1
|
Du J, Fan L, Razal JM, Chen S, Zhang H, Yang H, Li H, Li J. Strontium-doped mesoporous bioglass nanoparticles for enhanced wound healing with rapid vascularization. J Mater Chem B 2023; 11:7364-7377. [PMID: 37431606 DOI: 10.1039/d3tb01256e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tissue engineered skin and its substitutes have a promising future in wound healing. However, enabling fast formation of blood vessels during the wound healing process is still a huge challenge to the currently available wound substitutes. In this work, active mesoporous bioglass nanoparticles with a high specific surface area and doped with strontium (Sr) were fabricated for rapid microvascularization and wound healing. The as-prepared bioglass nanoparticles with Sr ions significantly promoted the proliferation of fibroblasts and microvascularization of human umbilical vein endothelial cells in vitro. Silk fibroin sponges encapsulating the nanoparticles accelerated wound healing by promoting the formation of blood vessels and epithelium in vivo. This work provides a strategy for the design and development of active biomaterials for enhancing wound healing by rapid vascularization and epithelial reconstruction.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
2
|
Gritsch L, Bossard C, Jallot E, Jones JR, Lao J. Bioactive glass-based organic/inorganic hybrids: an analysis of the current trends in polymer design and selection. J Mater Chem B 2023; 11:519-545. [PMID: 36541433 DOI: 10.1039/d2tb02089k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioactive glass-based organic/inorganic hybrids are a family of materials holding great promise in the biomedical field. Developed from bioactive glasses following recent advances in sol-gel and polymer chemistry, they can overcome many limitations of traditional composites typically used in bone repair and orthopedics. Thanks to their unique molecular structure, hybrids are often characterized by synergistic properties that go beyond a mere combination of their two components; it is possible to synthesize materials with a wide variety of mechanical and biological properties. The polymeric component, in particular, can be tailored to prepare tough, load-bearing materials, or rubber-like elastomers. It can also be a key factor in the determination of a wide range of interesting biological properties. In addition, polymers can also be used within hybrids as carriers for therapeutic ions (although this is normally the role of silica). This review offers a brief look into the history of hybrids, from the discovery of bioactive glasses to the latest developments, with a particular emphasis on polymer design and chemistry. First the benefits and limitations of hybrids will be discussed and compared with those of alternative approaches (for instance, nanocomposites). Then, key advances in the field will be presented focusing on the polymeric component: its chemistry, its physicochemical and biological advantages, its drawbacks, and selected applications. Comprehensive tables summarizing all the polymers used to date to fabricate sol-gel hybrids for biomedical applications are also provided, to offer a handbook of all the available candidates for hybrid synthesis. In addition to the current trends, open challenges and possible avenues of future development are proposed.
Collapse
Affiliation(s)
- Lukas Gritsch
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France. .,Technogym S.p.A., via Calcinaro 2861, 47521 Cesena (FC), Italy
| | - Cédric Bossard
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Edouard Jallot
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan Lao
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, 4 Avenue Blaise Pascal, 63178 Aubière (Clermont-Ferrand), France.
