1
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Amestoy A, Rangra A, Mansard V, Saya D, Pouget E, Mazaleyrat E, Severac F, Bergaud C, Oda R, Delville MH. Highly Stable Low-Strain Flexible Sensors Based on Gold Nanoparticles/Silica Nanohelices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39480-39493. [PMID: 37556291 DOI: 10.1021/acsami.3c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Flexible strain sensors based on nanoparticle (NP) arrays show great potential for future applications such as electronic skin, flexible touchscreens, healthcare sensors, and robotics. However, even though these sensors can exhibit high sensitivity, they are usually not very stable under mechanical cycling and often exhibit large hysteresis, making them unsuitable for practical applications. In this work, strain sensors based on silica nanohelix (NH) arrays grafted with gold nanoparticles (AuNPs) can overcome these critical aspects. These 10 nm AuNPs are functionalized with mercaptopropionic acid (MPA) and different ratios of thiol-polyethylene glycol-carboxylic acid (HS-PEG7-COOH) to optimize the colloidal stability of the resulting NH@AuNPs nanocomposite suspensions, control their aggregation state, and tune the thickness of the insulating layer. They are then grafted covalently onto the surface of the NHs by chemical coupling. These nanomaterials exhibit a well-defined arrangement of AuNPs, which follows the helicity of the silica template. The modified NHs are then aligned by dielectrophoresis (DEP) between interdigitated electrodes on a flexible substrate. The flexibility, stability, and especially sensitivity of these sensors are then characterized by electromechanical measurements and scanning electron microscopy observations. These strain sensors based on NH@AuNPs nanocomposites are much more stable than those containing only nanoparticles and exhibit significantly reduced hysteresis and high sensitivity at very slight strains. They can retain their sensitivity even after 2 million consecutive cycles with virtually unchanged responsiveness. These improved performances come from their mechanical stability and the use of nanohelices as stable mechanical templates.
Collapse
Affiliation(s)
- Antoine Amestoy
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | - Aarushee Rangra
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Vincent Mansard
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Daisuke Saya
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Emilie Pouget
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | | | - Fabrice Severac
- NANOMADE LAB, 3 rue des Satellites, Toulouse F-31400, France
| | - Christian Bergaud
- Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, Toulouse F-31400, France
| | - Reiko Oda
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, 33607 Pessac, France
| | - Marie-Hélène Delville
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France
| |
Collapse
|
4
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
5
|
Ding L, Wang X, Wang T, Yu B, Han M, Guo Y. Effect of Lipophilic Chains on the Antitumor Effect of a Dendritic Nano Drug Delivery System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010069. [PMID: 36615265 PMCID: PMC9822338 DOI: 10.3390/molecules28010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Oligoethylene glycol dendron (G2) has been used in drug delivery due to its unique dendritic structure and excellent properties. In order to investigate the effects of lipophilic chains on drug delivery, the amphiphilic hybrid compound G2-C18 is synthesized, and celastrol (CSL) is selected to prepare "core-shell" structured CSL-G2-C18 nanoparticles (NPs) via the antisolvent precipitation method. Meanwhile, CSL-G2 NPs are prepared as the control. The two NPs show similar particle sizes and polydispersity indexes, while their morphologies exhibit dramatic differences. CSL-G2 NPs are solid spherical particles, while G2-C18 NPs are vesicles. The two NPs present ideal stability and similar release tendencies. The in vitro toxicity results show that the cell inhibition effect of CSL-loaded NPs is significantly enhanced when compared with free CSL, and the antitumor effect of CSL-G2-C18 NPs is stronger than that of CSL-G2 NPs. The IC50 value of CSL-G2 NPs and CSL-G2-C18 NPs is enhanced about 2.8-fold and 5-fold when compared with free CSL, respectively. The above results show that lipophilic chain-linking dendritic hybrid nanocarriers promote antitumor activity by affecting the morphology of NPs, which may aid in the selection of carrier designs.
Collapse
Affiliation(s)
- Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ting Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100093, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
- Correspondence:
| |
Collapse
|
6
|
Zaib S, Saeed Shah H, Usman F, Shahzadi K, Mazhar Asjad H, Khan R, Dera AA, Adel Pashameah R, Alzahrani E, Farouk A, Khan I. Green Synthesis of Gelatin‐Lipid Nanocarriers Incorporating
Berberis aristata
Extract for Cancer Therapy; Physical Characterization, Pharmacological and Molecular Modeling Analysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences University of Veterinary and Animal Sciences Lahore 54000 Pakistan
| | - Faisal Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan 66000 Pakistan
| | - Kiran Shahzadi
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hafiz Mazhar Asjad
- Department of Pharmacy Forman Christian College (A Chartered University) Lahore Pakistan
| | - Riffat Khan
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Abha Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry Faculty of Applied Science Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Abd‐ElAziem Farouk
- Department of Biotechnology College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
7
|
Polotsky AA, Birshtein TM. Molecular Switch Based on a Linear Macromolecule Inserted in a Second-Generation Dendron Brush. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhulina EB, Mikhailov IV, Borisov OV. Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau 64053, France
| |
Collapse
|
9
|
Yao Y, Zhu YL, Ma X, Zhou J. Interactions on Proteins Arising from the Self-Assembly of a Polyelectrolyte Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7759-7765. [PMID: 35709429 DOI: 10.1021/acs.langmuir.2c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surfaces grafted with polyelectrolyte chains for excellent performance in protein antifouling are highly desired in many applications, such as biomedical implants and devices. In general, the adsorbing/resisting behaviors of proteins can be mainly attributed to the electrostatic interactions that are associated with the charge properties of proteins and polyelectrolytes. By coarse-grained molecular dynamics simulations, we examined the self-assembled structures of polyanion and polyzwitterion brushes as well as the interactions on negatively and positively charged proteins. We found that in addition to charges, the structural polarization induced by self-assembly with a certain charge distribution shows significant influences on protein behavior. The large-scale dipole-dipole interactions between brushes and proteins can dominate the behavior of proteins on the brushes under certain circumstances. To ensure simulation accuracy, we compared two models and found a polar Martini model that explicitly treats electrostatic interactions as long-ranged ones, giving a more reasonable structural description compared with the normal Martini model that truncates electrostatic interactions.
Collapse
Affiliation(s)
- Yunming Yao
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoyuan Ma
- Jilin Provincial Center for Animal Disease Control and Prevention, Changchun 130062, China
| | - Junfeng Zhou
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
10
|
AlPO
4
film with rose surface structure: One‐step coating process, superhydrophilic and rapid super‐spreading. NANO SELECT 2022. [DOI: 10.1002/nano.202100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Wang ST, Zhang H, Xuan S, Nykypanchuk D, Zhang Y, Freychet G, Ocko BM, Zuckermann RN, Todorova N, Gang O. Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. J Am Chem Soc 2022; 144:8138-8152. [PMID: 35452210 DOI: 10.1021/jacs.2c00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Sunting Xuan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States
| | - Guillaume Freychet
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M Ocko
- Energy Sciences Directorate/Photon Science Division, NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ronald N Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven Avenue, Upton, New York 11973, United States.,Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Basak S, Khare HA, Kempen PJ, Kamaly N, Almdal K. Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. NANOSCALE ADVANCES 2022; 4:742-753. [PMID: 36131819 PMCID: PMC9418007 DOI: 10.1039/d1na00631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 μg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.
Collapse
Affiliation(s)
- Suman Basak
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Harshvardhan Ajay Khare
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen Copenhagen 2200 Denmark
| | - Paul J Kempen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| |
Collapse
|
13
|
Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery. Pharmaceutics 2022; 14:pharmaceutics14020326. [PMID: 35214058 PMCID: PMC8877163 DOI: 10.3390/pharmaceutics14020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer’s high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.
Collapse
|
14
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|
15
|
Aboudzadeh MA, Kruse J, Sanromán Iglesias M, Cangialosi D, Alegria A, Grzelczak M, Barroso-Bujans F. Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol. SOFT MATTER 2021; 17:7792-7801. [PMID: 34368823 DOI: 10.1039/d1sm00720c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The colloidal stability of metal nanoparticles is tremendously dependent on the thermal behavior of polymer brushes. Neat polyethylene glycol (PEG) presents an unconventional upper critical solution temperature in ethanol, where phase segregation and crystallization coexist. This thermal behavior translated to a PEG brush has serious consequences on the colloidal stability in ethanol of gold nanoparticles (AuNPs) modified with PEG brushes upon cooling. We observed that AuNPs (13 nm diameter) stabilized with conventional linear PEG brushes (Mn = 6 and 11 kg mol-1) in ethanol suffer from reversible phase separation upon a temperature drop over the course of a few hours. However, the use of a polymer brush with cyclic topology as a stabilizer prevents sedimentation, ensuring the colloidal stability in ethanol at -25 °C for, at least, four months. We postulate that temperature-driven collapse of chain brushes promotes the interpenetration of linear chains, causing progressive AuNP sedimentation, a process that is unfavorable for cyclic polymer brushes whose topology prevents chain interpenetration. This study reinforces the notion about the importance of polymer topology on the colloidal stability of AuNPs.
Collapse
Affiliation(s)
- M Ali Aboudzadeh
- Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kapara A, Brunton VG, Graham D, Faulds K. Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst 2021; 145:7225-7233. [PMID: 33164013 DOI: 10.1039/d0an01532f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The detection and identification of estrogen receptor alpha (ERα), one of the main biomarkers in breast cancer, is crucial for the clinical diagnosis and therapy of the disease. Here, we use a non-destructive approach for detecting and localising ERα expression at the single cell level using surface enhanced Raman spectroscopy (SERS) combined with functionalised gold nanoparticles (AuNPs). Antibody functionalised nanotags (ERα-AuNPs) showed excellent biocompatibility and enabled the spatial and temporal understanding of ERα location in breast cancer cell lines with different ERα expression status. Additionally, we developed an approach based on the percentage area of SERS response to qualitatively measure expression level in ERα positive (ERα+) breast cancer cells. Specifically, the calculation of relative SERS response demonstrated that MCF-7 cells (ERα+) exhibited higher nanotag accumulation resulting in a 4.2-times increase in SERS signal area in comparison to SKBR-3 cells (ERα-). These results confirmed the strong targeting effect of ERα-AuNPs towards the ERα receptor. The functionalised ERα-AuNP nanotags were also used to investigate the activity of fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). SERS mapping confirmed that ERα degradation occurred after fulvestrant treatment since a weaker SERS signal, and hence accumulation of nanotags, was observed in MCF-7 cells treated with fulvestrant. Most importantly, a correlation coefficient of 0.9 between the SERS response and the ERα expression level, obtained by western blot, was calculated. These results confirmed the strong relationship between the two approaches and open up the possibilities of using SERS as a tool for the estimation of ERα expression levels, without the requirement of destructive and time-consuming techniques. Therefore, the potential of using SERS as a rapid and sensitive method to understand the activity of SERDs in breast cancer is demonstrated.
Collapse
Affiliation(s)
- Anastasia Kapara
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, Scotland G1 1RD, UK.
| | | | | | | |
Collapse
|
17
|
Mikhailov IV, Leermakers FAM, Darinskii AA, Zhulina EB, Borisov OV. Theory of Microphase Segregation in ABA Triblock Comb-Shaped Copolymers: Lamellar Mesophase. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Frans A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, 6703 NB Wageningen, The Netherlands
| | - Anatoly A. Darinskii
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, F-64053 Pau, France
| |
Collapse
|
18
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
19
|
Neha, Kant R. Static Structure Factor and Viscoelastic Properties of Dendrimer Grafted Nanoparticles in Solution. J Phys Chem B 2021; 125:1951-1959. [PMID: 33566606 DOI: 10.1021/acs.jpcb.0c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theory for the dynamics of multiscale branched polymeric structures is applied to understand the dendrimer-grafted nanoparticles in a dilute solution. The multiscale nature of dendrimer-grafted nanoparticles arises due to larger beads for the nanoparticles and the smaller beads for the polymeric structure connected through the harmonic springs. The multiscale generalized Gaussian structure approach allows us to study several viscoelastic properties: (i) storage and loss moduli and (ii) intrinsic viscosity. The influence of nanoparticles in the dendrimer structure is reflected in low and intermediate frequency regimes of the viscoelastic relaxation moduli. The increase in the size and the number fraction of nanoparticle shows an anomalous enhancement in the relaxation moduli. The increase in number fraction of nanoparticle in dendrimer-grafted nanoparticles decreases the transition frequency between solid- and liquid-like viscoelastic region. The intrinsic viscosity of dendrimer-grafted nanoparticles increases with increasing the size of nanoparticle. The inclusion of hydrodynamic interactions facilitates the dynamics of dendrimer-grafted nanoparticles. The Kratky plot of the static structure factor of all conformation of dendrimer-grafted nanoparticles is also analyzed as a function of number fraction and the size of the nanoparticles. At low wavenumbers, all conformations of dendrimer-grafted nanoparticles show a universal behavior. The compactness of dendrimer-grafted nanoparticles increases with the increase in number fraction and the size of the nanoparticles.
