur
- Department
of Chemistry, Razi University, Kermanshah 67144-14971, Iran
| | - Mozhgan Alipour
- Department
of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Seyyed Ebrahim Moosavifard
- Department
of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom 74148-46199, Iran
| | - Maryam Besharati
- Department
of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | - Saman Hosseinkhani
- Department
of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Ramin Sarrami-Forooshani
- ATMP
Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran1517964311, Iran
| |
Collapse
|
9
|
Zhang Y, Yang C, He J, Zuo S, Shang X, Gao J, Yuan R, Xu W. Target DNA-Activating Proximity-Localized Catalytic Hairpin Assembly Enables Forming Split-DNA Ag Nanoclusters for Robust and Sensitive Fluorescence Biosensing. Anal Chem 2022; 94:14947-14955. [PMID: 36269062 DOI: 10.1021/acs.analchem.2c02733] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proximity-localized catalytic hairpin assembly (plCHA) is intriguing for rapid and sensitive assay of an HIV-specific DNA segment (T*). Using template-integrated green Ag nanoclusters (igAgNCs) as emitters, herein, we report the first design of a T*-activated plCHA circuit that is confined in a three-way-junction architecture (3WJA) for the fluorescence sensing of T*. To this end, the T*-recognizable complement is programmed in a stem-loop hairpin (H1), and two split template sequences of igAgNCs are separately overhung contiguous to the paired stems of H1 and another hairpin (H2). The hybridization among H1, H2, and two single-stranded linkers (L1 and L2) allows the stable construction of 3WJA. Upon presenting the input T*, the 3WJA-localized plCHA is operated through toehold-mediated strand displacements of H1 and H2 reactants, and T* is rationally displaced and repeatably recycled, analogous to a specific catalyst, inducing more hairpin assembly events. Resultantly, the hybridized products enable the collective combination of two splits in the parent scaffold for hosting igAgNCs, outputting T*-dependent fluorescence response. Because of 3WJA structural confinement, the spatial proximity of two reactive hairpins yielded high local concentrations to manipulate the plCHA operation, achieving rapider reaction kinetics via T*-catalyzed recycling than typical catalytic hairpin assembly (CHA). This simple assay strategy would open the arena to develop various plCHA-based circuits capable of modulating the fluorescence emission of igAgNCs for applicable biosensing and bioanalysis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Siyu Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Xin Shang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
10
|
Nagda R, Park S, Jung IL, Nam K, Yadavalli HC, Kim YM, Yang K, Kang J, Thulstrup PW, Bjerrum MJ, Cho M, Kim TH, Roh YH, Shah P, Yang SW. Silver Nanoclusters Serve as Fluorescent Rivets Linking Hoogsteen Triplex DNA and Hairpin-Loop DNA Structures. ACS NANO 2022; 16:13211-13222. [PMID: 35952305 DOI: 10.1021/acsnano.2c06631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Greater understanding of the mutual influence between DNA and the associated nanomaterial on the properties of each other can provide alternative strategies for designing and developing DNA nanomachines. DNA secondary structures are essential for encapsulating highly emissive silver nanoclusters (DNA/AgNCs). Likewise, AgNCs stabilize secondary DNA structures, such as hairpin DNA, duplex DNA, and parallel-motif DNA triplex. In this study, we found that the fluorescence of AgNCs encapsulated within a Hoogsteen triplex DNA structure can be turned on and off in response to pH changes. We also show that AgNCs can act as nanoscale rivets, linking two functionally distinctive DNA nanostructures. For instance, we found that a Hoogsteen triplex DNA structure with a seven-cytosine loop encapsulates red fluorescent AgNCs. The red fluorescence faded under alkaline conditions, whereas the fluorescence was restored in a near-neutral environment. Hairpin DNA and random DNA structures did not exhibit this pH-dependent AgNCs fluorescence. A fluorescence lifetime measurement and a small-angle X-ray scattering analysis showed that the triplex DNA-encapsulated AgNCs were photophysically convertible between bright and dark states. An in-gel electrophoresis analysis indicated that bright and dark convertibility depended on the AgNCs-riveted dimerization of the triplex DNAs. Moreover, we found that AgNCs rivet the triplex DNA and hairpin DNA to form a heterodimer, emitting orange fluorescence. Our findings suggest that AgNCs between two cytosine-rich loops can be used as nanorivets in designing noncanonical DNA origami beyond Watson-Crick base pairing.
Collapse
Affiliation(s)
- Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jooyoun Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | | | | | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Pratik Shah
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Mattath MN, Ghosh D, Dong C, Govindaraju T, Shi S. Mercury mediated DNA-Au/Ag nanocluster ensembles to generate a gray code encoder for biocomputing. MATERIALS HORIZONS 2022; 9:2109-2114. [PMID: 35792070 DOI: 10.1039/d2mh00598k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boolean operations utilizing DNA as a platform for biocomputing have become a promising tool for next-generation bio-molecular computers. In the whole process of any binary data transmission, bit errors are unavoidable and commonly occur. Cascades of exclusive-OR (XOR) operations show the great potential to evaluate these errors by introducing a parity generator (pG) and a parity checker (pC). Herein, we constructed a DNA hybrid architecture platform employing a chemosensing ensemble of mercury-mediated DNA-Au/Ag nanoclusters (M-Au/Ag NCs) to operate unconventional pG/pC for "error detection". Taking advantage of pG/pC, the transmitted and received data is converted to secure information using a binary to gray code encoder. To the best of our knowledge, this is the first molecular gray code encoder for biocomputing, which discovers an exciting avenue to protect information security through sophisticated logic circuits.
Collapse
Affiliation(s)
- Mohamed Nabeel Mattath
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Chunyan Dong
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India.