| |
Collapse
|
3
|
Barik A, Kirtania MD. In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
4
|
Fan W, Du T, Droce A, Jensen LR, Youngman RE, Ren X, Gurevich L, Bauchy M, Kristensen P, Xing B, Yu D, Smedskjaer MM. Resolving the Conflict between Strength and Toughness in Bioactive Silica-Polymer Hybrid Materials. ACS NANO 2022; 16:9748-9761. [PMID: 35679120 DOI: 10.1021/acsnano.2c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Simultaneously improving the strength and toughness of materials is a major challenge. Inorganic-polymer hybrids offer the potential to combine mechanical properties of a stiff inorganic glass with a flexible organic polymer. However, the toughening mechanism at the atomic scale remains largely unknown. Based on combined experimental and molecular dynamics simulation results, we find that the deformation and fracture behavior of hybrids are governed by noncovalent intermolecular interactions between polymer and silica networks rather than the breakage of covalent bonds. We then attempt three methods to improve the balance between strength and toughness of hybrids, namely the total inorganic/organic (I/O) weight ratio, the size of silica nanoparticles, and the ratio of -C-O vs -C-C bonds in the polymer chains. Specifically, for a hybrid with matched silica size and I/O ratio, we demonstrate optimized mechanical properties in terms of strength (1.75 MPa at breakage), degree of elongation at the fracture point (31%), toughness (219 kPa), hardness (1.08 MPa), as well as Young's modulus (3.0 MPa). We also demonstrate that this hybrid material shows excellent biocompatibility and ability to support cell attachment as well as proliferation. This supports the possible application of this material as a strong yet tough bone scaffold material.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Tao Du
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Lars R Jensen
- Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark
| | - Randall E Youngman
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Xiangting Ren
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Leonid Gurevich
- Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark
| | - Mathieu Bauchy
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
5
|
Chung JJ, Yoo J, Sum BST, Li S, Lee S, Kim TH, Li Z, Stevens MM, Georgiou TK, Jung Y, Jones JR. 3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution. Adv Healthc Mater 2021; 10:e2100117. [PMID: 33951318 PMCID: PMC7615494 DOI: 10.1002/adhm.202100117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Inorganic-organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica, which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO2 hybrid inks are printed with pore channels in the range of 100-200 µm. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions. Osteogenic and angiogenic properties of the hybrid scaffolds are shown using a rat calvarial defect model. Hybrid scaffolds with 40:60 inorganic:organic composition are able to instigate new vascularized bone formation within its pore channels and polarize macrophages toward M2 phenotype. 3D printing inorganic-organic hybrids with sophisticated polymer structure opens up possibilities to produce novel bone graft materials.
Collapse
Affiliation(s)
- Justin J. Chung
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Brian S. T. Sum
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Siwei Li
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Soojin Lee
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Zhenlun Li
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Molly M. Stevens
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
- Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUnited Kingdom
- Department of BioengineeringImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Theoni K. Georgiou
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- YU‐KIST InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Julian R. Jones
- Department of MaterialsImperial College LondonLondonSW7 2AZUnited Kingdom
| |
Collapse
|
6
|
Magnesium-alloy rods reinforced bioglass bone cement composite scaffolds with cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone in vivo regeneration. Sci Rep 2020; 10:18193. [PMID: 33097806 PMCID: PMC7585427 DOI: 10.1038/s41598-020-75328-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Various therapeutic platforms have been developed for repairing bone defects. However, scaffolds possess both cortical bone-matching mechanical properties and excellent osteoconductivity for load-bearing bone defects repair is still challenging in the clinic. In this study, inspired by the structure of the ferroconcrete, a high-strength bifunctional scaffold has been developed by combining surface-modified magnesium alloy as the internal load-bearing skeleton and bioglass-magnesium phosphate bone cement as the osteoconductive matrix. The scaffold combines the high mechanical strength and controllable biodegradability of surface-modified magnesium alloy with the excellent biocompatibility and osteoconductivity of bioglass-magnesium phosphate bone cement, thus providing support for load-bearing bone defects and subsequently bone regeneration. The scaffolds generate hydroxyapatite (HA) during the degrading in simulated body fluid (SBF), with the strength of the scaffold decreasing from 180 to 100 MPa in 6 weeks, which is still sufficient for load-bearing bone. Moreover, the scaffolds showed excellent osteoconductivity in vitro and in vivo. In a New Zealand White Rabbit radius defect model, the scaffolds degrade gradually and are replaced by highly matured new bone tissues, as assessed by image-based analyses (X-ray and Micro-CT) and histological analyses. The bone formation-related proteins such as BMP2, COL1a1 and OCN, all showed increased expression.
Collapse
|
7
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
8
|
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers (Basel) 2019; 11:E1437. [PMID: 31480693 PMCID: PMC6780693 DOI: 10.3390/polym11091437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Biomaterials and tissue engineering scaffolds play a central role to repair bone defects. Although ceramic derivatives have been historically used to repair bone, hybrid materials have emerged as viable alternatives. The rationale for hybrid bone biomaterials is to recapitulate the native bone composition to which these materials are intended to replace. In addition to the mechanical and dimensional stability, bone repair scaffolds are needed to provide suitable microenvironments for cells. Therefore, scaffolds serve more than a mere structural template suggesting a need for better and interactive biomaterials. In this review article, we aim to provide a summary of the current materials used in bone tissue engineering. Due to the ever-increasing scientific publications on this topic, this review cannot be exhaustive; however, we attempted to provide readers with the latest advance without being redundant. Furthermore, every attempt is made to ensure that seminal works and significant research findings are included, with minimal bias. After a concise review of crystalline calcium phosphates and non-crystalline bioactive glasses, the remaining sections of the manuscript are focused on organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Neda Aslankoohi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Dibakar Mondal
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Amin S Rizkalla
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
9
|
Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front Bioeng Biotechnol 2019; 7:190. [PMID: 31448271 PMCID: PMC6691020 DOI: 10.3389/fbioe.2019.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising technique for central nervous system (CNS) reconstruction and regeneration. Biomaterial scaffolds, frameworks, and platforms can support NPC proliferation and differentiation in vitro as well as serve as a temporary extracellular matrix after transplantation. However, further applications of biomaterials require improved biological attributes. Silk fibroin (SF), which is produced by Bombyx mori, is a widely used and studied protein polymer for biomaterial application. Here, we prepared aligned and random eletrospun regenerated SF (RSF) scaffolds, and evaluated their impact on the growth of NPCs. First, we isolated NPCs and then cultured them on either laminin-coated RSF mats or conventional laminin-coated coverslips for cell assays. We found that aligned and random RSF led to increases in NPC proliferation of 143.8 ± 13.3% and 156.3 ± 14.7%, respectively, compared to controls. Next, we investigated neuron differentiation and found that the aligned and the random RSF led to increases in increase in neuron differentiation of about 93.2 ± 6.4%, and 3167.1 ± 4.8%, respectively, compared to controls. Furthermore, we measured the survival of NPCs and found that RSF promoted NPC survival, and found there was no difference among those three groups. Finally, signaling pathways in cells cultured on RSF mats were studied for their contributions in neural cell differentiation. Our results indicate that RSF mats provide a functional microenvironment and represent a useful scaffold for the development of new strategies in neural engineering research.
Collapse
Affiliation(s)
- Guangfei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Kai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dan You
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Mingyu Xia
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Wen Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Renjie Chai
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Huawei Li
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China.,Collaborative Innovation Center for Brain Science, Institute of Biomedical Sciences, Institute of Brain Science, Fudan University, Shanghai, China
| | - Shan Sun
- NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology, Shanghai Engineering Research Centre of Cochlear Implant, Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Ear, Nose & Throat Institute, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Manavitehrani I, Le TY, Daly S, Wang Y, Maitz PK, Schindeler A, Dehghani F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:824-830. [DOI: 10.1016/j.msec.2018.11.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
11
|
Yang F, Lu J, Ke Q, Peng X, Guo Y, Xie X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci Rep 2018; 8:7345. [PMID: 29743489 PMCID: PMC5943301 DOI: 10.1038/s41598-018-25595-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
The development of multifunctional biomaterials to repair bone defects after neoplasm removal and inhibit tumor recurrence remained huge clinical challenges. Here, we demonstrate a kind of innovative and multifunctional magnetic mesoporous calcium sillicate/chitosan (MCSC) porous scaffolds, made of M-type ferrite particles (SrFe12O19), mesoporous calcium silicate (CaSiO3) and chitosan (CS), which exert robust anti-tumor and bone regeneration properties. The mesopores in the CaSiO3 microspheres contributed to the drug delivery property, and the SrFe12O19 particles improved photothermal therapy (PTT) conversion efficacy. With the irradiation of NIR laser, doxorubicin (DOX) was rapidly released from the MCSC/DOX scaffolds. In vitro and in vivo tests demonstrated that the MCSC scaffolds possessed the excellent anti-tumor efficacy via the synergetic effect of DOX drug release and hyperthermia ablation. Moreover, BMP-2/Smad/Runx2 pathway was involved in the MCSC scaffolds promoted proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs). Taken together, the MCSC scaffolds have the ability to promote osteogenesis and enhance synergetic photothermal-chemotherapy against osteosarcoma, indicating MCSC scaffolds may have great application potential for bone tumor-related defects.
Collapse
Affiliation(s)
- Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China.
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
12
|
Lu JW, Yang F, Ke QF, Xie XT, Guo YP. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:811-822. [PMID: 29339189 DOI: 10.1016/j.nano.2017.12.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022]
Abstract
For effectively treating tumor related-bone defects, design and fabrication of multifunctional biomaterials still remain a great challenge. Herein, we firstly fabricated magnetic SrFe12O19 nanoparticles modified-mesoporous bioglass (BG)/chitosan (CS) porous scaffold (MBCS) with excellent bone regeneration and antitumor function. The as-produced magnetic field from MBCS promoted the expression levels of osteogenic-related genes (OCN, COL1, Runx2 and ALP) and the new bone regeneration by activated BMP-2/Smad/Runx2 pathway. Moreover, the SrFe12O19 nanoparticles in MBCS improved the photothermal conversion property. Under the irradiation of near-infrared (NIR) laser, the elevated temperatures of tumors co-cultured with MBCS triggered tumor apoptosis and ablation. As compared with the pure scaffold group, MBCS/NIR group possessed the excellent antitumor efficacy against osteosarcoma via the hyperthermia ablation. Therefore, the multifunctional MBCS with excellent bone regeneration and photothermal therapy functions has a great application for treating the tumor-related bone defects.
Collapse
Affiliation(s)
- Jia-Wei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Tao Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
13
|
Zhou G, Liu S, Ma Y, Xu W, Meng W, Lin X, Wang W, Wang S, Zhang J. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Int J Nanomedicine 2017; 12:7577-7588. [PMID: 29075116 PMCID: PMC5648310 DOI: 10.2147/ijn.s146679] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of an artificial bone graft which can promote the regeneration of fractures or diseased bones is currently the most challenging aspect in bone tissue engineering. To achieve the purpose of promoting bone proliferation and differentiation, the artificial graft needs have a similar structure and composition of extracellular matrix. One-step electrospinning method of biocomposite nanofibers containing hydroxyapatite (HA) nanoparticles and collagen (Coll) were developed for potential application in bone tissue engineering. Nanocomposite scaffolds of poly(L-lactide) (PLLA), PLLA/HA, PLLA/Coll, and PLLA/Coll/HA were fabricated by electrospinning. The morphology, diameter, elements, hydrophilicity, and biodegradability of the composite scaffolds have been investigated. The biocompatibility of different nanocomposite scaffolds was assessed using mouse osteoblasts MC3T3-E1 in vitro, and the proliferation, differentiation, and mineralization of cells on different nanofibrous scaffolds were investigated. The results showed that PLLA/Coll/HA nanofiber scaffolds enhanced cell adhesion, spreading, proliferation, differentiation, mineralization, and gene expression of osteogenic markers compared to other scaffolds. In addition, the nanofibrous scaffolds maintained a stable composition at the beginning of the degradation period and morphology wastage and weight loss were observed when incubated for up to 80 days in physiological simulated conditions. The PLLA/Coll/HA composite nanofibrous scaffolds could be a potential material for guided bone regeneration.
Collapse
Affiliation(s)
- Guoqiang Zhou
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China
| | - Sudan Liu
- College of Chemistry and Environmental Science
| | - Yanyan Ma
- College of Chemistry and Environmental Science
| | - Wenshi Xu
- College of Chemistry and Environmental Science
| | - Wei Meng
- College of Chemistry and Environmental Science
| | - Xue Lin
- College of Chemistry and Environmental Science
| | - Wenying Wang
- College of Chemistry and Environmental Science
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China
| | - Shuxiang Wang
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China
| | - Jinchao Zhang
- College of Chemistry and Environmental Science
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, People’s Republic of China
| |
Collapse
|
14
|
Li X, Liang Q, Zhang W, Li Y, Ye J, Zhao F, Chen X, Wang S. Bio-inspired bioactive glasses for efficient microRNA and drug delivery. J Mater Chem B 2017; 5:6376-6384. [PMID: 32264454 DOI: 10.1039/c7tb01021d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bio-inspired pinecone-like bioactive glasses consisting of ordered thin-layers separated by consistent cavities were synthesized using a sol-gel process. The short diameter of the as-produced particles was as short as 161 nm, and the surface area was as high as 280 m2 g-1. The pore volume, ranging from ∼0.74 cm3 g-1 to ∼0.67 cm3 g-1, could be modulated by the aqueous ammonia concentration. The surface was further tailored for positive charges by amino grafting. The as-produced nanoparticles could successfully enter cells via endocytosis. The microRNA delivery of the bioactive glass particles was further investigated by fluorescence microscopy and flow cytometry, indicating a loading efficiency and transfection efficiency greater than 90%. The potential of such particles as drug carriers was also studied. CCK8, live-dead cell staining and PI/annexinV double staining analyses confirmed that the bioactive glass particles loaded with antitumour doxorubicin (DOX) significantly accelerated the apoptosis of tumour cells. These bio-inspired bioactive glasses are promising as novel vectors for drug and microRNA delivery with high efficiency.
Collapse
Affiliation(s)
- Xian Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chung JJ, Sum BST, Li S, Stevens MM, Georgiou TK, Jones JR. Effect of Comonomers on Physical Properties and Cell Attachment to Silica-Methacrylate/Acrylate Hybrids for Bone Substitution. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Justin J. Chung
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Brian S. T. Sum
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Siwei Li
- Department of Materials; Imperial College London; London SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials; Imperial College London; London SW7 2AZ UK
- Department of Bioengineering; Imperial College London; London SW7 2AZ UK
- Institute of Biomedical Engineering; Imperial College London; London SW7 2AZ UK
| | | | - Julian R. Jones
- Department of Materials; Imperial College London; London SW7 2AZ UK
| |
Collapse
|
16
|
Manavitehrani I, Fathi A, Wang Y, Maitz PK, Mirmohseni F, Cheng TL, Peacock L, Little DG, Schindeler A, Dehghani F. Fabrication of a Biodegradable Implant with Tunable Characteristics for Bone Implant Applications. Biomacromolecules 2017; 18:1736-1746. [DOI: 10.1021/acs.biomac.7b00078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Iman Manavitehrani
- The University of Sydney, School of Chemical
and Biomolecular Engineering, Sydney, 2006, Australia
| | - Ali Fathi
- The University of Sydney, School of Chemical
and Biomolecular Engineering, Sydney, 2006, Australia
| | - Yiwei Wang
- Burns
Research Group, ANZAC Research Institute, University of Sydney, Concord, New South Wales 2139, Australia
| | - Peter K. Maitz
- Burns
Research Group, ANZAC Research Institute, University of Sydney, Concord, New South Wales 2139, Australia
- Burns
and Reconstructive Surgery Unit, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Farid Mirmohseni
- The University of Sydney, School of Chemical
and Biomolecular Engineering, Sydney, 2006, Australia
- Orthopaedic
Research and Biotechnology, The Children’s Hospital at Westmead, Westmead, 2145, Australia
| | - Tegan L. Cheng
- Orthopaedic
Research and Biotechnology, The Children’s Hospital at Westmead, Westmead, 2145, Australia
| | - Lauren Peacock
- Orthopaedic
Research and Biotechnology, The Children’s Hospital at Westmead, Westmead, 2145, Australia
| | - David G. Little
- Orthopaedic
Research and Biotechnology, The Children’s Hospital at Westmead, Westmead, 2145, Australia
- Paediatrics
and Child Health, University of Sydney, Sydney, 2006, Australia
| | - Aaron Schindeler
- Orthopaedic
Research and Biotechnology, The Children’s Hospital at Westmead, Westmead, 2145, Australia
- Paediatrics
and Child Health, University of Sydney, Sydney, 2006, Australia
| | - Fariba Dehghani
- The University of Sydney, School of Chemical
and Biomolecular Engineering, Sydney, 2006, Australia
| |
Collapse
|
17
|
In vivo cellular reactions to different biomaterials—Physiological and pathological aspects and their consequences. Semin Immunol 2017. [DOI: 10.1016/j.smim.2017.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Maçon ALB, Kasuga T, Remzi Becer C, Jones JR. Silica/methacrylate class II hybrid: telomerisation vs. RAFT polymerisation. Polym Chem 2017. [DOI: 10.1039/c7py00516d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RAFT and telomerisation were compared for polymethacrylate synthesis to investigate whether refining its polydispersity could lead to better silica hybrid properties.
Collapse
Affiliation(s)
- Anthony L. B. Maçon
- Department of Materials
- Imperial College London
- London
- UK
- Frontier Research Institute for Materials Science
| | - Toshihiro Kasuga
- Frontier Research Institute for Materials Science
- Nagoya Institute of Technology
- Nagoya 4668555
- Japan
| | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University Materials Science
- London
- UK
| | | |
Collapse
|
19
|
Zizzari VL, Zara S, Tetè G, Vinci R, Gherlone E, Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:392-402. [PMID: 27496576 DOI: 10.1016/j.oooo.2016.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue.
Collapse
Affiliation(s)
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| | - Giulia Tetè
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaele Vinci
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Enrico Gherlone
- Dental School, Vita-Salute University and Department of Dentistry, IRCCS San Raffaele Hospital, Milan, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
20
|
Negahi Shirazi A, Fathi A, Suarez FG, Wang Y, Maitz PK, Dehghani F. A Novel Strategy for Softening Gelatin-Bioactive-Glass Hybrids. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1676-1686. [PMID: 26727696 DOI: 10.1021/acsami.5b09006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The brittle structure of polymer-bioactive-glass hybrids is a hurdle for their biomedical applications. To address this issue here, we developed a novel method to cease the overcondensation of bioactive-glass by polymer cross-linking. Here, an organosilane-functionalized gelatin methacrylate (GelMA) is covalently bonded to a bioactive-glass during the sol-gel process, and the condensation of silica networks is controlled by photo-cross-linking of GelMA. The physicochemical properties and mechanical strength of these hybrids are tunable by the incorporation of secondary cross-linking agents. These hydrogels display elastic properties with ultimate compression strain above 0.2 mm·mm(-1) and tunable compressive modulus in the range of 42-530 kPa. In addition, these hydrogels are bioactive because they promoted the alkaline phosphatase activity of bone progenitor cells. They are also well-tolerated in the mice subcutaneous model. Therefore, our method is efficient for the prevention of overcondensation and allows preparation of soft bioactive hydrogels from organic-inorganic matrices, suitable for soft and hard tissue regeneration.
Collapse
Affiliation(s)
- Ali Negahi Shirazi
- School of Chemical & Biomolecular Engineering, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Ali Fathi
- School of Chemical & Biomolecular Engineering, University of Sydney , Sydney, New South Wales 2006, Australia
| | | | | | | | - Fariba Dehghani
- School of Chemical & Biomolecular Engineering, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Maçon ALB, Li S, Chung JJ, Nommeots-Nomm A, Solanki AK, Stevens MM, Jones JR. Ductile silica/methacrylate hybrids for bone regeneration. J Mater Chem B 2016; 4:6032-6042. [DOI: 10.1039/c6tb00968a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) were synthesised as a potential new generation of scaffold materials.
Collapse
Affiliation(s)
| | - Siwei Li
- Department of Materials Imperial College London
- London
- UK
| | | | | | | | - Molly M. Stevens
- Department of Materials Imperial College London
- London
- UK
- Institute of Biomedical Engineering Imperial College London
- London
| | | |
Collapse
|
22
|
Ravarian R, Craft M, Dehghani F. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass. J Biomed Mater Res A 2015; 103:2898-908. [PMID: 25690303 DOI: 10.1002/jbm.a.35423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 11/12/2022]
Abstract
A nonuniform degradation of physical mixture of organic-inorganic biomaterials increases their risk of failure. In this study a chemical bonding between chitosan and bioglass was used as an alternative product to address this issue. To prepare a homogenous composite, chitosan was functionalized with γ-glycidoxypropyl trimethoxysilane and chemically bonded with bioglass during sol-gel method. The gelation time of these hybrids samples was optimized by varying parameters such as composition of chitosan and temperature. It was shown that gelation time was reduced from 7 days for pure bioglass at 25°C to less than six minutes at 70°C for chitosan 40 vol % bioglass hybrid. Furthermore, the enzymatic degradation after 4 weeks was decreased from 80% mass loss for pure chitosan to 32% for chitosan 40 vol % bioglass hybrid. The results of in vitro study demonstrated that the presence of nanoscale interaction enhanced the bioactivity of chitosan. Additionally, hybrid scaffolds were fabricated with pore sizes in the range of 200-400 µm. These scaffolds were prepared by the addition of sodium bicarbonate during sol-gel method as a gas foaming agent and a neutralizer that resulted in decreasing the gelation time of hybrids to less than three minutes. The hybrids fabricated in this study possessed superior characteristics compared to chitosan, also physical mixture of chitosan-bioglass and are promising alternatives for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roya Ravarian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Michaela Craft
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
23
|
Ravarian R, Murphy CM, Schindeler A, Rawal A, Hook JM, Dehghani F. Bioactive poly(methyl methacrylate) for bone fixation. RSC Adv 2015. [DOI: 10.1039/c5ra08824k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient and specifically formulated superior hybrid of poly(methyl methacrylate) and bioactive glass as a bone fixation biomaterial.
Collapse
Affiliation(s)
- Roya Ravarian
- School of Chemical and Biomolecular Engineering
- University of Sydney
- Sydney
- Australia
| | - Ciara M. Murphy
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead
- Westmead
- Australia
- Discipline of Paediatrics & Child Health
- University of Sydney
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead
- Westmead
- Australia
- Discipline of Paediatrics & Child Health
- University of Sydney
| | - Aditya Rawal
- NMR Facility
- Mark Wainwright Analytical Centre
- UNSW
- Sydney
- Australia
| | - James M. Hook
- NMR Facility
- Mark Wainwright Analytical Centre
- UNSW
- Sydney
- Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering
- University of Sydney
- Sydney
- Australia
| |
Collapse
|
24
|
Stimulation of osteogenic and angiogenic ability of cells on polymers by pulsed laser deposition of uniform akermanite-glass nanolayer. Acta Biomater 2014; 10:3295-306. [PMID: 24726444 DOI: 10.1016/j.actbio.2014.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/27/2022]
Abstract
Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30 nm) of thickness 130 nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.
Collapse
|