1
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. NANOSCALE 2022; 14:736-743. [PMID: 34939638 DOI: 10.1039/d1nr05987d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tingcha Wei
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| |
Collapse
|
3
|
Huang J, Deng C, Liu Y, Han T, Ji F, Zhang Y, Lu H, Hua P, Zhang B, Qian T, Yuan X, Yang Y, Yao Y. Bifunctional effect of Bi(OH) 3 on the PdBi surface as interfacial Brønsted base enables ethanol electro-oxidization. J Colloid Interface Sci 2021; 611:327-335. [PMID: 34965487 DOI: 10.1016/j.jcis.2021.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Palladium (Pd) is supposed to be one of the most promising catalytic metals towards ethanol (C2H5OH) oxidation reaction (EOR). However, Pd electrocatalysts easily suffer from the poisoning of the intermediates (especially CO), resulting in the quick decay of EOR catalysis. Herein, inspired by the Brønsted-Lowry acid-base theory, a "attraction-repulsion" concept is proposed to guide the surface structure engineering toward EOR catalysts. Specifically, we induce Bi(OH)3 species as Brønsted base onto PdBi nanoplates to effectively repel the adsorption of CO intermediates. The PdBi-Bi(OH)3 nanoplates show an impressive mass activity of 4.46 A mgPd-1 during the EOR catalysis and keep excellent stability. Both the stability and enhanced performance are attributed by the interfacial Brønsted base Bi(OH)3 which can selectively attract and repel reactants and intermediates, as evidenced from in situ measurements and theoretical views.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chengwei Deng
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yue Liu
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tingting Han
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Feng Ji
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ping Hua
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bowei Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Williams BP, Lo WS, Morabito JV, Young AP, Tsung F, Kuo CH, Palomba JM, Rayder TM, Chou LY, Sneed BT, Liu XY, Lamontagne LK, Petroff CA, Brodsky CN, Yang J, Andoni I, Li Y, Zhang F, Li Z, Chen SY, Gallacher C, Li B, Tsung SY, Pu MH, Tsung CK. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51809-51828. [PMID: 34310110 DOI: 10.1021/acsami.1c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Joseph V Morabito
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Allison P Young
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Frances Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Joseph M Palomba
- U.S. Army DEVCOM Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Thomas M Rayder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Brian T Sneed
- CMC Materials, 870 North Commons Drive, Aurora, Illinois 60504, United States
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Leo K Lamontagne
- SecureSeniorConnections, 7114 East Stetson Drive, Scottsdale, Arizona 85251, United States
| | - Christopher A Petroff
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Casey N Brodsky
- University of Michigan Medical School, 7300 Medical Sciences Building I-A Wing, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Furui Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhehui Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yu Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Connor Gallacher
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yuan Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Ming-Hwa Pu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
5
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
6
|
Nanba Y, Koyama M. Thermodynamic Stabilities of PdRuM (M = Cu, Rh, Ir, Au) Alloy Nanoparticles Assessed by Wang–Landau Sampling Combined with DFT Calculations and Multiple Regression Analysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yusuke Nanba
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Michihisa Koyama
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Open Innovation Institute, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Xie M, Lyu Z, Chen R, Shen M, Cao Z, Xia Y. Pt-Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell. J Am Chem Soc 2021; 143:8509-8518. [PMID: 34043340 DOI: 10.1021/jacs.1c04160] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite extensive efforts devoted to the synthesis of Pt-Co bimetallic nanocrystals for fuel cell and related applications, it remains a challenge to simultaneously control atomic arrangements in the bulk and on the surface. Here we report a synthesis of Pt-Co@Pt octahedral nanocrystals that feature an intermetallic, face-centered tetragonal Pt-Co core and an ultrathin Pt shell, together with the dominance of {111} facets on the surface. When evaluated as a catalyst toward the oxygen reduction reaction (ORR), the nanocrystals delivered a mass activity of 2.82 A mg-1 and a specific activity of 9.16 mA cm-2, which were enhanced by 13.4 and 29.5 times, respectively, relative to the values of a commercial Pt/C catalyst. More significantly, the mass activity of the nanocrystals only dropped 21% after undergoing 30 000 cycles of accelerated durability test, promising an outstanding catalyst with optimal performance for ORR and related reactions.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Min Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Jin Y, Chen F, Guo L, Wang J, Kou B, Jin T, Liu H. Engineering Two-Dimensional PdAgRh Nanoalloys by Surface Reconstruction for Highly Active and Stable Formate Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26694-26703. [PMID: 32418422 DOI: 10.1021/acsami.0c05929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Promoting the formate oxidation reaction (FOR) is central to develop promising direct formate fuel cells, but current electrocatalysts are suffering from low activity and ultrapoor stability. Herein, the ternary PdAgRh nanoalloys with ultrathin two-dimensional architecture are for the first time synthesized and employed as a novel class of electrocatalysts for the FOR. Benefitting from unique nanostructure as well as oxophilic Rh surface oxides, the Pd55Ag30Rh15/C electrocatalyst demonstrates an exceptional FOR activity of 1.85 A mgPd-1, showing a 4.74-fold improvement compared to the commercial Pd/C, and retains the current density of 150 mA mgPd-1 after a long-term test, representing the greatest durability among all available FOR electrocatalysts. More strikingly, extending the upper limit potential (ULP) of cyclic voltammetry is revealed to facilitate the surface reconstruction of the Pd55Ag30Rh15/C electrocatalyst to in situ form Ag surface oxides (Ag-O), resulting in a highly active and stable Pd/Ag-O interface at the atomic scale, which considerably boost the FOR performance. In particular, the reconstructed Pd55Ag30Rh15/C electrocatalyst exhibits a mass activity of 3.26 A mgPd-1 with 74.2% of initial activity retained after 1000 cycles. This work showcases an effective strategy to tune surface reconstruction on multimetallic nanoalloys for robust FOR electrocatalysts and beyond.
Collapse
Affiliation(s)
- Yachao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Kou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhen Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Williams BP, Young AP, Andoni I, Han Y, Lo W, Golden M, Yang J, Lyu L, Kuo C, Evans JW, Huang W, Tsung C. Strain‐Enhanced Metallic Intermixing in Shape‐Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Allison P. Young
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Ilektra Andoni
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Yong Han
- Ames Laboratory—USDOE and Department of Physics & Astronomy Iowa State University Ames IA 50011 USA
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Matthew Golden
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jane Yang
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Lian‐Ming Lyu
- Department of Materials Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chun‐Hong Kuo
- Institute of Chemistry Academia Sinica No. 128, Section 2, Academia Rd, Nangang District Taipei City 115 Taiwan
| | - James W. Evans
- Ames Laboratory—USDOE and Department of Physics & Astronomy Iowa State University Ames IA 50011 USA
| | - Wenyu Huang
- Ames Laboratory—USDOE and Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
10
|
Williams BP, Young AP, Andoni I, Han Y, Lo W, Golden M, Yang J, Lyu L, Kuo C, Evans JW, Huang W, Tsung C. Strain‐Enhanced Metallic Intermixing in Shape‐Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics. Angew Chem Int Ed Engl 2020; 59:10574-10580. [DOI: 10.1002/anie.202001067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/17/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Allison P. Young
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Ilektra Andoni
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Yong Han
- Ames Laboratory—USDOE and Department of Physics & Astronomy Iowa State University Ames IA 50011 USA
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Matthew Golden
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Jane Yang
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Lian‐Ming Lyu
- Department of Materials Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chun‐Hong Kuo
- Institute of Chemistry Academia Sinica No. 128, Section 2, Academia Rd, Nangang District Taipei City 115 Taiwan
| | - James W. Evans
- Ames Laboratory—USDOE and Department of Physics & Astronomy Iowa State University Ames IA 50011 USA
| | - Wenyu Huang
- Ames Laboratory—USDOE and Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
11
|
One-step fabrication of Au@Pd core-shell bimetallic nanofibers at the interface between water and redox-active ionic liquid. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Xie M, Zhou S, Zhu J, Lyu Z, Chen R, Xia Y. A Quantitative Analysis of the Reduction Kinetics Involved in the Synthesis of Au@Pd Concave Nanocubes. Chemistry 2019; 25:16397-16404. [PMID: 31589785 DOI: 10.1002/chem.201904074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/03/2019] [Indexed: 12/31/2022]
Abstract
Surface capping has been shown to play a pivotal role in controlling the evolution of metal nanocrystals into different shapes or morphologies. With the synthesis of Au@Pd concave nanocubes as an example, here we demonstrate that the capping agent can also impact the reduction kinetics of a precursor, and thereby its reduction pathway, for the formation of metal nanocrystals with distinct morphologies. A typical synthesis involves the reduction of a PdII precursor by ascorbic acid at room temperature in the presence of Au nanospheres as seeds, together with the use of hexadecyltrimethylammonium chloride (CTAC) or hexadecyltrimethylammonium bromide (CTAB) as the capping agent. In the case of CTAC, the PdII precursor prevails as PdCl4 2- , leading to the formation of Au@Pd concave nanocubes with a rough surface because of the fast reduction kinetics and thus the dominance of solution reduction pathway. When switched to CTAB, the PdII precursor changes to PdBr4 2- that features slow reduction kinetics and surface reduction pathway. Accordingly, the Au@Pd concave nanocubes take a smooth surface. This work demonstrates that both reduction kinetics and surface capping play important roles in controlling the morphology of metal nanocrystals and these two roles are often coupled to each other.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Shan Zhou
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Jiawei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
13
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Saleem F, Zhang Z, Cui X, Gong Y, Chen B, Lai Z, Yun Q, Gu L, Zhang H. Elemental Segregation in Multimetallic Core–Shell Nanoplates. J Am Chem Soc 2019; 141:14496-14500. [DOI: 10.1021/jacs.9b05197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Faisal Saleem
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhicheng Zhang
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaoya Cui
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yue Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 China
| | - Bo Chen
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qinbai Yun
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhang
- Center for Programmable
Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Hong W, Li CW. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30977-30986. [PMID: 31365226 DOI: 10.1021/acsami.9b10158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the microstructural evolution of bimetallic Pt nanoparticles under electrochemical polarization is critical to developing durable fuel cell catalysts. In this work, we develop a colloidal synthetic method to generate core-shell Au@Pt nanoparticles of varying surface Pt coverages to understand how as-synthesized bimetallic microstructure influences nanoparticle structural evolution during formic acid oxidation. By comparing the electrochemical and structural properties of our Au@Pt core-shells with bimetallic AuPt alloys at various stages in catalytic cycling, we determine that these two structures evolve in divergent ways. In core-shell nanoparticles, Au atoms from the core migrate outward onto the surface, generating transient "single-atom" Pt active sites with high formic acid oxidation activity. Metal migration continues until Pt is completely encapsulated by Au, and catalytic reactivity ceases. In contrast, AuPt alloys undergo surface dealloying and significant leaching of Pt out of the nanoparticle. Elucidating the dynamic restructuring processes responsible for high electrocatalytic reactivity in Pt bimetallic structures will enable better design and predictive synthesis of nanoparticle catalysts that are both active and stable.
Collapse
Affiliation(s)
- Wei Hong
- Department of Chemistry , Purdue University , 560 Oval Dr. , West Lafayette , Indiana 47907 , United States
| | - Christina W Li
- Department of Chemistry , Purdue University , 560 Oval Dr. , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
16
|
Yuan X, Zhang Y, Cao M, Zhou T, Jiang X, Chen J, Lyu F, Xu Y, Luo J, Zhang Q, Yin Y. Bi(OH) 3/PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation. NANO LETTERS 2019; 19:4752-4759. [PMID: 31189063 DOI: 10.1021/acs.nanolett.9b01843] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing high-performance electrocatalysts for the ethanol oxidation reaction (EOR) is critical to the commercialization of direct ethanol fuel cells. However, current EOR catalysts suffer from high cost, low activity, and poor durability. Here we report the preparation of PdBi-Bi(OH)3 composite nanochains with outstanding EOR activity and durability. The incorporation of Bi can tune the electronic structure and downshift the d-band center of Pd while the surface decoration of Bi(OH)3 can facilitate the oxidative removal of CO and other carbonaceous intermediates. As a result, the nanochains manifest an exceptional mass activity (5.30 A mgPd-1, 4.6-fold higher than that of commercial Pd/C) and outstanding durability (with a retained current density of ∼1.00 A mgPd-1 after operating for 20 000 s). More importantly, the nanochain catalyst can be reactivated, and negligible activity loss has been observed after operating for 200 000 s with periodic reactivation, making it one of the best EOR catalysts.
Collapse
Affiliation(s)
- Xiaolei Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Tong Zhou
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Xiaojing Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jinxing Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 , United States
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yong Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yadong Yin
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 , United States
| |
Collapse
|
17
|
Li L, Li X, Duan Z, Meyer RJ, Carr R, Raman S, Koziol L, Henkelman G. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles. NANOSCALE 2019; 11:10524-10535. [PMID: 31116210 DOI: 10.1039/c9nr01858a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface segregation in bimetallic nanoparticles (NPs) is critically important for their catalytic activity because the activity is largely determined by the surface composition. Little, however, is known about the atomic scale mechanisms and kinetics of surface segregation. One reason is that it is hard to resolve atomic rearrangements experimentally. It is also difficult to model surface segregation at the atomic scale because the atomic rearrangements can take place on time scales of seconds or minutes - much longer than can be modeled with molecular dynamics. Here we use the adaptive kinetic Monte Carlo (AKMC) method to model the segregation dynamics in PdAu NPs over experimentally relevant time scales, and reveal the origin of kinetic stability of the core@shell and random alloy NPs at the atomic level. Our focus on PdAu NPs is motivated by experimental work showing that both core@shell and random alloy PdAu NPs with diameters of less than 2 nm are stable, indicating that one of these structures must be metastable and kinetically trapped. Our simulations show that both the Au@Pd and the PdAu random alloy NPs are metastable and kinetically trapped below 400 K over time scales of hours. These AKMC simulations provide insight into the energy landscape of the two NP structures, and the diffusion mechanisms that lead to segregation. In the core-shell NP, surface segregation occurs primarily on the (100) facet through both a vacancy-mediated and a concerted mechanism. The system becomes kinetically trapped when all corner sites in the core of the NP are occupied by Pd atoms. Higher energy barriers are required for further segregation, so that the metastable NP has a partially alloyed shell. In contrast, surface segregation in the random alloy PdAu NP is suppressed because the random alloy NP has reduced strain as compared to the Au@Pd NP, and the segregation mechanisms in the alloy require more elastic energy for exchange of Pd and Au and between the surface and subsurface.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and the Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712-0231, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Weitzner SE, Dabo I. Voltage effects on the stability of Pd ensembles in Pd-Au/Au(111) surface alloys. J Chem Phys 2019; 150:041715. [PMID: 30709256 DOI: 10.1063/1.5054124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The catalytic performance of multimetallic electrodes is often attributed to a beneficial combination of ligand, strain, and ensemble effects. Understanding the influence of the electrochemical environment on the stability of the alloy surface structure is thus a crucial component to the design of highly active and durable electrocatalysts. In this work, we study the effects of an applied voltage to electrocatalytic Pd-Au/Au(111) surface alloys in contact with a model continuum electrolyte. Using planewave density functional theory, two-dimensional cluster expansions are parameterized and used to simulate dilute Pd-Au surface alloys under electrochemical conditions via Metropolis Monte Carlo within an extended canonical ensemble. While Pd monomers are stable at all potentials considered, different extents of surface electrification are observed to promote the formation of Pd dimers and trimers, as well as clusters of Pd monomers. We find that the relative proportion of monomer, dimer, and trimer surface fractions is in good agreement with in situ scanning tunneling microscopy measurements. The further development and refinement of the approaches described herein may serve as a useful aid in the development of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Stephen E Weitzner
- Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ismaila Dabo
- Department of Materials Science and Engineering, Materials Research Institute, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
19
|
Shape Effect of AuPd Core-Shell Nanostructures on the Electrocatalytical Activity for Oxygen Reduction Reaction in Acid Medium. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0486-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
|
21
|
Maiti K, Balamurugan J, Peera SG, Kim NH, Lee JH. Highly Active and Durable Core-Shell fct-PdFe@Pd Nanoparticles Encapsulated NG as an Efficient Catalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18734-18745. [PMID: 29756758 DOI: 10.1021/acsami.8b04060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of highly active and durable catalysts for oxygen reduction reaction (ORR) alternative to Pt-based catalyst is an essential topic of interest in the research community but a challenging task. Here, we have developed a new type of face-centered tetragonal (fct) PdFe-alloy nanoparticle-encapsulated Pd (fct-PdFe@Pd) anchored onto nitrogen-doped graphene (NG). This core-shell fct-PdFe@Pd@NG hybrid is fabricated by a facile and cost-effective technique. The effect of temperature on the transformation of face-centered cubic (fcc) to fct structure and their effect on ORR activity are systematically investigated. The core-shell fct-PdFe@Pd@NG hybrid exerts high synergistic interaction between fct-PdFe@Pd NPs and NG shell, beneficial to enhance the catalytic ORR activity and excellent durability. Impressively, core-shell fct-PdFe@Pd@NG hybrid exhibits an excellent catalytic activity for ORR with an onset potential of ∼0.97 V and a half-wave potential of ∼0.83 V versus relative hydrogen electrode, ultrahigh current density, and decent durability after 10 000 potential cycles, which is significantly higher than that of marketable Pt/C catalyst. Furthermore, the core-shell fct-PdFe@Pd@NG hybrid also shows excellent tolerance to methanol, unlike the commercial Pt/C catalyst. Thus, these findings open a new protocol for fabricating another core-shell hybrid by facile and cost-effective techniques, emphasizing great prospect in next-generation energy conversion and storage applications.