Collapse
Affiliation(s)
- Neha
- Complex Systems Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rama Kant
- Complex Systems Group, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
20
|
Mayarani M, Basavaraj MG, Satapathy DK. Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly. J Colloid Interface Sci 2021; 583:683-691. [PMID: 33039865 DOI: 10.1016/j.jcis.2020.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Evaporating sessile drops containing surface active colloids is a promising route to self-assemble two-dimensional nanostructures. The standard protocol is to first self-assemble surface active nanoscale particles at the water-vapour interface and subsequently transfer it on to a solid surface. Colloidal monolayers with very few morphologies have been fabricated, exploiting this bottom-up self-assembly technique. However, the evaporation kinetics under controlled humidity conditions may dramatically alter the microstructure of self-assembled colloidal monolayers at the liquid-vapor interface and that on the solid surfaces, an aspect that has not been fully addressed in the prior studies. EXPERIMENTS To this end, we present an experimental study of evaporation driven self-assembly of soft poly(N-isopropylacrylamide) (pNIPAM) microgel particles loaded in a sessile drop. The surface-active microgel particles spontaneously populate the water-vapour interface facilitating the suppression of the coffee-ring effect and the formation of monolayer stains. The role of evaporation kinetics under controlled humidity conditions on the colloid's microstructure adsorbed to the solvent-air interface and on the morphology of the colloidal monolayer transferred onto the solid surface are studied in detail. FINDINGS The formation of particle-free and particle-rich regions at the water-vapor interface is observed for sessile drops evaporated under saturated humidity conditions. We show that the evaporation induced shrinkage of the interface area and the enhancement of the areal density of microgel particles adsorbed onto the interface leads to a restructuring of the particle-laden interface. The rearrangement of microgel particles along the water-vapor interface resembling the de-wetting assisted patterns is transferred to the solid substrate upon complete evaporation of the solvent. The microgel particles in the deposit assemble into domains with enhanced crystalline order. The evolution of Voronoi entropy across the monolayer deposit patterns obtained by the standard and slow evaporation routes are presented.
Collapse
Affiliation(s)
- M Mayarani
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, IIT Madras, Chennai, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India.
| |
Collapse
|
21
|
Trachsel L, Ramakrishna SN, Romio M, Spencer ND, Benetti EM. Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Lett 2021; 10:90-97. [PMID: 35548981 DOI: 10.1021/acsmacrolett.0c00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
22
|
Glova AD, Melnikova SD, Mercurieva AA, Larin SV, Nazarychev VM, Polotsky AA, Lyulin SV. Branched versus linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study. Phys Chem Chem Phys 2021; 23:457-469. [PMID: 33320128 DOI: 10.1039/d0cp04556j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We studied the structure of brushes consisting of branched oligolactide (OLA) chains grafted onto the surface of cellulose nanoparticles (CNPs) in polylactide (PLA) and compared the outcomes to the case of grafting linear OLA chains using atomistic molecular dynamics simulations. The systems were considered in a melt state. The branched model OLA chains comprised one branching point and three branches, while the linear OLA chains examined had a molecular weight similar to the branched chains. It was shown that free branches of the branched OLA chains tend to fold back toward the CNPs due to dipole-dipole interactions within the grafted layer, in contrast to the well-established behavior of the grafted uncharged branched chains. This result, however, is in qualitative agreement with the conformational behavior known for linear OLA chains. At the same time, no significant difference in the effectiveness of covering the filler surface with grafted branched or linear OLA chains was found. In terms of the expelling ability of the grafted chains and the interaction between PLA and CNP or OLA, the linear chains were broadly similar (sparse grafting) or better (intermediate or dense grafting) compared to the branched ones. Thus, the grafted lactide chains with a linear architecture, rather than their branched counterpart, may be preferable for the covalent modification of cellulose nanoparticles.
Collapse
Affiliation(s)
- Artyom D Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj pr. 31 (V.O.), St. Petersburg 199004, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3O 4-based nanomaterials for diagnosis and therapy of cancer. NEW J CHEM 2021. [DOI: 10.1039/d1nj00419k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of Fe3O4 NP-based theranostic nanoplatforms and their applications in tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Jun Wei
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Wei Wang
- Department of Anesthesiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing
- China
| | - Changzhi Dong
- University Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan 430056
- China
- CAS Key Laboratory of Nano-Bio Interface
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| |
Collapse
|
24
|
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020; 27:292-308. [PMID: 32036717 PMCID: PMC7034104 DOI: 10.1080/10717544.2020.1724209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most important zoonotic bacterial pathogens, infecting human beings and a wide range of animals, in particular, dairy cattle. Globally. S. aureus causing bovine mastitis is one of the biggest problems and an economic burden facing the dairy industry with a strong negative impact on animal welfare, productivity, and food safety. Furthermore, its smart pathogenesis, including facultative intracellular parasitism, increasingly serious antimicrobial resistance, and biofilm formation, make it challenging to be treated by conventional therapy. Therefore, the development of nanoparticles, especially liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanogels, and inorganic nanoparticles, are gaining traction and excellent tools for overcoming the therapeutic difficulty accompanied by S. aureus mastitis. Therefore, in this review, the current progress and challenges of nanoparticles in enhancing the S. aureus mastitis therapy are focused stepwise. Firstly, the S. aureus treatment difficulties by the antimicrobial drugs are analyzed. Secondly, the advantages of nanoparticles in the treatment of S. aureus mastitis, including improving the penetration and accumulation of their payload drugs intracellular, decreasing the antimicrobial resistance, and preventing the biofilm formation, are also summarized. Thirdly, the progression of different types from the nanoparticles for controlling the S. aureus mastitis are provided. Finally, the difficulties that need to be solved, and future prospects of nanoparticles for S. aureus mastitis treatment are highlighted. This review will provide the readers with enough information about the challenges of the nanosystem to help them to design and fabricate more efficient nanoformulations against S. aureus infections.
Collapse
Affiliation(s)
- Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Zhang D, You H, Zhang L, Fang J. Facile Surface Modification of Mesoporous Au Nanoparticles for Highly Sensitive SERS Detection. Anal Chem 2020; 92:15379-15387. [PMID: 33171039 DOI: 10.1021/acs.analchem.0c02781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The stability, dispersity, and surface chemical properties of colloidal nanoparticles are crucial for the reliable and desired chemical sensing in various applications. Here, we report an effective strategy to engineer the surface properties of mesoporous Au nanoparticles (meso-Au NPs) via PVP ligand modification, template removal, and surface purification. Monodispersed 3D meso-Au NPs with well-defined sizes and shapes were obtained using a general soft-enveloping strategy. During surface modification, the addition of PVP ligands and the concentration of HF solutions play key roles in the stability, shape, and size distributions of ordered Au networks. In order to obtain an improved sensing performance, the morphologies of meso-Au NPs were optimized with smaller mesopore size, and NaBH4 solution was used to efficiently remove the adsorbed PVP ligands. Due to the characteristics of high-density porosities and large surface area, the purified meso-Au NPs could be a kind of promising plasmonic-enhanced nanomaterial and provide abundant "hot spots." Combined with the enrichment effect using a slippery liquid-infused porous surface, the lowest detection limits of crystal violet molecule could be down to 0.1 pM, demonstrating an excellent SERS sensitivity. Moreover, a realistic illegal drug containing aspirin could be sensitively detected with a limit of 2.8 × 10-6 M, showing great potential for practical molecular sensing and applications.
