1
|
Biswakarma D, Dey N, Sivakumar G, Bhagat D, Bhattacharya S. Rapid paper-based optical sensing of Spilosoma obliqua nucleopolyhedrovirus via ester hydrolysis. Org Biomol Chem 2024; 22:7841-7847. [PMID: 39069831 DOI: 10.1039/d4ob00582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We have developed an easily scalable chromogenic probe for the dual-mode sensing of Spilosoma obliqua Nuclear polyhedrosis viruses (SpobNPV) in aqueous media. The mechanistic investigations establish that the imidazole-mediated hydrolysis of acyl ester linkage in which water (general base) acts as a nucleophile induces a pronounced change in the emission colour from blue to cyan. To the best of our knowledge, this is the first attempt at quantifying OBs of SpobNPV using a small molecule-based optical probe with a detection limit of 2.305 × 103 OBs mL-1. The rate of ester hydrolysis was dependent on both substrate and OBs concentration. Due to the naked eye response, paper strips were also developed for the rapid and onsite detection of SpobNPV. The operation procedure is straightforward and does not involve additional sample preparation steps. This makes the present protocol suitable for daily use. Interestingly, the present protocol is also quite efficient in estimating SpobNPV, even in several agricultural crop samples (for at least 15 crops). Such findings will add a new dimension to better managing Spilosoma obliqua and minimizing the extent of crop loss.
Collapse
Affiliation(s)
- Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana 700078, India
| | - G Sivakumar
- National Bureau of Agriculturally Insect Resources, P.B. No. 2491, H. A. Farm Post, Bangalore 560024, India
| | - Deepa Bhagat
- National Bureau of Agriculturally Insect Resources, P.B. No. 2491, H. A. Farm Post, Bangalore 560024, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
2
|
Samanta M, Saad N, Wu D, Crone NSA, Abramov-Harpaz K, Regev C, Cohen-Luria R, Boyle AL, Miller Y, Kros A, Ashkenasy G. A Photo-Switchable Peptide Fibril Esterase. Angew Chem Int Ed Engl 2024:e202413810. [PMID: 39329502 DOI: 10.1002/anie.202413810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
Recent attempts to mimic enzyme catalysis using simple, short peptides have been successful in enhancing various reactions, but the on-demand, temporal or spatial regulation of such processes by external triggers remains a great challenge. Light irradiation is an ideal trigger for regulating molecular functionality, since it can be precisely manipulated in time and space, and because most reaction mediums do not react to light. We herein report the selection of a photo-switchable amphiphilic peptide catalyst from a small library of isomeric peptides, each containing an azobenzene-based light responsive group and a catalytic histidine residue. In its native fibrillar form, the selected peptide is efficiently and enantio-selectively active for ester hydrolysis, but after irradiation by UV light inducing trans-to-cis azobenzene isomerization, the fibrils disassemble to amorphous aggregates that are much less catalytically active. Significantly, this esterase-like activity can be manipulated multiple times, as the fibrillar peptide assembly is reversibly reduced and restored upon alternate irradiation by UV and visible light, respectively. We propose that this research may shine light on the origin of complex functions in early chemical evolution. Furthermore, it paves the way to regulate additional functions for peptide nanotechnology, such as replication, charge transfer, and delivery.
Collapse
Affiliation(s)
- Mousumi Samanta
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
- Current address: Department of Chemistry, Indian Institute of Technology, New Delhi, 110016, India
| | - Noy Saad
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| | - Dinghao Wu
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The, Netherlands
| | - Niek S A Crone
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The, Netherlands
| | - Karina Abramov-Harpaz
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| | - Clil Regev
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| | - Rivka Cohen-Luria
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The, Netherlands
- Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Yifat Miller
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| | - Alexander Kros
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The, Netherlands
| | - Gonen Ashkenasy
- Chemistry Department, Ben-Gurion University of the Negev, Campus st. 1, Beer Sheva, 8410501, Israel
| |
Collapse
|
3
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
4
|
Halder M, Chawla V, Singh Y. Ceria nanoparticles immobilized with self-assembling peptide for biocatalytic applications. NANOSCALE 2024; 16:16887-16899. [PMID: 39175360 DOI: 10.1039/d4nr02672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Peptide-based artificial enzymes exhibit structure and catalytic mechanisms comparable to natural enzymes but they suffer from limited reusability due to their existence in homogenous solutions. Immobilization of self-assembling peptides on the surface of nanoparticles can be used to overcome limitations associated with artificial enzymes. A high, local density of peptides can be obtained on nanoparticles to exert cooperative or synergistic effects, resulting in an accelerated rate of reaction, distinct catalytic properties, and excellent biocompatibility. In this work, we have immobilized a branched, self-assembled, and nanofibrous catalytic peptide, (C12-SHD)2KK(Alloc)-NH2, onto thiolated ceria nanoparticles to generate a heterogeneous catalyst with an enhanced number of catalytic sites. This artificial enzyme mimics the activities of esterase, phosphatase, and haloperoxidase enzymes and the catalytic efficiency remains nearly unaltered when reused. The enzyme-mimicking property is investigated for pesticide detection, bone regeneration, and antibiofouling applications. Overall, this work presents a facile approach to develop a multifunctional heterogeneous biocatalyst that addresses the challenges associated with unstable peptide-based homogeneous catalysts and, thus, shows a strong potential for industrial applications.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| |
Collapse
|
5
|
Esposito A, Leone L, De Simone A, Fusco G, Nastri F, Lombardi A. Catalytic Nanomaterials by Conjugation of an Artificial Heme-Peroxidase to Amyloid Fibrils. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45371-45382. [PMID: 39140178 DOI: 10.1021/acsami.4c10449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The self-assembly of proteins and peptides into fibrillar amyloid aggregates is a highly promising route to define the next generation of functional nanomaterials. Amyloid fibrils, traditionally associated with neurodegenerative diseases, offer exceptional conformational and chemical stability and mechanical properties, and resistance to degradation. Here, we report the development of catalytic amyloid nanomaterials through the conjugation of a miniaturized artificial peroxidase (FeMC6*a) to a self-assembling amyloidogenic peptide derived from human transthyretin, TTR(105-115), whose sequence is YTIAALLSPYS. Our synthetic approach relies on fast and selective click ligation upon proper modification of both the peptide and FeMC6*a, leading to TTRLys108@FeMC6*a. Mixing unmodified TTR(105-115) with TTRLys108@FeMC6*a allowed the generation of enzyme-loaded amyloid fibrils, namely, FeMC6*a@fibrils. Catalytic studies, performed in aqueous solution at nearly neutral pH, using ABTS as a model substrate and H2O2 as the oxidizing agent revealed that the enzyme retains its catalytic activity. Moreover, the activity was found to depend on the TTRLys108@FeMC6*a/unmodified TTR(105-115) peptide ratio. In particular, those with the 2:100 ratio showed the highest activity in terms of initial rates and substrate conversion among the screened nanoconjugates and compared to the freely diffusing enzyme. Finally, the newly developed nanomaterials were integrated into a flow system based on a polyvinylidene difluoride membrane filter. Within this flow-reactor, multiple reaction cycles were performed, showcasing the reusability and stability of the catalytic amyloids over extended periods, thus offering significantly improved characteristics compared to the isolated FeMC6*a in the application to a number of practical scenarios.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuliana Fusco
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126 Naples, Italy
| |
Collapse
|
6
|
Wang Q, Jiu R, Wang Y, Li Z, Chen J, Liu H, Liu J, Cao J. Degradation and detection of organophosphorus pesticides based on peptides and MXene-peptide composite materials. Analyst 2024; 149:3951-3960. [PMID: 38940008 DOI: 10.1039/d4an00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
Collapse
Affiliation(s)
- Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jia Cao
- Tianjin Vocational College of Bioengineering, China
| |
Collapse
|
7
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
8
|
Wang Y, Pan T, Li J, Zou L, Wei X, Zhang Q, Wei T, Xu L, Ulijn RV, Zhang C. Developing Isomeric Peptides for Mimicking the Sequence-Activity Landscapes of Enzyme Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22369-22378. [PMID: 38644563 DOI: 10.1021/acsami.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution. Our investigations reveal the profound impact of peptide sequence variations on both assembly behavior and catalytic activity as hydrolytic simulation enzymes. During self-assembly, a delicate balance of multiple intermolecular interactions, particularly hydrogen bonding and aromatic-aromatic interactions, influences nanostructure formation, yielding various morphologies (e.g., nanofibers, nanospheres, and nanodiscs). Furthermore, the analysis of the structure-activity relationship demonstrates a strong correlation between the distribution of the His active site on the nanostructures and the formation of the catalytic microenvironment. This investigation of the sequence-structure-activity paradigm reflects how natural enzymes enhance catalytic activity by adjusting the primary structure during evolution, promoting fundamental research related to enzyme evolutionary processes.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tiezheng Pan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuewen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, New York 10031, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Li L, Xu W, Wu Z, Geng W, Li S, Sun S, Wang M, Cheng C, Zhao C. Engineering Zinc-Organic Frameworks-Based Artificial Carbonic Anhydrase with Ultrafast Biomimetic Centers for Efficient Hydration Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307537. [PMID: 37939303 DOI: 10.1002/smll.202307537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.
Collapse
Affiliation(s)
- Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Chen J, Shi K, Chen R, Zhai Z, Song P, Chow LW, Chandrawati R, Pashuck ET, Jiao F, Lin Y. Supramolecular Hydrolase Mimics in Equilibrium and Kinetically Trapped States. Angew Chem Int Ed Engl 2024; 63:e202317887. [PMID: 38161176 DOI: 10.1002/anie.202317887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The folding of proteins into intricate three-dimensional structures to achieve biological functions, such as catalysis, is governed by both kinetic and thermodynamic controls. The quest to design artificial enzymes using minimalist peptides seeks to emulate supramolecular structures existing in a catalytically active state. Drawing inspiration from the nuanced process of protein folding, our study explores the enzyme-like activity of amphiphilic peptide nanosystems in both equilibrium and non-equilibrium states, featuring the formation of supramolecular nanofibrils and nanosheets. In contrast to thermodynamically stable nanosheets, the kinetically trapped nanofibrils exhibit dynamic characteristics (e.g., rapid molecular exchange and relatively weak intermolecular packing), resulting in a higher hydrolase-mimicking activity. We emphasize that a supramolecular microenvironment characterized by an optimal local polarity, microviscosity, and β-sheet hydrogen bonding is conducive to both substrate binding and ester bond hydrolysis. Our work underscores the pivotal role of both thermodynamic and kinetic control in impacting biomimetic catalysis and sheds a light on the development of artificial enzymes.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongjing Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyi Zhai
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Rona Chandrawati
- School of Chemical Engineering, Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Janković P, Kalafatovic D. Determining the esterase activity of peptides and peptide assemblies. Methods Enzymol 2024; 697:423-433. [PMID: 38816131 DOI: 10.1016/bs.mie.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Catalytic peptides are gaining attention as alternatives to enzymes, especially in industrial applications. Recent advances in peptide design have improved their catalytic efficiency with approaches such as self-assembly and metal ion complexation. However, the fundamental principles governing peptide catalysis at the sequence level are still being explored. Ester hydrolysis, a well-studied reaction, serves as a widely employed method to evaluate the catalytic potential of peptides. The standard colorimetric reaction involving para-nitrophenyl acetate hydrolysis acts as a benchmark assay, providing a straightforward and efficient screening method for rapidly identifying potential catalysts. However, maintaining standardized conditions is crucial for reproducible results, given that factors such as pH, temperature, and substrate concentration can introduce unwanted variability. This necessity becomes particularly pronounced when working with peptides, which often exhibit slower reaction rates compared to enzymes, making even minor variations significantly influential on the final outcome. In this context, we present a refined protocol for assessing the catalytic activity of peptides and peptide assemblies, addressing critical considerations for reproducibility and accuracy.
Collapse
Affiliation(s)
- Patrizia Janković
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
12
|
Tiwari OS, Gazit E. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods Enzymol 2024; 697:181-209. [PMID: 38816123 DOI: 10.1016/bs.mie.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
While enzymes are potentially useful in various applications, their limited operational stability and production costs have led to an extensive search for stable catalytic agents that will retain the efficiency, specificity, and environmental-friendliness of natural enzymes. Despite extensive efforts, there is still an unmet need for improved enzyme mimics and novel concepts to discover and optimize such agents. Inspired by the catalytic activity of amyloids and the formation of amyloid-like assemblies by metabolites, our group pioneered the development of novel metabolite-metal co-assemblies (bio-nanozymes) that produce nanomaterials mimicking the catalytic function of common metalloenzymes that are being used for various technological applications. In addition to their notable activity, bio-nanozymes are remarkably safe as they are purely composed of amino acids and minerals that are harmless to the environment. The bio-nanozymes exhibit high efficiency and exceptional robustness, even under extreme conditions of temperature, pH, and salinity that are impractical for enzymes. Our group has recently also demonstrated the formation of ordered amino acid co-assemblies showing selective and preferential interactions comparable to the organization of residues in folded proteins. The identified bio-nanozymes can be used in various applications including environmental remediation, synthesis of new materials, and green energy.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Rathee P, Moorkkannur SN, Prabhakar R. Structural studies of catalytic peptides using molecular dynamics simulations. Methods Enzymol 2024; 697:151-180. [PMID: 38816122 DOI: 10.1016/bs.mie.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Many self-assembling peptides can form amyloid like structures with different sizes and morphologies. Driven by non-covalent interactions, their aggregation can occur through distinct pathways. Additionally, they can bind metal ions to create enzyme like active sites that allow them to catalyze diverse reactions. Due to the non-crystalline nature of amyloids, it is quite challenging to elucidate their structures using experimental spectroscopic techniques. In this aspect, molecular dynamics (MD) simulations provide a useful tool to derive structures of these macromolecules in solution. They can be further validated by comparing with experimentally measured structural parameters. However, these simulations require a multi-step process starting from the selection of the initial structure to the analysis of MD trajectories. There are multiple force fields, parametrization protocols, equilibration processes, software and analysis tools available for this process. Therefore, it is complicated for non-experts to select the most relevant tools and perform these simulations effectively. In this chapter, a systematic methodology that covers all major aspects of modeling of catalytic peptides is provided in a user-friendly manner. It will be helpful for researchers in this critical area of research.
Collapse
Affiliation(s)
- Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, United States.
| |
Collapse
|
14
|
Dadakhani S, Dehghan G, Khataee A, Erfanparast A. Design and application of histidine-functionalized ZnCr-LDH nanozyme for promoting bacteria-infected wound healing. RSC Adv 2024; 14:1195-1206. [PMID: 38174270 PMCID: PMC10762333 DOI: 10.1039/d3ra07364e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Excessive use of antibiotics can lead to an increase in antibiotic-resistant bacteria, which makes it a serious health threat. Therefore, developing new materials with antibacterial activity, such as nanozymes, has gained considerable attention. Reactive oxygen species (ROS) produced by nanozymes have rapid and effective antibacterial efficacy. Here, histidine (His) modified ZnCr layered double hydroxide (LDH) was synthesized inspired by the natural enzyme, and the enzyme-like activity of His/ZnCr-LDH was tested using a colorimetric method. Then, we developed an acid-enhanced antibacterial method based on the high peroxidase-like activity of His/ZnCr-LDH, and its ROS-generating capability in the presence of glucose oxidase (GOx) and glucose (Glu) as a source of hydrogen peroxide (H2O2). Gluconic acid (GA), the main product of the GOx reaction, provides an acidic environment and promotes ROS generation. The mentioned strategy shows high antibacterial activity at a low minimum inhibitory concentration (MIC) which represents the potential of His/ZnCr-LDH for effective bacterial elimination (3.5 μg mL-1 for S. aureus and 6 μg mL-1 for E. coli). In addition, animal experiments illustrated that the His/ZnCr-LDH can successfully boost the curing of infected wounds. The outcomes indicate that amino acid modified LDHs offer a new strategy for effective bacterial removal in different medical applications.
Collapse
Affiliation(s)
- Sonya Dadakhani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz 51666-16471 Tabriz Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz 51666-16471 Tabriz Iran
| | - Alireza Khataee
- Department of Applied Chemistry, Faculty of Chemistry, Research Laboratory of Advanced Water and Wastewater Treatment Processes, University of Tabriz 51666-16471 Tabriz Iran
- Department of Chemical Engineering, Istanbul Technical University 34469 Istanbul Turkey
| | - Amir Erfanparast
- Department of Basic Sciences, Division of Physiology, Faculty of Veterinary Medicine, Urmia University 575615-1818 Urmia Iran
| |
Collapse
|
15
|
Liu N, Gao P, Lu HY, Fang L, Nicolas J, Ha-Duong T, Shen JS. Polyfluoroalkyl Chain-Based Assemblies for Biomimetic Catalysis. Chemistry 2024; 30:e202302669. [PMID: 37823686 DOI: 10.1002/chem.202302669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ was lowered by ∼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.
Collapse
Affiliation(s)
- Ning Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ping Gao
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Hai-Yan Lu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lei Fang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Julien Nicolas
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
16
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Singh A, Goswami S, Singh P, Das D. Exploitation of Catalytic Dyads by Short Peptide-Based Nanotubes for Enantioselective Covalent Catalysis. Angew Chem Int Ed Engl 2023; 62:e202315716. [PMID: 37922218 DOI: 10.1002/anie.202315716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/05/2023]
Abstract
Extant enzymes with precisely arranged multiple residues in their three-dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide-based nanotubes that could exploit multiple solvent-exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double-site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide-based folds and argues their possible role in the emergence of homochiral chemical inventory.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surashree Goswami
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Priyanshu Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
18
|
Le NTK, Kang EJ, Park JH, Kang K. Catechol-Amyloid Interactions. Chembiochem 2023; 24:e202300628. [PMID: 37850717 DOI: 10.1002/cbic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
19
|
Sanchis I, Spinelli R, Siano A. Acetylcholine hydrolytic activity of fibrillated β-amyloid (1-40) peptide. Amino Acids 2023; 55:1991-1997. [PMID: 37904049 DOI: 10.1007/s00726-023-03349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
Alzheimer's disease is characterized by the presence of senile plaques composed of β-amyloid peptide (Aβ) aggregates with toxic effects that are still not fully understood. Recently, it was discovered that Aβ(1-42) fibrils possess catalytic activity on acetylcholine hydrolysis. Catalytic amyloids are an emerging and exciting field of research. In this study, we examined the catalytic activity of the fibrils formed by Aβ(1-40), the most abundant Aβ variant, on acetylcholine hydrolysis. Our findings reveal that Aβ(1-40) fibrils exhibit moderate enzymatic activity, indicating that natural peptide aggregates could serve as biocatalysts and provide new insights into the potential role of Aβ in neurological disorders.
Collapse
Affiliation(s)
- