1
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2024:1-17. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Bian Y, Song D, Fu Z, Jiang C, Xu C, Zhang L, Wang K, Wang S, Sun D. Carboxyl PEGylation of magnetic nanoparticles as antithrombotic and thrombolytic agents by calcium binding. J Colloid Interface Sci 2023; 638:672-685. [PMID: 36780849 DOI: 10.1016/j.jcis.2023.01.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
Known to be biocompatible and hemocompatible, polyethylene glycol (PEG) has been widely used as anti-fouling coating of biomaterials. Nanoparticles coated with functionalized PEG were also investigated for their nano-cell interactions, but seldomly on the coagulation system, especially with platelets. Both experiments and molecular dynamic simulations indicate that terminal carboxylation of PEG promotes its binding with calcium, especially in the ionized form, which makes it potential anticoagulants. Further, the carboxyl PEGylated magnetic nanoparticle (HOOC-PEG2000-MNP) exhibits significantly increased anticoagulant and antiplatelet properties, by entering the open canalicular system (OCS) of human platelets and binding with the cytoplasmic calcium ions. HOOC-PEG2000-MNP also acts as effective thrombolytic agents in dissolving mature blood clots under oscillating magnetic field both in vitro and in vivo. Therefore, the carboxyl PEGylated magnetic nanoparticles are prototype agents for antithrombotic and thrombolytic therapies and provide a versatile platform for targeted and effective treatments of acute cardiovascular diseases.
Collapse
Affiliation(s)
- Yingxin Bian
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Danhong Song
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Zejun Fu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Kun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical College, University Town, Chashan, Wenzhou 325035, China.
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
3
|
Wang Z, Huang H, Chen Y, Zheng Y. Current Strategies for Microbubble-Based Thrombus Targeting: Activation-Specific Epitopes and Small Molecular Ligands. Front Bioeng Biotechnol 2021; 9:699450. [PMID: 34336810 PMCID: PMC8322734 DOI: 10.3389/fbioe.2021.699450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Microbubbles with enhanced ultrasound represent a potentially potent evolution to the administration of a free drug in the treatment of thrombotic diseases. Conformational and expressional changes of several thrombotic biological components during active coagulation provide epitopes that allow site-specific delivery of microbubble-based agents to the thrombus for theranostic purpose. Through the interaction with these epitopes, emerging high-affinity small molecular ligands are able to selectively target the thrombi with tremendous advantages over traditional antibody-based strategy. In this mini-review, we summarize recent novel strategies for microbubble-based targeting of thrombus through epitopes located at activated platelets and fibrin. We also discuss the challenges of current targeting modalities and supramolecular carrier systems for their translational use in thrombotic pathologies.
Collapse
Affiliation(s)
- Zhaojian Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Huaigu Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang L, Li Z, Ye X, Chen Z, Chen ZS. Mechanisms of thrombosis and research progress on targeted antithrombotic drugs. Drug Discov Today 2021; 26:2282-2302. [PMID: 33895314 DOI: 10.1016/j.drudis.2021.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Globally, the incidence of thromboembolic diseases has increased in recent years, accompanied by an increase in patient mortality. Currently, several targeting delivery strategies have been developed to treat thromboembolic diseases. In this review, we discuss the mechanisms of thrombolysis and current anticoagulant drugs, particularly those with targeting capability, highlighting advances in the accurate treatment of thrombolysis with fewer adverse effects. Such approaches include magnetic drug-loading systems combined with molecular imaging to recanalize blood vessels and systems based on chimeric Arg-Gly-Asp (RGD) sequences that can target platelet glycoprotein receptor. With such progress in targeted antithrombotic drugs, targeted thrombolysis treatment shows significant potential benefit for patients.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China
| | - Xianren Ye
- Fujian Cancer Hospital, Fujian Provincial Cancer Hospital of Fujian Medical University, Fuzhou 350014, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY 11439, USA.
| |
Collapse
|
5
|
Zanuy D, Puiggalí-Jou A, Conflitti P, Bocchinfuso G, Palleschi A, Alemán C. Aggregation propensity of therapeutic fibrin-homing pentapeptides: insights from experiments and molecular dynamics simulations. SOFT MATTER 2020; 16:10169-10179. [PMID: 33165494 DOI: 10.1039/d0sm00930j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CREKA (Cys-Arg-Glu-Lys-Ala) and its engineered analogue CRMeEKA, in which Glu has been replaced by N-methyl-Glu to provide resistance against proteolysis, are emerging pentapeptides that were specifically designed to bind fibrin-fibronectin complexes accumulated in the walls of tumour vessels. However, many of the intrinsic properties of CREKA and CRMeEKA, which are probably responsible for their different behaviour when combined with other materials (such as polymers) for diagnosis and therapeutics, remain unknown yet. The intrinsic tendency of these pentapeptides to form aggregates has been analysed by combining experimental techniques and atomistic Molecular Dynamics (MD) simulations. Dynamic light scattering assays show the formation of nanoaggregates that increase in size with the peptide concentration, even though aggregation occurs sooner for CRMeEKA, independently of the peptide concentration. FTIR and circular dichroism spectroscopy studies suggest that aggregated pentapeptides do not adopt any secondary structure. Atomistic MD trajectories show that CREKA aggregates faster and forms bigger molecular clusters than CRMeEKA. This behaviour has been explained by stability of the conformations adopted by un-associated peptide strands. While CREKA molecules organize by forming intramolecular backbone - side chain hydrogen bonds, CRMeEKA peptides display main chain - main chain hydrogen bonds closing very stable γ- or β-turns. Besides, energetic analyses reveal that CRMeEKA strands are better solvated in water than CREKA ones, independent of whether they are assembled or un-associated.
Collapse
Affiliation(s)
- David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Polytècnica de Catalunya, 08019 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
6
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
7
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Sharma S, Kotamraju VR, Mölder T, Tobi A, Teesalu T, Ruoslahti E. Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. NANO LETTERS 2017; 17:1356-1364. [PMID: 28178415 PMCID: PMC5819594 DOI: 10.1021/acs.nanolett.6b03815] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Antiangiogenic and vascular disrupting compounds have shown promise in cancer therapy, but tend to be only partially effective. We previously reported a potent theranostic nanosystem that was highly effective in glioblastoma and breast cancer mouse models, retarding tumor growth and producing some cures [ Agemy , L. et al. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 17450 - 17455 . Agemy , L. et al. Mol. Ther. 2013 , 21 , 2195 - 2204 .]. The nanosystem consists of iron oxide NPs ("nanoworms") coated with a composite peptide with tumor-homing and pro-apoptotic domains. The homing component targets tumor vessels by binding to p32/gC1qR at the surface or tumor endothelial cells. We sought to further improve the efficacy nanosystem by searching for an optimally effective homing peptide that would also incorporate a tumor-penetrating function. To this effect, we tested a panel of candidate p32 binding peptides with a sequence motif that conveys tumor-penetrating activity (CendR motif). We identified a peptide designated as Linear TT1 (Lin TT1) (sequence: AKRGARSTA) as most effective in causing tumor homing and penetration of the nanosystem. This peptide had the lowest affinity for p32 among the peptides tested. The low affinity may have moderated the avidity effect from the multivalent presentation on nanoparticles (NPs), such that the NPs avoid getting trapped by the so-called "binding-site barrier", which can hinder tissue penetration of compounds with a high affinity for their receptors. Treatment of breast cancer mice with the LinTT1 nanosystem showed greatly improved efficacy compared to the original system. These results identify a promising treatment modality and underscore the value of tumor penetration effect in improving the efficacy tumor treatment.
Collapse
Affiliation(s)
- Shweta Sharma
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA 92037
| | - Venkata Ramana Kotamraju
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA 92037
- Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA 93106
| | - Tarmo Mölder
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia 50411
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia 50411
| | - Tambet Teesalu
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA 92037
- Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA 93106
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia 50411
| | - Erkki Ruoslahti
- Sanford-Burnham-Prebys Medical Discovery Institute, Cancer Research Center, La Jolla, CA, USA 92037
- Center for Nanomedicine and the Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA, USA 93106
| |
Collapse
|
9
|
Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba HN, Xin H, Shen Q, Gu Z. Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9573-9580. [PMID: 27626769 PMCID: PMC5283718 DOI: 10.1002/adma.201603463] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Indexed: 05/09/2023]
Abstract
A platelet-membrane-coated biomimetic nanocarrier, which can sequentially target the bone microenvironment and myeloma cells to enhance the drug availability at the myeloma site and decrease off-target effects, is developed for inhibiting multiple myeloma growth and simultaneously eradicating thrombus complication.
Collapse
Affiliation(s)
- Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chenggen Qian
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Polymer Science and Engineering and Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023, China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhaowei Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongliang Xin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA and Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qundong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023, China
| | - Zhen Gu
- Corresponding author. ; Phone: 1-919-515-7944
| |
Collapse
|
10
|
Plaque-penetrating peptide inhibits development of hypoxic atherosclerotic plaque. J Control Release 2016; 238:212-220. [DOI: 10.1016/j.jconrel.2016.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
|
11
|
Puiggalí-Jou A, del Valle LJ, Armelin E, Alemán C. Fibrin Association at Hybrid Biointerfaces Made of Clot-Binding Peptides and Polythiophene. Macromol Biosci 2016; 16:1461-1474. [DOI: 10.1002/mabi.201600128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Indexed: 01/04/2023]
Affiliation(s)
- A. Puiggalí-Jou
- Departament d'Enginyeria Química; E. T. S. d'Enginyeria Industrial de Barcelona; Universitat Politècnica de Catalunya; Diagonal 647 Barcelona E-08028 Spain
- Centre for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Edifici C'; C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química; E. T. S. d'Enginyeria Industrial de Barcelona; Universitat Politècnica de Catalunya; Diagonal 647 Barcelona E-08028 Spain
- Centre for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Edifici C'; C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química; E. T. S. d'Enginyeria Industrial de Barcelona; Universitat Politècnica de Catalunya; Diagonal 647 Barcelona E-08028 Spain
- Centre for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Edifici C'; C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química; E. T. S. d'Enginyeria Industrial de Barcelona; Universitat Politècnica de Catalunya; Diagonal 647 Barcelona E-08028 Spain
- Centre for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Edifici C'; C/Pasqual i Vila s/n Barcelona E-08028 Spain
| |
Collapse
|
12
|
Liu X, Braun GB, Zhong H, Hall DJ, Han W, Qin M, Zhao C, Wang M, She ZG, Cao C, Sailor MJ, Stallcup WB, Ruoslahti E, Sugahara KN. Tumor-Targeted Multimodal Optical Imaging with Versatile Cadmium-Free Quantum Dots. ADVANCED FUNCTIONAL MATERIALS 2016; 26:267-276. [PMID: 27441036 PMCID: PMC4948596 DOI: 10.1002/adfm.201503453] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid development of fluorescence imaging technologies requires concurrent improvements in the performance of fluorescent probes. Quantum dots have been extensively used as an imaging probe in various research areas because of their inherent advantages based on unique optical and electronic properties. However, their clinical translation has been limited by the potential toxicity especially from cadmium. Here, a versatile bioimaging probe is developed by using highly luminescent cadmium-free CuInSe2/ZnS core/shell quantum dots conjugated with CGKRK (Cys-Gly-Lys-Arg-Lys) tumor-targeting peptides. This probe exhibits excellent photostability, reasonably long circulation time, minimal toxicity, and strong tumor-specific homing property. The most important feature of this probe is that it shows distinctive versatility in tumor-targeted multimodal imaging including near-infrared, time-gated, and two-photon imaging in different tumor models. In a glioblastoma mouse model, the targeted probe clearly denotes tumor boundaries and positively labels a population of diffusely infiltrating tumor cells, suggesting its utility in precise tumor detection during surgery. This work lays a foundation for potential clinical translation of the probe.
Collapse
Affiliation(s)
- Xiangyou Liu
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gary B. Braun
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Nanomedicine and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - David J. Hall
- Moores Cancer Center, Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenlong Han
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mingde Qin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chuanzhen Zhao
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Meina Wang
- Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhi-Gang She
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Michael J. Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B. Stallcup
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Nanomedicine and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Kazuki N. Sugahara
- Cancer Research Center, Sanford Burnham Prebys, Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|