Collapse
Affiliation(s)
- Dongjie Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Hongjun You
- School of Science, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Lingling Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Jixiang Fang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| |
Collapse
|
26
|
Mikhailov IV, Zhulina EB, Borisov OV. Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory. Phys Chem Chem Phys 2020; 22:23385-23398. [PMID: 33048067 DOI: 10.1039/d0cp02954h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theory describing equilibrium structural properties of solvent-free brushes formed by comblike polymers tethered by end segment of backbone to planar surface is developed using strong-stretching self-consistent field (SS-SCF) analytical approach and supported by numerical self-consistent field calculations based on the Scheutjens-Fleer (SF-SCF) method. The explicit dependence of self-consistent molecular potential on architectural parameters of comblike polymers is analyzed. It is demonstrated that distribution of local tension in backbones of long comblike polymers approaches that for linear chains. The star-to-comblike transition in solvent-free lamellas which occurs upon increase of backbone length of graft-polymer is analyzed.
Collapse
Affiliation(s)
- Ivan V Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
27
|
Toledo L, Palacio DA, Urbano BF. Tuning the softness of poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels through the addition of PEG coated nanoparticles. J Colloid Interface Sci 2020; 578:749-757. [PMID: 32570144 DOI: 10.1016/j.jcis.2020.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS In nanocomposites, several factors govern the enhancement of properties when a nanofiller is added into a polymer matrix. Previously, our group have demonstrated that stabilizing nanoparticles improves the dispersion of nanoparticles in a hydrogel, but their effect on viscoelastic properties remain unclear. We hypothesized that coating the nanoparticles will block matrix-nanoparticle interactions, which would then affect the transfer of stress when the hydrogel is subjected to stress. EXPERIMENT To this end, we investigated the effects that nanofillers coated with polyethylene glycol (PEG) of variable molar mass have on the properties of physical hydrogels made from poly(2-hydroxyethyl methacrylate). PEG with molar masses of 6, 20, and 35 kDa were used at different concentrations and the viscoelastic properties of the resulting hydrogels were studied and compared with control hydrogels with and without nanofillers. FINDINGS The coated nanofiller resulted in enhanced dispersion stabilization as the molar mass and concentration of the PEG increased. However, there were noticeable changes in viscoelastic properties. In general, the nanocomposite hydrogels exhibited reduced shear modulus, greater creep, and more accentuated shear thinning behaviour. These effects were attributed to hindered matrix-nanoparticle interactions because of the PEG coating, an increased slippage of the PHEMA chains as well as a plasticizing effect.
Collapse
Affiliation(s)
- Leandro Toledo
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Daniel A Palacio
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Departmento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
28
|
Nie L, Chang P, Ji C, Zhang F, Zhou Q, Sun M, Sun Y, Politis C, Shavandi A. Poly(acrylic acid) capped iron oxide nanoparticles via ligand exchange with antibacterial properties for biofilm applications. Colloids Surf B Biointerfaces 2020; 197:111385. [PMID: 33049660 DOI: 10.1016/j.colsurfb.2020.111385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 01/12/2023]
Abstract
Biofilm infections pose a rising threat to public health due to its existing protective shield, which preventing biocide penetration. Here, the oleate-capped iron oxide nanoparticles (OIONPs) were synthesized by the high-temperature method first; after then, the poly(acrylic acid)-capped iron oxide nanoparticles (PIONPs) were obtained via a ligand exchange reaction between OIONPs and sodium poly(acrylic acid). The physicochemical properties of PIONPs were evaluated by Fourier-transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Transmission Electron Microscopy (STEM), Dynamic Light Scattering (DLS), and zeta potential. The FT-IR analysis confirmed the successful ligand exchange on the surface of iron oxide nanoparticles. STEM images displayed that the prepared PIONPs were monodisperse spherical nanoparticles. The PIONPs were stable in ultrapure water and could be kept for 5 weeks without aggregation. Next, Cell Counting Kit-8 (CCK-8) assay and fluorescent images confirmed the excellent cytocompatibility of PIONPs, while the iron concentration of PIONPs was in the range of 5∼120 mg/L. Finally, PIONPs exhibited efficient antibacterial activity against E. coli and S. aureus, and Staphylococcus aureus subsp. aureus Rosenbach (SASAR) biofilm could be destroyed by treating PIONPs under alternating current (AC) applied field conditions.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium; Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Pengbo Chang
- Zhengzhou Technical College, Zhengzhou 450010, China
| | - Chingching Ji
- Institut für Chemie und Biochemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Fang Zhang
- College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, Xinyang 464000, China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yi Sun
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium
| | - Constantinus Politis
- Department of Imaging & Pathology, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven 3001, Belgium
| | - Amin Shavandi
- BioMatter Unit - École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
29
|
Samani MT, Hashemianzadeh SM. The effect of functionalization on solubility and plasmonic features of gold nanoparticles. J Mol Graph Model 2020; 101:107749. [PMID: 32966917 DOI: 10.1016/j.jmgm.2020.107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/26/2022]
Abstract
Effect of functionalization on stability, solubility, and plasmonic features of gold nanoparticle with the general formula of Au18(SR)14 in water solvent has been studied in this work. Thiol functional groups including 1,1-mercapto-ethyl alcohol, s-cysteamine, thioglycolic acid, and beta-mercaptoethanol have been used. Electronic band-gap, excitation energies, dipole moment, and hardness for all gold nanoparticles in water solvent were investigated using the quantum mechanical approach. Intermolecular forces, radial distribution function (RDF), mean square displacement (MSD), and solvation free energy were calculated by using simulation methods. Electronic band-gap, and excitation energy analysis show that surface modification of gold nanoparticles can change their electronic and plasmonic properties. The analysis of dipole moments indicates that ligands affect the nanoparticle's solubility. An increase of hardness and therefore chemical stability can be observed for functionalized nanoparticles compared to the bare structure. Intermolecular energies analyses suggest that structure with 1,1-mercapto ethyl alcohol ligand has the strongest interaction with the solvent. The analysis of RDF diagrams also indicates that the molecule with 1,1-mercapto ethyl alcohol ligand has the sharpest pick. The slope of the linear part of MSD diagrams that is the criterion of solute's lateral diffusion is the highest value for nanoparticle with 1,1-mercapto ethyl alcohol ligand. Furthermore, functionalization also affects solvation free energy contributions. According to obtained data of quantum mechanical calculations and molecular dynamics simulations, it may be concluded that particle with 1,1-mercapto ethyl alcohol is the best ligand for increasing solubility, stability, and plasmonic functions of Au18(SR)14 structures among the examined ones.
Collapse
Affiliation(s)
- Mandana Tarakame Samani
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
30
|
Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J 2020; 18:1980-1999. [PMID: 32802271 PMCID: PMC7403891 DOI: 10.1016/j.csbj.2020.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
Zwitterions consist of equal molar cationic and anionic moieties and thus exhibit overall electroneutrality. Zwitterionic materials include phosphorylcholine, sulfobetaine, carboxybetaine, zwitterionic amino acids/peptides, and other mix-charged zwitterions that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability and low interfacial energy, zwitterionic materials have become ideal choices for designing therapeutic vectors to prevent undesired biosorption especially nonspecific biomacromolecules during circulation, which was termed antifouling capability. And along with their great biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability and long circulation time, zwitterionic materials have been widely utilized for the delivery of drugs and therapeutic genes. In this review, we first summarized the possible antifouling mechanism of zwitterions briefly, and separately introduced the features and advantages of each type of zwitterionic materials. Then we highlighted their applications in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers and stressed the multifunctional role they played in therapeutic gene delivery.
Collapse
Affiliation(s)
- Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiao-Yu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
31
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
32
|
Scheepers MRW, Haenen SRR, Coers JM, van IJzendoorn LJ, Prins MWJ. Inter-particle biomolecular reactivity tuned by surface crowders. NANOSCALE 2020; 12:14605-14614. [PMID: 32614022 DOI: 10.1039/d0nr03125a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rate at which colloidal particles can form biomolecular bonds controls the kinetics of applications such as particle-based biosensing, targeted drug delivery and directed colloidal assembly. Here we study how the reactivity of the particle surface depends on its molecular composition, quantified by the inter-particle rate of aggregation in an optomagnetic cluster experiment. Particles were functionalized with DNA or with proteins for specific binding, and with polyethylene glycol as a passive surface crowder. The data show that the inter-particle binding kinetics are dominated by specific interactions, which surprisingly can be tuned by the passive crowder molecules for both the DNA and the protein system. The experimental results are interpreted using model simulations, which show that the crowder-induced decrease of the particle surface reactivity can be described as a reduced reactivity of the specific binder molecules on the particle surface.
Collapse
Affiliation(s)
- M R W Scheepers
- Eindhoven University of Technology, Department of Applied Physics, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Yang Y, Fryer C, Sharkey J, Thomas A, Wais U, Jackson AW, Wilm B, Murray P, Zhang H. Perylene Diimide Nanoprobes for In Vivo Tracking of Mesenchymal Stromal Cells Using Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27930-27939. [PMID: 32463217 DOI: 10.1021/acsami.0c03857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noninvasive bioimaging techniques are critical for assessing the biodistribution of cellular therapies longitudinally. Among them, photoacoustic imaging (PAI) can generate high-resolution images with a tissue penetration depth of ∼4 cm. However, it is essential and still highly challenging to develop stable and efficient near-infrared (NIR) probes with low toxicity for PAI. We report here the preparation and use of perylene diimide derivative (PDI) with NIR absorbance (around 700 nm) as nanoprobes for tracking mesenchymal stromal cells (MSCs) in mice. Employing an in-house synthesized star hyperbranched polymer as a stabilizer is the key to the formation of stable PDI nanoparticles with low toxicity and high uptake by the MSCs. The PDI nanoparticles remain within the MSCs as demonstrated by in vitro and in vivo assessments. The PDI-labeled MSCs injected subcutaneously on the flanks of the mice are clearly visualized with PAI up to 11 days postadministration. Furthermore, bioluminescence imaging of PDI-labeled luciferase-expressing MSCs confirms that the administered cells remain viable for the duration of the experiment. These PDI nanoprobes thus have good potential for tracking administered cells in vivo using PAI.
Collapse
Affiliation(s)
- Yonghong Yang
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Claudia Fryer
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Jack Sharkey
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Aidan Thomas
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K
| | - Ulrike Wais
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K
- Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island 627833, Singapore
| | - Alexander W Jackson
- Institute of Chemical and Engineering Science, 1 Pesek Road, Jurong Island 627833, Singapore
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
34
|
Concentration of Polymer Nanoparticles Through Dialysis: Efficacy and Comparison With Lyophilization for PEGylated and Zwitterionic Systems. J Pharm Sci 2020; 109:2607-2614. [PMID: 32422318 DOI: 10.1016/j.xphs.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Biodegradable polymeric nanoparticles (NPs) are attracting increasing attention as carriers for drug delivery. However, one of the main factors limiting their transition to the market is their premature degradation and release of the payload during the storage. Therefore, for increasing the formulation shelf-life, the removal of water is of paramount importance. In this work, we synthesized both polyethylene glycol (PEG)-stabilized and zwitterionic NPs via Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. We demonstrated that lyophilization leads the PEGylated NPs to irreversible aggregation, while the stability of the zwitterionic NPs was preserved only using a cryoprotectant. Therefore, we developed an alternative method for the NP concentration, based on the dialysis against a concentrated PEG solution. This method was optimized in terms of concentration factor (Fc), the ratio between the final and initial NP concentration, by acting on the PEG concentration in the dialysis medium, on its volume and on the initial NP concentration. With this approach, Fc up to 40 can be achieved in less than 10 h, preserving the possibility of redispersing the NPs to their original particle size distribution. Therefore, the dialysis proposed herein is a valuable alternative to lyophilization for the concentration of polymer NPs preserving their stability.
Collapse
|
35
|
Ferjaoui Z, Nahle S, Chang CS, Ghanbaja J, Joubert O, Schneider R, Ferrari L, Gaffet E, Alem H. Layer-by-Layer Self-Assembly of Polyelectrolytes on Superparamagnetic Nanoparticle Surfaces. ACS OMEGA 2020; 5:4770-4777. [PMID: 32201762 PMCID: PMC7081293 DOI: 10.1021/acsomega.9b02963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic Fe3-δO4-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated. We demonstrate the efficiency of the layer-by-layer process to graft polyelectrolytes on the surface of iron oxide NPs. The influence of the polyelectrolyte chain configuration on the magnetic properties of the Fe3-δO4/polymer core/shell NPs was enlightened. The simple and fast process described in this work is efficient for the grafting of polyelectrolytes from surfaces, and thus, derived Fe3-δO4 NPs display both the physical properties of the core and of the macromolecular shell. Finally, the cytotoxicity toward the human THP-1 monocytic cell line of the core/shell NPs was assessed. The results showed that the polymer-capped Fe3-δO4 NPs exhibited almost no toxicity after 24 h of exposure at concentrations up to 25 μg mL-1. Our results show that these smart superparamagnetic nanocarriers with stealth properties are promising for applications in multimodal cancer therapy, including drug delivery.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Sara Nahle
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Crosby Soon Chang
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Jaafar Ghanbaja
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Olivier Joubert
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire
Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Luc Ferrari
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Eric Gaffet
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut
Jean Lamour (UMR 7198), Université
de Lorraine, CNRS, Campus
Artem 2 allée André Guinier BP 50840,
F-54011 Nancy Cedex, France
- Institut
Universitaire de France, 75005 Paris, France
| |
Collapse
|
36
|
Sanchez-Cano C, Carril M. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces. Int J Mol Sci 2020; 21:E1007. [PMID: 32028729 PMCID: PMC7037411 DOI: 10.3390/ijms21031007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/04/2023] Open
Abstract
Biofouling is a major issue in the field of nanomedicine and consists of the spontaneous and unwanted adsorption of biomolecules on engineered surfaces. In a biological context and referring to nanoparticles (NPs) acting as nanomedicines, the adsorption of biomolecules found in blood (mostly proteins) is known as protein corona. On the one hand, the protein corona, as it covers the NPs' surface, can be considered the biological identity of engineered NPs, because the corona is what cells will "see" instead of the underlying NPs. As such, the protein corona will influence the fate, integrity, and performance of NPs in vivo. On the other hand, the physicochemical properties of the engineered NPs, such as their size, shape, charge, or hydrophobicity, will influence the identity of the proteins attracted to their surface. In this context, the design of coatings for NPs and surfaces that avoid biofouling is an active field of research. The gold standard in the field is the use of polyethylene glycol (PEG) molecules, although zwitterions have also proved to be efficient in preventing protein adhesion and fluorinated molecules are emerging as coatings with interesting properties. Hence, in this review, we will focus on recent examples of anti-biofouling coatings in three main areas, that is, PEGylated, zwitterionic, and fluorinated coatings.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain;
| | - Mónica Carril
- Instituto Biofisika UPV/EHU, CSIC, Barrio Sarriena s/n, Leioa, E-48940 Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, UPV/EHU, Barrio Sarriena s/n, Leioa, E-48940 Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
37
|
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020; 28:468-486. [PMID: 31984810 DOI: 10.1080/1061186x.2020.1722137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines due to its unique features such as large surface to mass ratio, targeting potential, ability to adsorbed and carry other compound which makes them suitable for biomedical applications. However, the problem of the large-scale synthesis of nanoparticles remains challenging due to physical instability associated with nanoparticles which lead to generation of aggregates particles with high polydispersity index (PDI) indicating low particle homogeneity and eventually loss of their special nanoscale properties. The stabilisation concept can be generated by repulsive electrostatic force, which nanoparticles experience, when they are surrounded by a double layer of electric charges. Selection of proper stabiliser will govern the stability of NPs and ultimately development of optimised drug delivery system. This review summarises mechanism of physical instability issues likely to be encountered during the development of nanoformulations. It also discusses potential stabilising agents used so far and their mechanism in achieving stable nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Waad Aloufi
- Pharmaceutics, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Shehla Najib
- Pharmacognosy and Phytochemistry, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
38
|
Kazakov AD, Polotsky AA, Zhulina EB, Birshtein TM, Leermakers FAM, Borisov OV. Dendron Brushes in Polymer Medium: Interpenetration and Depletion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander D. Kazakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 99004 St. Petersburg, Russia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 12800 Praha 2, Czech Republic
| | - Alexey A. Polotsky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 99004 St. Petersburg, Russia
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 99004 St. Petersburg, Russia
| | - Tatiana M. Birshtein
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 99004 St. Petersburg, Russia
| | - Frans A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, 6703 NB Wageningen, The Netherlands
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 99004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
39
|
Maleki H, Naghibzadeh M, Amani A, Adabi M, Khosravani M. Preparation of Paclitaxel and Etoposide Co-loaded mPEG-PLGA Nanoparticles: an Investigation with Artificial Neural Network. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Lebedeva IO, Shavykin OV, Neelov IM, Zhulina EB, Leermakers FAM, Borisov OV. Non-linear elasticity effects and stratification in brushes of branched polyelectrolytes. J Chem Phys 2019; 151:214902. [PMID: 31822102 DOI: 10.1063/1.5130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brushes formed by arm-tethered starlike polyelectrolytes may exhibit internal segregation into weakly and strongly extended populations (stratified two-layer structure) when strong ionic intermolecular repulsions induce stretching of the tethers up to the limit of their extensibility. We propose an approximate Poisson-Boltzmann theory for analysis of the structure of the stratified brush and compare it with results of numerical self-consistent field modeling. Both analytical and numerical models point to the formation of a narrow cloud of counterions (internal double electrical layer) localized inside a stratified brush at the boundary between the layers.
Collapse
Affiliation(s)
- Inna O Lebedeva
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| | - Oleg V Shavykin
- St. Petersburg National University of Informational Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Igor M Neelov
- St. Petersburg National University of Informational Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Ekaterina B Zhulina
- St. Petersburg National University of Informational Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - Oleg V Borisov
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
41
|
Zyuzin MV, Cassani M, Barthel MJ, Gavilan H, Silvestri N, Escudero A, Scarpellini A, Lucchesi F, Teran FJ, Parak WJ, Pellegrino T. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41957-41971. [PMID: 31584801 DOI: 10.1021/acsami.9b15501] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The design of magnetic nanostructures whose magnetic heating efficiency remains unaffected at the tumor site is a fundamental requirement to further advance magnetic hyperthermia in the clinic. This work demonstrates that the confinement of magnetic nanoparticles (NPs) into a sub-micrometer cavity is a key strategy to enable a certain degree of nanoparticle motion and minimize aggregation effects, consequently preserving the magnetic heat loss of iron oxide nanocubes (IONCs) under different conditions, including intracellular environments. We fabricated magnetic layer-by-layer (LbL) self-assembled polyelectrolyte sub-micrometer capsules using three different approaches, and we studied their heating efficiency as obtained in aqueous dispersions and after internalization by tumor cells. First, IONCs were added to the hollow cavities of LbL submicrocapsules, allowing the IONCs to move to a certain extent in the capsule cavities. Second, IONCs were coencapsulated into solid calcium carbonate cores coated with LbL polymer shells. Third, IONCs were incorporated within the polymer layers of the LbL capsule walls. In aqueous solution, higher specific absorption rate (SAR) values were related to those of free IONCs, while lower SAR values were recorded for capsule/core assemblies. However, after uptake by cancer cell lines (SKOV-3 cells), the SAR values of the free IONCs were significantly lower than those observed for capsule/core assemblies, especially after prolonged incubation periods (24 and 48 h). These results show that IONCs packed into submicrocavities preserve the magnetic losses, as the SAR values remained almost invariable. Conversely, free IONCs without the protective capsule shell agglomerated and their magnetic losses were strongly reduced. Indeed, IONC-loaded capsules and free IONCs reside inside endosomal and lysosomal compartments after cellular uptake and show strongly reduced magnetic losses due to the immobilization and aggregation in centrosymmetrical structures in the intracellular vesicles. The confinement of IONCs into sub-micrometer cavities is a key strategy to provide a sustained and predictable heating dose inside biological matrices.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191023 St. Petersburg , Russia
| | - Marco Cassani
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Markus J Barthel
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Helena Gavilan
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Alberto Escudero
- Leibniz Institute for New Materials , Campus D2 2, D-66123 Saarbrücken , Germany
- Departamento de Química Inorgánica and Instituto de Investigaciones Químicas (IIQ) , Universidad de Sevilla-CSIC , Calle Américo Vespucio 49 , E-41092 Seville , Spain
| | - Alice Scarpellini
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Federica Lucchesi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Informatica,B ioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS) , Via all'Opera Pia, 13 , 16145 Genova , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Wolfgang J Parak
- Faculty of Physics and Chemistry and CHyN , Universität Hamburg , 20146 Hamburg , Germany
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
42
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
43
|
Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A, Bezdetnaya L, Soon Chang C, Schneider R, Mutelet F, Mertz D, Begin-Colin S, Quilès F, Gaffet E, Alem H. Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30610-30620. [PMID: 31359758 DOI: 10.1021/acsami.9b10444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study reports on the development of thermoresponsive core/shell magnetic nanoparticles (MNPs) based on an iron oxide core and a thermoresponsive copolymer shell composed of 2-(2-methoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) moieties. These smart nano-objects combine the magnetic properties of the core and the drug carrier properties of the polymeric shell. Loading the anticancer drug doxorubicin (DOX) in the thermoresponsive MNPs via supramolecular interactions provides advanced features to the delivery of DOX with spatial and temporal controls. The so coated iron oxide MNPs exhibit superparamagnetic behavior with a saturation magnetization of around 30 emu g-1. Drug release experiments confirmed that only a small amount of DOX was released at room temperature, while almost 100% drug release was achieved after 52 h at 42 °C with Fe3-δO4@P(MEO2MA60OEGMA40), which grafted polymer chains displaying a low critical solution temperature of 41 °C. Moreover, the MNPs exhibit magnetic hyperthermia properties as shown by specific absorption rate measurements. Finally, the cytotoxicity of the core/shell MNPs toward human ovary cancer SKOV-3 cells was tested. The results showed that the polymer-capped MNPs exhibited almost no toxicity at concentrations up to 12 μg mL-1, whereas when loaded with DOX, an increase in cytotoxicity and a decrease of SKOV-3 cell viability were observed. From these results, we conclude that these smart superparamagnetic nanocarriers with stealth properties are able to deliver drugs to tumor and are promising for applications in multimodal cancer therapy.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Enaam Jamal Al Dine
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039) , Université de Lorraine, CNRS , F-54506 Vandœuvre-lès-Nancy , France
- Research Department , Institut de Cancérologie de Lorraine , 6 avenue de Bourgogne, CS 30519 , F-54519 Vandœuvre-lès-Nancy Cedex, France
| | - Crosby Soon Chang
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Fabrice Mutelet
- Laboratoire Réactions et Génie des Procédés, (LRGP, UMR 7274) , Université de Lorraine, CNRS , F-54000 Nancy , France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, UMR 7504) , Université de Strasbourg, CNRS, UMR 7504 , F-67034 Strasbourg , France
| | - Fabienne Quilès
- Laboratoire de Chimie Physique et Microbiologie et Materiaux pour l'Environnement (LCPME, UMR 7564) , Université de Lorraine, CNRS , F-54600 Villers-lès-Nancy , France
| | - Eric Gaffet
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| | - Halima Alem
- Institut Jean Lamour (IJL, UMR 7198) , Université de Lorraine, CNRS , Campus Artem 2 allée André Guinier - BP 50840 , F-54011 Nancy Cedex, France
| |
Collapse
|
44
|
Avugadda SK, Materia ME, Nigmatullin R, Cabrera D, Marotta R, Cabada TF, Marcello E, Nitti S, Artés-Ibañez EJ, Basnett P, Wilhelm C, Teran FJ, Roy I, Pellegrino T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5450-5463. [PMID: 31631940 PMCID: PMC6795213 DOI: 10.1021/acs.chemmater.9b00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Here, we report a nanoplatform based on iron oxide nanocubes (IONCs) coated with a bioresorbable polymer that, upon exposure to lytic enzymes, can be disassembled increasing the heat performances in comparison with the initial clusters. We have developed two-dimensional (2D) clusters by exploiting benchmark IONCs as heat mediators for magnetic hyperthermia and a polyhydroxyalkanoate (PHA) copolymer, a biodegradable polymer produced by bacteria that can be digested by intracellular esterase enzymes. The comparison of magnetic heat performance of the 2D assemblies with 3D centrosymmetrical assemblies or single IONCs emphasizes the benefit of the 2D assembly. Moreover, the heat losses of 2D assemblies dispersed in water are better than the 3D assemblies but worse than for single nanocubes. On the other hand, when the 2D magnetic beads (2D-MNBs) are incubated with the esterase enzyme at a physiological temperature, their magnetic heat performances began to progressively increase. After 2 h of incubation, specific absorption rate values of the 2D assembly double the ones of individually coated nanocubes. Such an increase can be mainly correlated to the splitting of the 2D-MNBs into smaller size clusters with a chain-like configuration containing few nanocubes. Moreover, 2D-MNBs exhibited nonvariable heat performances even after intentionally inducing their aggregation. Magnetophoresis measurements indicate a comparable response of 3D and 2D clusters to external magnets (0.3 T) that is by far faster than that of single nanocubes. This feature is crucial for a physical accumulation of magnetic materials in the presence of magnetic field gradients. This system is the first example of a nanoplatform that, upon exposure to lytic enzymes, such as those present in a tumor environment, can be disassembled from the initial 2D-MNB organization to chain-like assemblies with clear improvement of the heat magnetic losses resulting in better heat dissipation performances. The potential application of 2D nanoassemblies based on the cleavable PHAs for preserving their magnetic losses inside cells will benefit hyperthermia therapies mediated by magnetic nanoparticles under alternating magnetic fields.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica
e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - David Cabrera
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Roberto Marotta
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | - Elena Marcello
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Simone Nitti
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Emilio J. Artés-Ibañez
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes
(MSC) UMR 7057 CNRS and Université Paris Diderot, 75205 Paris Cedex
05, France
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología
(CSIC), Nanobiotecnología (iMdea
Nanociencia), 28049 Madrid, Spain
| | - Ipsita Roy
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | | |
Collapse
|
45
|
Madkour M, Bumajdad A, Al-Sagheer F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv Colloid Interface Sci 2019; 270:38-53. [PMID: 31174003 DOI: 10.1016/j.cis.2019.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/28/2023]
Abstract
Colloidal synthesis of nanoparticles using polymeric stabilizers as a template of a structure directing agent provided a plethora of opportunities in fabricating nanoparticles (NPs) with controlled size, shape, composition and structural characteristics. To understand the complete potency of polymeric stabilizers during the synthesis of nanoparticles, the relationship between polymer characteristics such as structure, molecular weight and concentration and nanoparticles characteristics is discussed in depth. This review portrays the use of polymers to attain nanostructured materials via covalent and non-covalent approaches. These polymers can also serve as surfaces modifier as well as the growth regulators during the synthesis of nanomaterials. The effect provided by polymers that directs the formation of nanomaterials into desired forms is otherwise hard to achieve. We especially spotlight on the approaches for tuning the characteristic properties of nanoparticles via cautious choice of the polymer system with special focus to stimuli-responsive polymers. This review mainly focusses on answering the main challenging question; what is the ideal polymeric stabilizer system to obtain specific morphology, size and phase structure of nanoparticles? Such vital information will enable rational design of nanoparticles to meet specific needs for different applications.
Collapse
|
46
|
Vergaro V, Pisano I, Grisorio R, Baldassarre F, Mallamaci R, Santoro A, Suranna GP, Papadia P, Fanizzi FP, Ciccarella G. CaCO 3 as an Environmentally Friendly Renewable Material for Drug Delivery Systems: Uptake of HSA-CaCO 3 Nanocrystals Conjugates in Cancer Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1481. [PMID: 31067790 PMCID: PMC6539763 DOI: 10.3390/ma12091481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023]
Abstract
Chemical and biochemical functionalization of nanoparticles (NPs) can lead to an active cellular uptake enhancing their efficacy thanks to the targeted localization in tumors. In the present study calcium carbonate nano-crystals (CCNs), stabilized by an alcohol dehydration method, were successfully modified by grafting human serum albumin (HSA) on the surface to obtain a pure protein corona. Two types of CCNs were used: naked CaCO3 and the (3-aminopropyl)triethoxysilane (APTES) modified CaCO3-NH2. The HSA conjugation with naked CCN and amino-functionalized CCN (CCN-NH2) was established through the investigation of modification in size, zeta potential, and morphology by Transmission Electron Microscopy (TEM). The amount of HSA coating on the CCNs surface was assessed by spectrophotometry. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) confirmed the grafting of APTES to the surface and successive adsorption of HSA. Furthermore, to evaluate the effect of protein complexation of CCNs on cellular behavior, bioavailability, and biological responses, three human model cancer cell lines, breast cancer (MCF7), cervical cancer (HeLa), and colon carcinoma (Caco-2) were selected to characterize the internalization kinetics, localization, and bio-interaction of the protein-enclosed CCNs. To monitor internalization of the various conjugates, chemical modification with fluorescein-isothiocyanate (FITC) was performed, and their stability over time was measured. Confocal microscopy was used to probe the uptake and confirm localization in the perinuclear region of the cancer cells. Flow cytometry assays confirmed that the bio-functionalization influence cellular uptake and the CCNs behavior depends on both cell line and surface features.
Collapse
Affiliation(s)
- Viviana Vergaro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Isabella Pisano
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari «Aldo Moro», Via E. Orabona 4, I-70125 Bari, Italy.
| | - Roberto Grisorio
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Ingegneria Civile Ambientale, Del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4, 70125 Bari, Italy.
| | - Francesca Baldassarre
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Rosanna Mallamaci
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari «Aldo Moro», Via E. Orabona 4, I-70125 Bari, Italy.
| | - Antonella Santoro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Amendola 165/A, 70126 Bari, Italy.
| | - Gian Paolo Suranna
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Ingegneria Civile Ambientale, Del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari Via Orabona 4, 70125 Bari, Italy.
| | - Paride Papadia
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Ciccarella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento & UdR INSTM di Lecce, Campus Universitario, Via Monteroni, 73100 Lecce, Italy.
- CNR NANOTEC - Istituto di Nanotecnologia c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
47
|
Mizuno R, Okumura K, Oguri J, Terao T. Generalised local bond order parameter analysis: application to colloidal particles with dendritic polymer brushes. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1582774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ryo Mizuno
- Department of Intelligence Science and Engineering, Gifu University, Gifu, Japan
| | - Kentaro Okumura
- Department of Intelligence Science and Engineering, Gifu University, Gifu, Japan
| | - Junya Oguri
- Department of Intelligence Science and Engineering, Gifu University, Gifu, Japan
| | - Takamichi Terao
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
48
|
Zhulina EB, Neelov IM, Sheiko SS, Borisov OV. Planar Brush of End-Tethered Molecular Bottle-Brushes. Scaling Mode. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Liu B, Lu X, Qiao Z, Song L, Cheng Q, Zhang J, Zhang A, Huang Y, Chen T. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13047-13056. [PMID: 30300548 DOI: 10.1021/acs.langmuir.8b02989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) gold nanoparticle (Au NP) monolayer film possesses a lot of fascinating peculiarities, and has shown promising applications in photoelectrical devices, catalysis, spectroscopy, sensors, and anticounterfeiting. Because of the localized surface plasmon resonance (LSPR) property predetermined by the natural structure of metal nanoparticles, it is usually difficult to realize the reversible LSPR transition of 2D film. In this work, we report on the fabrication of a large-area free-standing Au NP monolayer film with dual-responsive switchable plasmonic property using a pH- or thermal-responsive dendronized copolymer as a stimuli-sensitive linker. In this system, an oligoethylene-glycol-based (OEG-based) dendronized copolymer (named PG1A) with pH or temperature sensitivity was first modified onto the surface of a Au NP. Then, polyethylene glycol dibenzyl aldehyde (PEG-DA) was introduced to interact with the amino moieties from PG1A before the process of oil-water interfacial self-assembly of NPs, resulting in an elastic, robust, pH- or temperature-sensitive interpenetrating network among Au NPs in monolayer films. In addition, the film could exhibit reversibly plasmonic shifts of about 77 nm and inherent color changes through varying temperature or pH. The obtained free-standing monolayer film also shows an excellent transferable property, which can be easily transferred onto substrates such as plastic molds, PDMS, copper grids, and silicon wafers. In virtue of these peculiarities of the free-standing property, special plasmonic signal, and homologous macroscopic color, the transferred film was primely applied to an anticounterfeiting security label with clear color change at the designed spots, providing a new avenue to plasmonic nanodevices with various applications.
Collapse
Affiliation(s)
- Baoqing Liu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Xuefei Lu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Ze Qiao
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Liping Song
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qian Cheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Jiawei Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Youju Huang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Tao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
50
|
Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 2018; 119:664-699. [DOI: 10.1021/acs.chemrev.8b00341] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hyunho Kang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kyle C. Bantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|