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Oncology, Shanghai East Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China.
| |
Collapse
|
12
|
Zhang J, Pan L, Wang Y, Yin L, Xu L, Tao J, Zhang L, Zhu Z, Cui D, Li F, Liu TF. DNA-templated silver nanoclusters light up tryptophan for combined detection of plasma tryptophan and albumin in sepsis. Anal Chim Acta 2022; 1213:339925. [DOI: 10.1016/j.aca.2022.339925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
|
13
|
Lin X, Zou L, Lan W, Liang C, Yin Y, Liang J, Zhou Y, Wang J. Progress of metal nanoclusters in nucleic acid detection. Dalton Trans 2021; 51:27-39. [PMID: 34812463 DOI: 10.1039/d1dt03183j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and application of metal nanoclusters (MNCs) in nucleic acid testing in the past 10 years have been summarized. Fluorescence enhancement and red shift can occur when the G-rich sequence gets close to Ag NCs or the complementary DNA strand hybridizes with Ag NCs tail strand, which can be used to identify the nucleic acid. Ag NCs with the abasic site in DNA duplex can distinguish mutant genes such as cancer suppression gene p53. Ag NCs with auxiliary DNA can be used to detect miR-21, miR-16-5p, miR-19b-3p, and miR-141. Cu NCs/Cu NPs can recognize miRNA-155, miR-21, and miR-let-7d without auxiliary DNA. Au NCs can identify H1N1 gene fragments by fluorescence quenching caused by proximity to the G-rich sequence. Besides, Au NCs can recognize miRNA-21 and let-7a. SsDNA MNCs adsorbed on the surface of GO and CNPs oxide can be used to identify HBV and HIV gene fragments. The addition of enzymes or auxiliary amplification technologies is a popular way to improve probe sensitivity. Ag NCs combined with TAIEA has the best performance and can obtain LOD as low as aM for miRNA.
Collapse
Affiliation(s)
- Xia Lin
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China. .,Guangxi medical college, Nanning, 530023, China.
| | - Lianjia Zou
- Guangxi medical college, Nanning, 530023, China.
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | | | - Yanchun Yin
- Guangxi medical college, Nanning, 530023, China.
| | - Jian Liang
- Medical college, Guangxi University, Nanning, 530004, China.
| | | | - Jianyi Wang
- Medical college, Guangxi University, Nanning, 530004, China. .,College of Chemistry and Chemical engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
14
|
Sun Y, Meng L, Zhang Y, Zhao D, Lin Y. The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Curr Stem Cell Res Ther 2021; 16:66-73. [PMID: 32436832 DOI: 10.2174/1574888x15666200521084417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Rolband L, Yourston L, Chandler M, Beasock D, Danai L, Kozlov S, Marshall N, Shevchenko O, Krasnoslobodtsev AV, Afonin KA. DNA-Templated Fluorescent Silver Nanoclusters Inhibit Bacterial Growth While Being Non-Toxic to Mammalian Cells. Molecules 2021; 26:4045. [PMID: 34279383 PMCID: PMC8271471 DOI: 10.3390/molecules26134045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Silver has a long history of antibacterial effectiveness. The combination of atomically precise metal nanoclusters with the field of nucleic acid nanotechnology has given rise to DNA-templated silver nanoclusters (DNA-AgNCs) which can be engineered with reproducible and unique fluorescent properties and antibacterial activity. Furthermore, cytosine-rich single-stranded DNA oligonucleotides designed to fold into hairpin structures improve the stability of AgNCs and additionally modulate their antibacterial properties and the quality of observed fluorescent signals. In this work, we characterize the sequence-specific fluorescence and composition of four representative DNA-AgNCs, compare their corresponding antibacterial effectiveness at different pH, and assess cytotoxicity to several mammalian cell lines.
Collapse
Affiliation(s)
- Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Liam Yourston
- Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Seraphim Kozlov
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Nolan Marshall
- Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Oleg Shevchenko
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
16
|
Feng DQ, Liu G. Dual-Channel Logic Gates Operating on the Chemopalette ssDNA-Ag NCs/GO Nanocomposites. Anal Chem 2021; 93:8326-8335. [PMID: 34076403 DOI: 10.1021/acs.analchem.1c01288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, we demonstrate that the emission wavelength and intensity of silver nanoclusters (Ag NCs) can be facilely tuned by the configuration transformation from the adsorption of Ag NCs to the graphene oxide (GO) surface to the desorption of Ag NCs from GO. Bicolor Ag NCs tethering the complementary sequence of influenza A virus genes are prepared, named green-emitting G-Ag NCs-CH5N1 (530 nm) and red-emitting R-Ag NCs-CH1N1 (589 nm). As for the high affinity of the complementary fragment of genes to GO, the adsorption of Ag NCs to GO leads to the formation of G-Ag NCs-CH5N1/GO and R-Ag NCs-CH1N1/GO nanocomposites, leading to fluorescent quenching due to energy transfer. By conjugating complementary sequences as capturing probes for targets, the formation of genes/Ag NC duplex-stranded structures results in the desorption of Ag NCs from GO, activating the fluorescence signal. More interestingly, compared with sole single-stranded DNA-templated fluorescent Ag NCs (ssDNA-Ag NCs), the activatable emission wavelength of the G-Ag NCs-CH5N1/H5N1 complex exhibits a notable red shift (555 nm) with a 49% recovery rate, while that of the R-Ag NCs-CH1N1/H1N1 complex shows a distinct blue shift (569 nm) with a 200% recovery rate. Via target-responsive configuration transformation of Ag NCs/GO hybrid materials, the emission wavelength and intensity of Ag NCs are effectively regulated. Based on the output changes according to different input combinations, novel dual-channel logic gates for multiplex simultaneous detection are developed by using the tunable color and intensity of ssDNA-Ag NCs. Our observation may open a new path for multiplex analysis in a facile and rapid way combining the logic gate strategy.
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guoliang Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
17
|
Jiang Y, Sun M, Ouyang N, Tang Y, Miao P. Synergistic Chemo-thermal Therapy of Cancer by DNA-Templated Silver Nanoclusters and Polydopamine Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21653-21660. [PMID: 33905235 DOI: 10.1021/acsami.1c04608] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we develop a novel and effective combination nanoplatform for cancer theranostics. Folic acid (FA) is first modified on the photothermal agent of polydopamine (PDA), which possesses excellent near-infrared (NIR) absorbance and thermal conversion features. Temperature-sensitive silver nanoclusters (AgNCs) are then synthesized on the DNA template that also loads the anticancer drug doxorubicin (Dox). After accumulation in cancer cells, PDA generates cytotoxic heat upon excitation of NIR light for photothermal therapy. On the other hand, the temperature increment is able to destroy the template of AgNCs, leading to the fluorescence variation and controlled release of Dox for chemotherapy. The combined nanosystem exhibits outstanding fluorescence tracing, NIR photothermal transduction, as well as chemo drug delivery capabilities. Both in vitro and in vivo results demonstrate excellent tumor growth suppression phenomena and no apparent adverse effects. This research provides a powerful targeted nanoplatform for cancer theranostics, which may have great potential value for future clinical applications.