Collapse
|
22
|
Pizzutilo E, Freakley SJ, Cherevko S, Venkatesan S, Hutchings GJ, Liebscher CH, Dehm G, Mayrhofer KJJ. Gold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01447] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrico Pizzutilo
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Simon J. Freakley
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park
Place, Cardiff CF10 3AT, U.K
| | - Serhiy Cherevko
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse
3, 91058 Erlangen, Germany
| | - Sriram Venkatesan
- Department
of Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Graham J. Hutchings
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park
Place, Cardiff CF10 3AT, U.K
| | - Christian H. Liebscher
- Department
of Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Gerhard Dehm
- Department
of Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Karl J. J. Mayrhofer
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
- Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstrasse
3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Xu CQ, Lee MS, Wang YG, Cantu DC, Li J, Glezakou VA, Rousseau R. Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study. ACS NANO 2017; 11:1649-1658. [PMID: 28121422 DOI: 10.1021/acsnano.6b07409] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The structure, composition, and atomic distribution of nanoalloys under operating conditions are of significant importance for their catalytic activity. In the present work, we use ab initio molecular dynamics simulations to understand the structural behavior of Au-Pd nanoalloys supported on rutile TiO2 under different conditions. We find that the Au-Pd structure is strongly dependent on the redox properties of the support, originating from strong metal-support interactions. Under reducing conditions, Pd atoms are inclined to move toward the metal/oxide interface, as indicated by a significant increase of Pd-Ti bonds. This could be attributed to the charge localization at the interface that leads to Coulomb attractions to positively charged Pd atoms. In contrast, under oxidizing conditions, Pd atoms would rather stay inside or on the exterior of the nanoparticle. Moreover, Pd atoms on the alloy surface can be stabilized by hydrogen adsorption, forming Pd-H bonds, which are stronger than Au-H bonds. Our work offers critical insights into the structure and redox properties of Au-Pd nanoalloy catalysts under working conditions.
Collapse
Affiliation(s)
- Cong-Qiao Xu
- Department of Chemistry, Tsinghua University , Beijing 100084, China
| | | | | | | | - Jun Li
- Department of Chemistry, Tsinghua University , Beijing 100084, China
| | | | | |
Collapse
|
24
|
Pizzutilo E, Freakley SJ, Geiger S, Baldizzone C, Mingers A, Hutchings GJ, Mayrhofer KJJ, Cherevko S. Addressing stability challenges of using bimetallic electrocatalysts: the case of gold–palladium nanoalloys. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00291b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studying changes in surface composition of bimetallic (AuPd) catalysts under dealloying is of key importance for predicting their stability during application.
Collapse
Affiliation(s)
- Enrico Pizzutilo
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | - Simon J. Freakley
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Simon Geiger
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | - Claudio Baldizzone
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | - Andrea Mingers
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | | | - Karl J. J. Mayrhofer
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
- Forschungszentrum Jülich GmbH
| | - Serhiy Cherevko
- Department of Interface Chemistry and Surface Engineering
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
- Forschungszentrum Jülich GmbH
| |
Collapse
|
25
|
Liu J, Zheng Y, Hou S. Facile synthesis of Cu/Ni alloy nanospheres with tunable size and elemental ratio. RSC Adv 2017. [DOI: 10.1039/c7ra06062a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a facile synthesis of copper/nickel (Cu/Ni) alloy nanospheres in high purity and with tunable, well-controlled sizes and elemental ratios.
Collapse
Affiliation(s)
- Jinglei Liu
- National Engineering Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Yiqun Zheng
- National Engineering Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Shifeng Hou
- National Engineering Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
26
|
Preparation, characterization and electrochemistry of Layer-by-Layer films of silver nanoparticles and silsesquioxane polymer. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Temmel SE, Fabbri E, Pergolesi D, Lippert T, Schmidt TJ. Investigating the Role of Strain toward the Oxygen Reduction Activity on Model Thin Film Pt Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01836] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra E. Temmel
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Emiliana Fabbri
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Daniele Pergolesi
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Thomas Lippert
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Laboratory
of Inorganic Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Thomas J. Schmidt
- Energy & Environment Division, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Laboratory
of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
28
|
Saleem F, Ni B, Yong Y, Gu L, Wang X. Ultra-small Tetrametallic Pt-Pd-Rh-Ag Nanoframes with Tunable Behavior for Direct Formic Acid/Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5261-5268. [PMID: 27550307 DOI: 10.1002/smll.201601299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Reversible tuning of ultra-small multimetallic Pt-Pd-Rh-Ag nanoframes is achieved. These nanoframes showed tunable and reversible modes for the oxidation of small organic molecules by simply inducing segregation with adsorbates, such as SO42- and OH- . This is the first example of reversible segregation under electrocatalytic conditions in atomic-sized electrocatalysts. These nanoframes also showed a controllable activity and good stability for the oxidation of small organic molecules.
Collapse
Affiliation(s)
- Faisal Saleem
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Yong
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
29
|
Bedford NM, Showalter AR, Woehl TJ, Hughes ZE, Lee S, Reinhart B, Ertem SP, Coughlin EB, Ren Y, Walsh TR, Bunker BA. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. ACS NANO 2016; 10:8645-59. [PMID: 27583654 DOI: 10.1021/acsnano.6b03963] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.
Collapse
Affiliation(s)
- Nicholas M Bedford
- Applied Chemical and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Allison R Showalter
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Taylor J Woehl
- Applied Chemical and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Zak E Hughes
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3216, Australia
| | - Sungsik Lee
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Benjamin Reinhart
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - S Piril Ertem
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yang Ren
- X-ray Sciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University , Geelong, Victoria 3216, Australia
| | - Bruce A Bunker
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 2016; 44:7540-90. [PMID: 26288197 DOI: 10.1039/c5cs00343a] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.
Collapse
Affiliation(s)
- Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Anandarup Goswami
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic. and Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA and Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA
| | - Huizhang Guo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ankush V Biradar
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, US Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA.
| |
Collapse
|
31
|
Devivaraprasad R, Kar T, Chakraborty A, Singh RK, Neergat M. Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes. Phys Chem Chem Phys 2016; 18:11220-32. [DOI: 10.1039/c5cp07832f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes.
Collapse
Affiliation(s)
- Ruttala Devivaraprasad
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Powai, Mumbai-400076
- India
| | - Tathagata Kar
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Powai, Mumbai-400076
- India
| | - Arup Chakraborty
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Powai, Mumbai-400076
- India
| | - Ramesh Kumar Singh
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Powai, Mumbai-400076
- India
| | - Manoj Neergat
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Powai, Mumbai-400076
- India
| |
Collapse
|
32
|
Miller HA, Bellini M, Vizza F, Hasenöhrl C, Tilley RD. Carbon supported Au–Pd core–shell nanoparticles for hydrogen production by alcohol electroreforming. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00720a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monodisperse faceted icosahedral Au–Pd core–shell nanocrystals of small size (<12 nm) supported on Vulcan XC-72 (Au–Pd/C) are employed in electroreforming for the cogeneration of hydrogen and valuable chemicals.
Collapse
Affiliation(s)
- H. A. Miller
- Institute of Chemistry of Organometallic Compounds
- ICCOM-CNR
- Polo Scientifico Area CNR
- 50019 Sesto Fiorentino
- Italy
| | - M. Bellini
- Institute of Chemistry of Organometallic Compounds
- ICCOM-CNR
- Polo Scientifico Area CNR
- 50019 Sesto Fiorentino
- Italy
| | - F. Vizza
- Institute of Chemistry of Organometallic Compounds
- ICCOM-CNR
- Polo Scientifico Area CNR
- 50019 Sesto Fiorentino
- Italy
| | - C. Hasenöhrl
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - R. D. Tilley
- School of Chemistry and Electron Microscopy Unit of the Mark Wainwright Analytical Centre
- University of New South Wales Sydney
- Chemical Sciences Building Kensington
- Sydney
- Australia
| |
Collapse
|
33
|
Hu G, Gracia-Espino E, Sandström R, Sharifi T, Cheng S, Shen H, Wang C, Guo S, Yang G, Wågberg T. Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01128k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The origin of the high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles is studied.
Collapse
Affiliation(s)
- Guangzhi Hu
- Department of Physics
- Umeå University
- 901 87 Umeå
- Sweden
- Laboratory of Environmental Science and Technology
| | | | | | - Tiva. Sharifi
- Department of Physics
- Umeå University
- 901 87 Umeå
- Sweden
| | - Shaodong Cheng
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education and International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hangjia Shen
- Laboratory of Environmental Science and Technology
- The Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Chuanyi Wang
- Laboratory of Environmental Science and Technology
- The Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Shaojun Guo
- Physical Chemistry and Applied Spectroscopy
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Guang Yang
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education and International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | | |
Collapse
|
34
|
Wang M, Wang L, Li H, Du W, Khan MU, Zhao S, Ma C, Li Z, Zeng J. Ratio-Controlled Synthesis of CuNi Octahedra and Nanocubes with Enhanced Catalytic Activity. J Am Chem Soc 2015; 137:14027-30. [DOI: 10.1021/jacs.5b08289] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Menglin Wang
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangbing Wang
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenpeng Du
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Munir Ullah Khan
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Songtao Zhao
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Ma
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenyu Li
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National
Laboratory
for Physical Sciences at the Microscale, CAS Centre for Excellence
and Synergetic Innovation Centre in Quantum Information and Quantum
Physics, Center of Advanced Nanocatalysis (CAN-USTC), Department of
Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
35
|
Sahu SC, Satpati B, Besra L, Jena BK. A Bifunctional Nano-Electrocatalyst Based on a Flower-like Gold/Palladium Bimetallic Alloy Nanostructure and Its Graphene Hybrid. ChemCatChem 2015. [DOI: 10.1002/cctc.201500465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subash Chandra Sahu
- Colloids & Material Chemistry; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar; 751013 Odisha India
- Academy of Scientific & Innovative Research; New Delhi 110001 India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar; Kolkata 700 064 India
| | - Laxmidhar Besra
- Colloids & Material Chemistry; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar; 751013 Odisha India
| | - Bikash Kumar Jena
- Colloids & Material Chemistry; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar; 751013 Odisha India
- Academy of Scientific & Innovative Research; New Delhi 110001 India
| |
Collapse
|
36
|
Sneed BT, Young AP, Tsung CK. Building up strain in colloidal metal nanoparticle catalysts. NANOSCALE 2015; 7:12248-12265. [PMID: 26147486 DOI: 10.1039/c5nr02529j] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The focus on surface lattice strain in nanostructures as a fundamental research topic has gained momentum in recent years as scientists investigated its significant impact on the surface electronic structure and catalytic properties of nanomaterials. Researchers have begun to tell a more complete story of catalysis from a perspective which brings this concept to the forefront of the discussion. The nano-'realm' makes the effects of surface lattice strain, which acts on the same spatial scales, more pronounced due to a higher ratio of surface to bulk atoms. This is especially evident in the field of metal nanoparticle catalysis, where displacement of atoms on surfaces can significantly alter the sorption properties of molecules. In part, the concept of strain-engineering for catalysis opened up due to the achievements that were made in the synthesis of a more sophisticated nanoparticle library from an ever-expanding set of methodologies. Developing synthesis methods for metal nanoparticles with well-defined and strained architectures is a worthy goal that, if reached, will have considerable impact in the search for catalysts. In this review, we summarize the recent accomplishments in the area of surface lattice-strained metal nanoparticle synthesis, framing the discussion from the important perspective of surface lattice strain effects in catalysis.
Collapse
Affiliation(s)
- Brian T Sneed
- Boston College Chemistry Department, Merkert Chemistry Center, 2609 Beacon St, Chestnut Hill, MA 02467, USA.
| | | | | |
Collapse
|
37
|
Liao H, Fisher A, Xu ZJ. Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3221-46. [PMID: 25823964 DOI: 10.1002/smll.201403380] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/07/2015] [Indexed: 05/23/2023]
Abstract
Bimetallic nanoparticles are a class of important electrocatalyst. They exhibit a synergistic effect that critically depends on the surface composition, which determines the surface properties and the adsorption/desorption behavior of the reactants and intermediates during catalysis. The surface composition can be varied, as nanoparticles are exposed to certain environments through surface segregation. Thermodynamically, this is caused by a difference in surface energy between the two metals. It may lead to the enrichment of one metal on the surface and the other in the core. The external conditions that influence the surface energy may lead to the variation of the thermodynamic steady state of the particle surface and, thus, offer a chance to vary the surface composition. In this review, the most recent and important progress in surface segregation of bimetallic nanoparticles and its impact in electrocatalysis are introduced. Typical segregation inducements and surface characterization techniques are discussed in detail. It is concluded that surface segregation is a critical issue when designing bimetallic catalysts. It is necessary to explore methods to control it and utilize it as a way towards producing robust, bimetallic electrocatalysts.
Collapse
Affiliation(s)
- Hanbin Liao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@NNanyang Technological University, Singapore
| | - Adrian Fisher
- Department of Chemical Engineering, Cambridge University, Cambridge, CB2 3RA, UK
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@NNanyang Technological University, Singapore
- Solar Fuels Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Mourdikoudis S, Chirea M, Zanaga D, Altantzis T, Mitrakas M, Bals S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. NANOSCALE 2015; 7:8739-47. [PMID: 25904481 PMCID: PMC4841216 DOI: 10.1039/c4nr07481e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/10/2015] [Indexed: 05/17/2023]
Abstract
Platinum-gold heteronanostructures comprising either dimer (Pt-Au) or core-satellite (Pt@Au) configurations were synthesized by means of a seeded growth procedure using platinum nanodendrites as seeds. Careful control of the reduction kinetics of the gold precursor can be used to direct the nucleation and growth of gold nanoparticles on either one or multiple surface sites simultaneously, leading to the formation of either dimers or core-satellite nanoparticles, respectively, in high yields. Characterization by electron tomography and high resolution electron microscopy provided a better understanding of the actual three-dimensional particle morphology, as well as the Au-Pt interface, revealing quasi-epitaxial growth of Au on Pt. The prepared Pt-Au bimetallic nanostructures are highly efficient catalysts for ethanol oxidation in alkaline solution, showing accurate selectivity, high sensitivity, and improved efficiency by generating higher current densities than their monometallic counterparts.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Departamento de Química Física , CINBIO , Universidade de Vigo , 36310 Vigo , Spain . ;
- Analytical Chemistry Laboratory , Department of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| | - Mariana Chirea
- Departamento de Química Física , CINBIO , Universidade de Vigo , 36310 Vigo , Spain . ;
| | - Daniele Zanaga
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Thomas Altantzis
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Manasis Mitrakas
- Analytical Chemistry Laboratory , Department of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Luis M. Liz-Marzán
- Departamento de Química Física , CINBIO , Universidade de Vigo , 36310 Vigo , Spain . ;
- Bionanoplasmonics Laboratory , CIC biomaGUNE , Paseo de Miramon 182 , 20009 Donostia-San Sebastian , Spain
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física , CINBIO , Universidade de Vigo , 36310 Vigo , Spain . ;
| | | |
Collapse
|
39
|
Wang L, Zhao S, Liu C, Li C, Li X, Li H, Wang Y, Ma C, Li Z, Zeng J. Aerobic Oxidation of Cyclohexane on Catalysts Based on Twinned and Single-Crystal Au75Pd25 Bimetallic Nanocrystals. NANO LETTERS 2015; 15:2875-2880. [PMID: 25839191 DOI: 10.1021/nl5045132] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bimetallic Au75Pd25 nanocrystals with shapes of icosahedron and octahedron were synthesized by adding different amounts of iodide ions, and were employed as catalysts for solvent-free aerobic oxidation of cyclohexane. Although both icosahedrons and octahedrons were bounded by {111} facets, the turnover frequency number of Au75Pd25 icosahedrons reached 15,106 h(-1), almost three times as high as that of Au75Pd25 octahedrons. The conversion of cyclohexane reached 28.1% after 48 h using Au75Pd25 icosahedrons, with the selectivity of 84.3% to cyclohexanone. Density functional theory calculations along with X-ray photoelectron spectroscopy examinations reveal that the excellent catalytic performance of AuPd icosahedrons could be ascribed to twin-induced strain and highly negative charge density of Au atoms on the surface.
Collapse
Affiliation(s)
- Liangbing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Songtao Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chenxuan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Youcheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Center of Advanced Nanocatalysis (CAN-USTC), CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Zhu W, Ke J, Wang SB, Ren J, Wang HH, Zhou ZY, Si R, Zhang YW, Yan CH. Shaping Single-Crystalline Trimetallic Pt–Pd–Rh Nanocrystals toward High-Efficiency C–C Splitting of Ethanol in Conversion to CO2. ACS Catal 2015. [DOI: 10.1021/cs5018419] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Zhu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Ke
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Bo Wang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Ren
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong-Hui Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-You Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Si
- Shanghai
Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ya-Wen Zhang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Larki P, Sabri YM, Kabir KMM, Nafady A, Kandjani AE, Bhargava SK. Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection. RSC Adv 2015. [DOI: 10.1039/c5ra19132g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The formation of a silver nanowire monolayer (Ag NWML) galvanically replaced with gold (Au) directly on the electrodes of a quartz crystal microbalance (QCM) transducer for non-spectroscopic based elemental mercury (Hg0) vapor sensing is reported in this study.
Collapse
Affiliation(s)
- Paria Larki
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Ylias M. Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - K. M. Mohibul Kabir
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Ayman Nafady
- Department of Chemistry
- Faculty of Science
- Sohag University
- Sohag
- Egypt
| | - Ahmad Esmaielzadeh Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
42
|
Liu HL, Nosheen F, Wang X. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem Soc Rev 2015; 44:3056-78. [DOI: 10.1039/c4cs00478g] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
From the perspective of noble metal alloy nanocrystals with complex structures, we highlight their controllable synthesis and improved electrochemical property.
Collapse
Affiliation(s)
- Hui-ling Liu
- Department of Chemistry
- Tsinghua University
- Beijing
- P. R. China
| | - Farhat Nosheen
- Department of Chemistry
- Tsinghua University
- Beijing
- P. R. China
| | - Xun Wang
- Department of Chemistry
- Tsinghua University
- Beijing
- P. R. China
| |
Collapse
|