Collapse
Affiliation(s)
- Yiting Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Nan Ouyang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
18
|
Egloff S, Melnychuk N, Reisch A, Martin S, Klymchenko AS. Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosens Bioelectron 2021; 179:113084. [PMID: 33601133 DOI: 10.1016/j.bios.2021.113084] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Detection of cellular microRNA biomarkers is an emerging powerful tool in cancer diagnostics. Currently, it requires multistep tedious protocols based on molecular amplification of the RNA target, e.g. RT-qPCR. Here, we developed a one-step enzyme-free method for microRNA detection in cellular extracts based on light-harvesting nanoparticle (nanoantenna) biosensors. They amplify the fluorescence signal by effective Förster resonance energy transfer (FRET) from ultrabright dye-loaded polymeric nanoparticle to a single acceptor and thus convert recognition of one microRNA copy (through nucleic acid strand displacement) into a response of >400 dyes. The developed nanoprobes of 17-19 nm diameter for four microRNAs (miR-21, let-7f, miR-222 and miR-30a) exhibit outstanding brightness (up to 3.8 × 107 M-1cm-1) and ratiometric sequence-specific response to microRNA with the limit of detection (LOD) down to 1.3 pM (21 amol), equivalent to 24 RT-qPCR cycles. They enable quantitative detection of the four microRNAs in RNA extracts from five cancerous cell lines (human breast cancer - T47D and MCF7, head and neck cancer - CAL33 and glioblastoma - LNZ308 and U373) and two non-cancerous ones (Hek293 and MCF10A), in agreement with RT-qPCR. The results confirmed that let-7f and especially miR-21 are systematically overexpressed in all studied cancerous cell lines. These nanoparticle biosensors are compatible with low-cost portable fluorometers and small detection volumes (11 amol LOD), opening a route to rapid point-of-care cancer diagnostics.
Collapse
Affiliation(s)
- Sylvie Egloff
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France.
| |
Collapse
|
19
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
20
|
de la Hoz A, Navarro A, Aviñó A, Eritja R, Gargallo R. Studies on the interactions of Ag(i) with DNA and their implication on the DNA-templated synthesis of silver nanoclusters and on the interaction with complementary DNA and RNA sequences. RSC Adv 2021; 11:9029-9042. [PMID: 35423401 PMCID: PMC8695332 DOI: 10.1039/d1ra00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoclusters (AgNCs) prepared by the reduction of silver ions in the presence of DNA oligonucleotides have attracted great interest as potential diagnostic tools for their tunable and high fluorescent properties. In this work, three DNA sequences that consist of a 12-nucleotide long probe sequence at the 5′-end linked to the complementary sequence to three miRNAs are studied. First, the interaction of these sequences with Ag(i) was characterized by means of circular dichroism spectroscopy. By applying multivariate methods to the analysis of spectroscopic data, two complexes with different Ag(i) : DNA ratios were resolved. Secondly, the impact of several experimental variables, such as temperature, borohydride concentration and reaction time, on the formation of AgNCs templated by these three sequences was studied. Finally, the fluorescence properties of the duplexes formed by DNA probes with complementary DNA or miRNA sequences were studied. The results presented here highlight the role of the secondary structure adopted by the DNA probe on the fluorescence properties of DNA-stabilized AgNCs which, in turn, affect the development of methods for miRNA detection. Variables affecting the fluorescent properties of DNA-stabilized silver nanoclusters are studied. The secondary structure of the AgNC-stabilizing DNA sequence dramatically affects the analytical signal behind the hybridization reaction.![]()
Collapse
Affiliation(s)
- Alejandra de la Hoz
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Alba Navarro
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| |
Collapse
|
21
|
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv 2020; 11:1153-1163. [PMID: 35423706 PMCID: PMC8693506 DOI: 10.1039/d0ra08066g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
22
|
Alipour M, Jalili S, Shirzad H, Ansari Dezfouli E, Fouani MH, Sadeghan AA, Bardania H, Hosseinkhani S. Development of dual-emission cluster of Ag atoms for genetically modified organisms detection. Mikrochim Acta 2020; 187:628. [PMID: 33095319 DOI: 10.1007/s00604-020-04591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
A DNA-silver nanocluster with two distinct emissions is devised, in which this unique modality has been exploited to develop a novel nanosensor for transgenic DNA detection. TEM and fluorescence analysis revealed the formation of Ag nanoclusters with a size of around 2 nm, which exhibit dual-emissions at 550 nm (green) and 630 nm (red). Moreover, in the presence of the target sequence (CaMV 35S promoter) from the transgenic plant, the nanoclusters showed an enhancement in the green emission and a reduction in the red emission. This property provided a ratiometric-sensing platform which lacks unavoidable noises. The ratio of green to red fluorescence emission (G/R) of the nanoclusters exhibited a linear relation with the target concentration in the range 10 to 1000 nM. However, the control DNA did not affect this ratio, which clearly confirmed the selective response of the designed nanosensor. This sensing platform had a detection limit of 1.5 nM and identified the DNA of transgenic soybeans within a short time. The mechanistic evaluation of the nanoclusters further revealed the role of protonated cytosine bases in the dual emission behavior. Finally, unique features of the designed nanosensor may improve the current approaches for the development and manufacturing of GMO detection tools.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Shirin Jalili
- Research Institute of Police Science & Social Studies, Tehran, Iran
| | - Hadi Shirzad
- Research Institute of Police Science & Social Studies, Tehran, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Amiri Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
A novel fluorescent enhancing platform based on DNA-scaffolded silver nanoclusters for potential inflammatory bowel disease-associated microRNA detection. Talanta 2020; 218:121122. [DOI: 10.1016/j.talanta.2020.121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
|
24
|
Shah P, Nagda R, Jung IL, Bhang YJ, Jeon SW, Lee CS, Do C, Nam K, Kim YM, Park S, Roh YH, Thulstrup PW, Bjerrum MJ, Kim TH, Yang SW. Noncanonical Head-to-Head Hairpin DNA Dimerization Is Essential for the Synthesis of Orange Emissive Silver Nanoclusters. ACS NANO 2020; 14:8697-8706. [PMID: 32525298 DOI: 10.1021/acsnano.0c03095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA secondary structures, such as dimers and hairpins, are important for the synthesis of DNA template-embedded silver nanoclusters (DNA/AgNCs). However, the arrangement of AgNCs within a given DNA template and how the AgNC influences the secondary structure of the DNA template are still unclear. Here, we introduce a noncanonical head-to-head hairpin DNA nanostructure that is driven by orange-emissive AgNCs. Through detailed in-gel analysis, sugar backbone switching, inductively coupled plasma mass spectrometry, small-angle X-ray scattering, and small angle neutron scattering, we show that the orange-emissive AgNCs mediate cytosine-Ag-cytosine bridging between two six-cytosine loop (6C-loop) hairpin DNA templates. Unlike green, red, or far-red emissive AgNCs, which are embedded inside a hairpin and duplex DNA template, the orange-emissive AgNCs are localized on the interface between the two 6C-loop hairpin DNA templates, thereby linking them. Moreover, we found that deoxyribose in the backbone of the 6C-loop at the third and fourth cytosines is crucial for the formation of the orange-emissive AgNCs and the head-to-head hairpin DNA structure. Taken together, we suggest that the specific wavelength of AgNCs fluorescence is determined by the mutual interaction between the secondary or tertiary structures of DNA- and AgNC-mediated intermolecular DNA cross-linking.
Collapse
Affiliation(s)
- Pratik Shah
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Yong Joo Bhang
- Seoulin Bioscience Co. Ltd., 4F. #A, KOREA BIO PARK, 700, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Sang-Woo Jeon
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Chang Seop Lee
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Changwoo Do
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- UNIK Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 2000, Denmark
| |
Collapse
|
25
|
Geczy R, Christensen NJ, Rasmussen KK, Kálomista I, Tiwari MK, Shah P, Yang SW, Bjerrum MJ, Thulstrup PW. Formation and Structure of Fluorescent Silver Nanoclusters at Interfacial Binding Sites Facilitating Oligomerization of DNA Hairpins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Reka Geczy
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Niels Johan Christensen
- Department of Chemistry University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Kim K. Rasmussen
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Ildikó Kálomista
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Manish K. Tiwari
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Pratik Shah
- Department of Systems Biology Institute of Life Science and Biotechnology Yonsei University Seoul 03722 Korea
| | - Seong Wook Yang
- Department of Systems Biology Institute of Life Science and Biotechnology Yonsei University Seoul 03722 Korea
| | - Morten J. Bjerrum
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter W. Thulstrup
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
26
|
Geczy R, Christensen NJ, Rasmussen KK, Kálomista I, Tiwari MK, Shah P, Yang SW, Bjerrum MJ, Thulstrup PW. Formation and Structure of Fluorescent Silver Nanoclusters at Interfacial Binding Sites Facilitating Oligomerization of DNA Hairpins. Angew Chem Int Ed Engl 2020; 59:16091-16097. [DOI: 10.1002/anie.202005102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Reka Geczy
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Niels Johan Christensen
- Department of Chemistry University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Kim K. Rasmussen
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Ildikó Kálomista
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Manish K. Tiwari
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Pratik Shah
- Department of Systems Biology Institute of Life Science and Biotechnology Yonsei University Seoul 03722 Korea
| | - Seong Wook Yang
- Department of Systems Biology Institute of Life Science and Biotechnology Yonsei University Seoul 03722 Korea
| | - Morten J. Bjerrum
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter W. Thulstrup
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
27
|
Yourston LE, Krasnoslobodtsev AV. Micro RNA Sensing with Green Emitting Silver Nanoclusters. Molecules 2020; 25:E3026. [PMID: 32630693 PMCID: PMC7411700 DOI: 10.3390/molecules25133026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Micro RNA (miR) are regulatory non-coding RNA molecules, which contain a small number of nucleotides ~18-28 nt. There are many various miR sequences found in plants and animals that perform important functions in developmental, metabolic, and disease processes. miRs can bind to complementary sequences within mRNA molecules thus silencing mRNA. Other functions include cardiovascular and neural development, stem cell differentiation, apoptosis, and tumors. In tumors, some miRs can function as oncogenes, others as tumor suppressors. Levels of certain miR molecules reflect cellular events, both normal and pathological. Therefore, miR molecules can be used as biomarkers for disease diagnosis and prognosis. One of these promising molecules is miR-21, which can serve as a biomarker with high potential for early diagnosis of various types of cancer. Here, we present a novel design of miR detection and demonstrate its efficacy on miR-21. The design employs emissive properties of DNA-silver nanoclusters (DNA/AgNC). The detection probe is designed as a hairpin DNA structure with one side of the stem complimentary to miR molecule. The binding of target miR-21 opens the hairpin structure, dramatically modulating emissive properties of AgNC hosted by the C12 loop of the hairpin. "Red" fluorescence of the DNA/AgNC probe is diminished in the presence of the target miR. At the same time, "green" fluorescence is activated and its intensity increases several-fold. The increase in intensity of "green" fluorescence is strong enough to detect the presence of miR-21. The intensity change follows the concentration dependence of the target miR present in a sample, which provides the basis of developing a new, simple probe for miR detection. The detection strategy is specific, as demonstrated using the response of the DNA/AgNC probe towards the scrambled miR-21 sequence and miR-25 molecule. Additionally, the design reported here is very sensitive with an estimated detection limit at ~1 picomole of miR-21.
Collapse
|
28
|
Guo Y, Shen F, Cheng Y, Yu H, Xie Y, Yao W, Pei R, Qian H, Li HW. DNA-Hairpin-Templated Silver Nanoclusters: A Study on Stem Sequence. J Phys Chem B 2020; 124:1592-1601. [PMID: 32045529 DOI: 10.1021/acs.jpcb.9b09741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA hairpins are widely used to synthesize silver nanoclusters (AgNCs) with excellent optical properties due to their specific secondary structure. Hairpin-AgNCs have been popularly employed for sensoring applications, while no systematic study has been done about the effect of stem sequence on the fluorescence property of hairpin-AgNCs. In this presented work, the synthesizing conditions of hairpin-AgNCs were fully examined first. Then, the effect of percentage content and distribution of GC base pairs as well as stem length on the fluorescence property of hairpin-AgNCs were studied. Intriguing phenomena were observed and basic conclusions were drawn, which would be helpful to understand the hairpin-AgNCs comprehensively and instructional for the applications using hairpin-AgNC probes.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fumiao Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road, Suzhou 215123, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
29
|
Cerretani C, Kondo J, Vosch T. Removal of the A10 adenosine in a DNA-stabilized Ag16 nanocluster. RSC Adv 2020; 10:23854-23860. [PMID: 35517326 PMCID: PMC9054913 DOI: 10.1039/d0ra02672g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
The role of the terminal adenosine (A10) on the spectroscopic and structural properties of a previously described DNA-stabilized Ag16 nanocluster (DNA:Ag16NC) is presented. In the original DNA:Ag16NCs (5′-CACCTAGCGA-3′), the A10 nucleobase was involved in an Ag+-mediated interaction with an A10 in a neighboring asymmetric unit, and did not interact with the Ag16NC. Therefore, we synthesized AgNCs embedded in the corresponding 9-base sequence in order to investigate the crystal structure of these new DNA-A10:Ag16NCs and analyze the photophysical properties of the solution and crystalline state. The X-ray crystallography and spectroscopic measurements revealed that the 3′-end adenosine has little importance with respect to the photophysics and structure of the Ag16NCs. Additionally, the new crystallographic data was recorded with higher spatial resolution leading to a more detailed insight in the interactions between the nucleotides and Ag atoms. We investigated the effect of removing the A10 from 5′-CACCTAGCGA-3′ on the photophysical and structural properties of a DNA-stabilized Ag16NC.![]()
Collapse
Affiliation(s)
- Cecilia Cerretani
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences
- Sophia University
- 102-8554 Tokyo
- Japan
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| |
Collapse
|
30
|
Blevins MS, Kim D, Crittenden CM, Hong S, Yeh HC, Petty JT, Brodbelt JS. Footprints of Nanoscale DNA-Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS NANO 2019; 13:14070-14079. [PMID: 31755695 PMCID: PMC7047740 DOI: 10.1021/acsnano.9b06470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | | | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:.
| |
Collapse
|
31
|
Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, Moosavifard SE, Barati A. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome c via Aggregation-Induced Emission Enhancement on Novel Label-Free DNA-Capped Silver Nanoclusters/Graphene Oxide Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46077-46089. [PMID: 31718135 DOI: 10.1021/acsami.9b14487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four fluorescent DNA-stabilized fluorescent silver nanoclusters (DNA-AgNCs) were designed and synthesized with differences in lengths of cytosine-rich DNA strand (as the stabilizing agent) and target-specific strand DNA aptamers for adenosine triphosphate (ATP) and cytochrome c (Cyt c). After their nanohybrid formation with graphene oxide (GO), it was unexpectedly found that, depending on the composition of the base and length of the strand DNA aptamer, the fluorescence intensity of three of the nanohybrids significantly enhanced. Our experimental observations and quantum mechanical calculations provided an insight into the mechanisms underlying the behavior of DNA-AgNCs/GO nanohybrids. The enhanced fluorescence was found to be attributed to the aggregation-induced emission enhancement (AIE) characteristic of the DNA-AgNCs adsorbed on the GO surface, as confirmed evidently by both fluorescence and transmission electron microscopies. The AIE is a result of hardness and oxidation properties of GO, which lead to enhanced argenophilic interaction and thus to increased Ag(I)-DNA complex shell aggregation. Consequently, two of the DNA-AgNCs/GO nanohybrids were successfully extended to construct highly selective, sensitive, label-free, and simple aptasensors for biosensing of ATP (LOD = 0.42 nM) and Cyt c (LOD = 2.3 nM) in lysed Escherichia coli DH5 α cells and mouse embryonic stem cells, respectively. These fundamental findings are expected to significantly influence the designing and engineering of new AgNCs/GO-based AIE biosensors.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Karam Molaei
- Department of Chemistry , Tarbiat Modares University , Tehran 14115-111 , Iran
| | - Fatemeh Molaabasi
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center , Motamed Cancer Institute, ACECR , Tehran 15179-64311 , Iran
| | - Saman Hosseinkhani
- Department of Biochemistry , Tarbiat Modares University , Al Ahmad Street , Tehran 14115-175 , Iran
| | - Avat Taherpour
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Morteza Sarparast
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine , Jahrom University of Medical Sciences (JUMS) , Jahrom 74148-46199 , Iran
| | - Ali Barati
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| |
Collapse
|
32
|
Gambucci M, Cerretani C, Latterini L, Vosch T. The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster. Methods Appl Fluoresc 2019; 8:014005. [PMID: 31794430 DOI: 10.1088/2050-6120/ab47f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of promising fluorophores for imaging and sensing applications. All aspects of their spectroscopic properties are not yet fully characterized, leaving this field still with a number of fundamental studies to be addressed. In this work, we studied the spectroscopic properties of red-emitting DNA-AgNCs at different pH (5 to 9) and ionic strength μ (0.005 to 0.5). The photophysical properties of high performance liquid chromatography (HPLC) purified DNA-AgNCs proved to be constant over a large range of pH and μ, with absorption, emission and fluorescence decay times only being affected at very high pH and μ values. Non-purified DNA-AgNCs were also unaffected by pH and/or μ variations, but significant differences can be observed between the rotational correlation times of purified and non-purified DNA-AgNCs.
Collapse
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, 06123 Perugia, Italy
| | | | | | | |
Collapse
|
33
|
Cerretani C, Kanazawa H, Vosch T, Kondo J. Crystal structure of a NIR‐Emitting DNA‐Stabilized Ag
16
Nanocluster. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cecilia Cerretani
- Department of Chemistry and NanoScience CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Hiroki Kanazawa
- Department of Materials and Life SciencesSophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
- Present address: IBMC-CNRSUniversité de Strasbourg 2 allée Konrad Roentgen 67084 Strasbourg France
| | - Tom Vosch
- Department of Chemistry and NanoScience CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Jiro Kondo
- Department of Materials and Life SciencesSophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
34
|
Shen F, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Guo Y, Qian H. DNA-silver nanocluster probe for norovirus RNA detection based on changes in secondary structure of nucleic acids. Anal Biochem 2019; 583:113365. [DOI: 10.1016/j.ab.2019.113365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
|
35
|
Cerretani C, Kanazawa H, Vosch T, Kondo J. Crystal structure of a NIR-Emitting DNA-Stabilized Ag 16 Nanocluster. Angew Chem Int Ed Engl 2019; 58:17153-17157. [PMID: 31411360 DOI: 10.1002/anie.201906766] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Indexed: 12/15/2022]
Abstract
DNA has been used as a scaffold to stabilize small, atomically monodisperse silver nanoclusters, which have attracted attention due to their intriguing photophysical properties. Herein, we describe the X-ray crystal structure of a DNA-encapsulated, near-infrared emitting Ag16 nanocluster (DNA-Ag16 NC). The asymmetric unit of the crystal contains two DNA-Ag16 NCs and the crystal packing between the DNA-Ag16 NCs is promoted by several interactions, such as two silver-mediated base pairs between 3'-terminal adenines, two phosphate-Ca2+ -phosphate interactions, and π-stacking between two neighboring thymines. Each Ag16 NC is confined by two DNA decamers that take on a horse-shoe-like conformation and is almost fully shielded from the solvent environment. This structural insight will aid in the determination of the structure/photophysical property relationship for this class of emitters and opens up new research opportunities in fluorescence imaging and sensing using noble-metal clusters.
Collapse
Affiliation(s)
- Cecilia Cerretani
- Department of Chemistry and NanoScience Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Hiroki Kanazawa
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan.,Present address: IBMC-CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, 67084, Strasbourg, France
| | - Tom Vosch
- Department of Chemistry and NanoScience Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
| |
Collapse
|
36
|
Zhou L, Wang W, Chen Y, Fan J, Tong C, Liu B. Aptamer-tagged silver nanoclusters for cell image and Mucin1 detection in vitro. Talanta 2019; 205:120075. [PMID: 31450473 DOI: 10.1016/j.talanta.2019.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023]
Abstract
Development of specific cell imaging technology for accurate tumor early diagnosis and evaluation of drug therapeutic efficiency is in great demand. In this study, a simple and sensitive fluorescence method for Mucin1 (MUC1) image in situ and quantitative assay in vitro has been established using APT-tagged silver nanoclusters (APT-Agnes) containing a recognition unit of MUC1 aptamer as the label-free fluorescence probe. The principle of the method is that specific recognition and binding of MUC1 with aptamer can result in the fluorescence quenching of APT-Agnes. The method for MUC1 assay showed a linear range from 0.1 to 100 NM with a limit of detection of 0.05 nM. Furthermore, the fluorescent probe of APT-AgNCs was successfully used for detection of MUC1 in serum and MCF-7 cell imaging. In our point, the above results demonstrated that the new simple method provided an alternative for direct quantitative assay of MUC1 in homogeneous solution and cell imaging, which is helpful for biomedical study and clinical diagnosis related with MUC1.
Collapse
Affiliation(s)
- Leiji Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Wenmiao Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - YunQing Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
37
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Cerretani C, Vosch T. Switchable Dual-Emissive DNA-Stabilized Silver Nanoclusters. ACS OMEGA 2019; 4:7895-7902. [PMID: 31459877 PMCID: PMC6693819 DOI: 10.1021/acsomega.9b00614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 05/10/2023]
Abstract
We investigated an ss-DNA sequence that can stabilize a red- and a green-emissive silver nanocluster (DNA-AgNC). These two emitters can convert between each other in a reversible way. The change from red- to green-emitting DNA-AgNCs can be triggered by the addition of H2O2, while the opposite conversion can be achieved by the addition of NaBH4. Besides demonstrating the switching between red- and green-emissive DNA-AgNCs and determining the recoverability, we fully characterized the photophysical properties, such as steady-state emission, quantum yield, fluorescence lifetime, and anisotropy of the two emissive species. Understanding the mechanism behind the remarkable conversion between the two emitters could lead to the development of a new range of DNA-AgNC-based ratiometric sensors.
Collapse
|
39
|
Structural Influence on the Post-Clustering Stability of DNA/AgNCs Fluorescence. NANOMATERIALS 2019; 9:nano9050667. [PMID: 31035341 PMCID: PMC6566520 DOI: 10.3390/nano9050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023]
Abstract
DNA-encapsulated Silver Nanoclusters (DNA/AgNCs) based sensors have gained increasing attention in past years due to their diverse applications in bioimaging, biosensing, and enzymatic assays. Given the potential of DNA/AgNCs for practical applications, the systematic studies of the fluorescent stability over an extended period is necessary. However, the correlation between nucleic acid properties and the long-term stability of DNA/AgNCs is less known. With locking-to-unlocking sensors, in which the secondary structure of DNA template is standardized, we investigated the correlation between the DNA structure and the fluorescence stability of AgNCs. Post-synthesis of DNA/AgNCs, the fluorescence, and structures of templates were monitored over three weeks. By combining the fluorescence spectroscopy with the in-gel fluorescent assay, we found that AgNCs encapsulated by dimer-structured DNA/AgNCs templates were more stable than those of hairpin-structured DNA/AgNCs templates. While the orange fluorescence from the dimer templates increased over three weeks, the red fluorescence from the hairpin templates was diminished by >80% within two days at room temperature. Further tests revealed that hairpin-encapsulated red-emissive AgNCs is more sensitive to oxidation by atmospheric oxygen compared to dimer encapsulated orange AgNCs. Our observations may provide an important clue in encapsulating photophysically more stable AgNCs by tuning the DNA secondary structures. The proposed strategy here can be essential for pragmatic applications of DNA/AgNCs templates.
Collapse
|
40
|
Kermani HA, Hosseini M, Dadmehr M. DNA-Templated Silver Nanoclusters for DNA Methylation Detection. Methods Mol Biol 2019; 1811:173-182. [PMID: 29926453 DOI: 10.1007/978-1-4939-8582-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
DNA methylation entails the covalent addition of a methyl group to C-5 position of cytosine by a family of DNA methyltransferase enzymes and has a significant role in gene regulation. Epigenetic changes such as DNA methylation of CpG islands located in the promoter region of some tumor suppressor genes are very common in human diseases such as cancer. Detection of aberrant methylation pattern could serve as an excellent diagnostic approach. It is key to develop methods for the direct and simple detection of methylated DNA or of methyltransferase activity without using antibodies, chemical modification, labeling and enzymatic treatments. In this study, we employ DNA-templated silver nanoclusters for detection of DNA methylation. This method entails use of cytosine rich DNA sequence as an effective template. By monitoring changes in fluorescence intensity, DNA methylation and DNA methyltransferase activity is detected. Upon DNA methylation, the fluorescence intensity of DNA templated Ag/NCs is decreased in a linear range when the concentration of methylated DNA is increased.
Collapse
Affiliation(s)
- Hanie Ahmadzade Kermani
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Mehdi Dadmehr
- Department of Biotechnology, Payeme Noor University, Tehran, Iran
| |
Collapse
|
41
|
Abstract
Multiplexed detection of small noncoding RNAs responsible for posttranscriptional regulation of gene expression, known as miRNAs, is essential for understanding and controlling cell development. However, the lifetimes of miRNAs are short and their concentrations are low, which inhibits the development of miRNA-based methods, diagnostics, and treatment of many diseases. Here we show that DNA-bridged assemblies of gold nanorods with upconverting nanoparticles can simultaneously quantify two miRNA cancer markers, namely miR-21 and miR-200b. Energy upconversion in nanoparticles affords efficient excitation of fluorescent dyes via energy transfer in the superstructures with core-satellite geometry where gold nanorods are surrounded by upconverting nanoparticles. Spectral separation of the excitation beam and dye emission wavelengths enables drastic reduction of signal-to-noise ratio and the limit of detection to 3.2 zmol/ngRNA (0.11 amol or 6.5 × 104 copies) and 10.3 zmol/ngRNA (0.34 amol or 2.1 × 105 copies) for miR-21 and miR-200b, respectively. Zeptomolar sensitivity and analytical linearity with respect to miRNA concentration affords multiplexed detection and imaging of these markers, both in living cells and in vivo assays. These findings create a pathway for the creation of an miRNA toolbox for quantitative epigenetics and digital personalized medicine.
Collapse
|
42
|
Li X, Han L, Guo Y, Chang Y, Yan J, Wang Y, Li N, Ding Y, Cai J. Rapid detection and cellular fluorescence imaging of the TBI biomarker Let-7i using a DNA–AgNC nanoprobe. NEW J CHEM 2019. [DOI: 10.1039/c9nj00489k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid fluorescence detection of Let-7i for TBI diagnosis and intracellular imaging have been studied using the multifunctional DNA–AgNCs.
Collapse
Affiliation(s)
- Xingmei Li
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Leiming Han
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yadong Guo
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yunfeng Chang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jie Yan
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yong Wang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Na Li
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha 410013
- China
| | - Yanjun Ding
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jifeng Cai
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
43
|
Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 2019; 144:2849-2866. [DOI: 10.1039/c9an00081j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent efforts in the application of nanomaterials as sensing elements in electrochemical and optical miRNAs assays.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Liu-Liu He
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying-Xu Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Shu-Yu Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Zhen-Hua Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Dan Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
44
|
Zhou W, Fang Y, Ren J, Dong S. DNA-templated silver and silver-based bimetallic clusters with remarkable and sequence-related catalytic activity toward 4-nitrophenol reduction. Chem Commun (Camb) 2019; 55:373-376. [DOI: 10.1039/c8cc08810a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Illustrative pathways for the preparation of bimetallic nanoclusters using DNA-AgNC, and a schematic representation of the reduction of 4-NP to 4-AP in the presence of DNA-AgNC or bimetallic nanoclusters.
Collapse
Affiliation(s)
- Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun
- Jilin
- P. R. China
- University of the Chinese Academy of Sciences
- Beijing
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun
- Jilin
- P. R. China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun
- Jilin
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun
- Jilin
- P. R. China
- University of the Chinese Academy of Sciences
- Beijing
| |
Collapse
|
45
|
Peng J, Ling J, Wen QL, Li Y, Cao QE, Huang ZJ, Ding ZT. The presence of a single-nucleotide mismatch in linker increases the fluorescence of guanine-enhanced DNA-templated Ag nanoclusters and their application for highly sensitive detection of cyanide. RSC Adv 2018; 8:41464-41471. [PMID: 35559308 PMCID: PMC9091977 DOI: 10.1039/c8ra07986b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fluorescence of DNA-templated silver nanoclusters can be enhanced by more than 100-fold by placing the nanoclusters in proximity to guanine-rich DNA sequences after hybridization. We found that the fluorescence of the guanine-enhanced silver nanoclusters is not increased with the guanine-rich DNA sequence closer to the silver nanoclusters. By studying the different numbers of mismatches in the linker sequences, we found that the presence of a single-nucleotide mismatch in the linker increases fluorescence more than the complementary nucleotide. Further study indicated the mismatch position of the linker sequence also affects the fluorescence of the hybridized DNA-Ag NCs. The evidence reported here indicated that the mismatch of the linker sequence affects the fluorescence enhancement of guanine-enhanced silver nanoclusters. We also found that DNA-Ag NCs is an excellent fluorescence sensor for cyanide, as cyanide effectively quenches the fluorescence of NCs at a very low concentration with high selectivity. Cyanide in the range from 0.10 μM to 0.35 μM could be linearly detected, with a detection limit of 25.6 nM.
Collapse
Affiliation(s)
- Jun Peng
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
- Hunan Province Geological Testing Institute Changsha 410007 China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Qiu-Lin Wen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Yu Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhang-Jie Huang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| |
Collapse
|
46
|
Zhao Y, Liu H, Jiang Y, Song S, Zhao Y, Zhang C, Xin J, Yang B, Lin Q. Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform. Anal Chem 2018; 90:14578-14585. [DOI: 10.1021/acs.analchem.8b04691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Hou Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People’s Republic of China
| | - Shanliang Song
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yueqi Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Chuan Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jingwei Xin
- Department of Thyroid Surgery, China Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
47
|
Shah P, Choi SW, Nagda R, Geczy R, Cho SK, Bhang YJ, Kim TH, Song TY, Lee PH, Kang JH, Thulstrup PW, Bjerrum MJ, Jung IL, Yang SW. The structural shift of a DNA template between a hairpin and a dimer tunes the emission color of DNA-templated AgNCs. NANOSCALE 2018; 10:20717-20722. [PMID: 30398269 DOI: 10.1039/c8nr06186f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The scaffolding DNA sequence and the size of silver nanoclusters (AgNCs), confined in a DNA template are the key parameters in determining the fluorescent properties of DNA-stabilized silver nanoclusters (DNA/AgNCs). In addition, we suggest here that the structural shift of a DNA hairpin-dimer is as important as the DNA sequence in determining the emission wavelength of DNA/AgNCs. Furthermore, we show that the structural shift post AgNC formation can be triggered by incubation time and pre-AgNC formation under salt conditions. As an important factor in predicting the emission properties of DNA/AgNCs, the modulation of DNA secondary structures with either sequence changes or ionic conditions can be applied for the dual-color detection system of a target molecule. Particularly, the dual-color detection method may increase the reliability of DNA/AgNC sensors for miRNAs.
Collapse
Affiliation(s)
- Pratik Shah
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Copp SM, Gorovits A, Swasey SM, Gudibandi S, Bogdanov P, Gwinn EG. Fluorescence Color by Data-Driven Design of Genomic Silver Clusters. ACS NANO 2018; 12:8240-8247. [PMID: 30059609 DOI: 10.1021/acsnano.8b03404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
DNA nucleobase sequence controls the size of DNA-stabilized silver clusters, leading to their well-known yet little understood sequence-tuned colors. The enormous space of possible DNA sequences for templating clusters has challenged the understanding of how sequence selects cluster properties and has limited the design of applications that employ these clusters. We investigate the genomic role of DNA sequence for fluorescent silver clusters using a data-driven approach. Employing rapid parallel silver cluster synthesis and fluorimetry, we determine the fluorescence spectra of silver cluster products stabilized by 1432 distinct DNA oligomers. By applying pattern recognition algorithms to this large experimental data set, we discover certain DNA base patterns, or "motifs," that correlate to silver clusters with similar fluorescence spectra. These motifs are employed in machine learning classifiers to predictively design DNA template sequences for specific fluorescence color bands. Our method improves selectivity of templates by 330% for silver clusters with peak emission wavelengths beyond 660 nm. The discovered base motifs also provide physical insights into how DNA sequence controls silver cluster size and color. This predictive design approach for color of DNA-stabilized silver clusters exhibits the potential of machine learning and data mining to increase the precision and efficiency of nanomaterials design, even for a soft-matter-inorganic hybrid system characterized by an extremely large parameter space.
Collapse
Affiliation(s)
- Stacy M Copp
- Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander Gorovits
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | | | - Sruthi Gudibandi
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | - Petko Bogdanov
- Department of Computer Science , University at Albany-SUNY , 1400 Washington Ave. , Albany , New York 12222 , United States
| | | |
Collapse
|
49
|
Guo Y, Shen F, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H, Pei R. The light-up fluorescence of AgNCs in a "DNA bulb". NANOSCALE 2018; 10:11517-11523. [PMID: 29888774 DOI: 10.1039/c8nr02575d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this presented work, a series of designs and experiments have been constructed to study how a DNA structure affected the fluorescence of silver nanoclusters (AgNCs). A "bulb"-like DNA structure was firstly used as the synthesizing template, and bright green-emitting AgNCs were obtained with a quantum yield of 17.2%. The "DNA bulb" structure was assembled using three single-stranded oligonucleotides (ssDNAs), with a flexible ssDNA part serving as the "filament". The results seemed intriguing as luminous AgNCs could be obtained only when the complete spatial structure was formed. To further investigate the role of the "bulb" structure, thirteen cytosine-rich sequences were employed as the "filament", respectively. Interestingly, the fluorescence intensities of AgNCs were all enhanced after the "filament" ssDNA was integrated into the "bulb" structure. The enhancement was as much as 175.2-fold, and the minimum enhancement was 1.3-fold. Spectral analyses were then conducted to give an understanding of the role of cytosine. When the sequences in the "bulb shell" were changed, the "DNA bulb" structure still showed an enhancing effect. Finally, the green-emitting AgNCs were utilized toward the selective detection of Hg2+ to demonstrate potential applications.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue, Wuxi 214122, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang J, Liu Y, Zhi X, Zhang C, Liu TF, Cui D. DNA-templated silver nanoclusters locate microRNAs in the nuclei of gastric cancer cells. NANOSCALE 2018; 10:11079-11090. [PMID: 29872807 DOI: 10.1039/c8nr02634c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dysregulation of microRNAs (miRNAs) is correlated with cancer progression. In vitro detection methods using extracts from cell lysis cannot provide information about the spatial distribution of miRNAs. Due to the development of miRNA fluorescence in situ hybridization (FISH), increasing amounts of intracellular expression information are being obtained. However, miRNA FISH suffers from weak signals and complex steps and thus remains very challenging. Herein, a strategy based on DNA-templated silver nanoclusters (AgNCs/DNAs) and their G-rich fluorescence enhancement effect was developed for FISH detection of miRNAs in gastric cancer cells. The method combines hybridization and signal amplification into one step, which allows imaging of intracellular miRNAs immediately after hybridization. Most importantly, using the method based on our design, miR-101-3p, miR-16-5p and miR-19b-3p were found to be located in the nuclei of MGC803 cells with granulated shapes, indicating an unanticipated distribution pattern. In addition, before the final miRNA FISH, we performed an optimization of AgNCs/DNAs and their G-rich fluorescence enhancement effect; we found that the effect occurred at shorter wavelengths emitting green fluorescence, with weakened red fluorescence at longer wavelengths. However, the components involved in the FISH process impacted the fluorescence properties so greatly that the probes finally exhibited slightly strengthened red fluorescence signals. Our method enables facile visualization of miRNAs at the subcellular level, which may benefit the precise localization of miRNAs in single cells in the future.
Collapse
Affiliation(s)
- Jingpu Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, P. R. China.
| | | | | | | | | | | |
Collapse
|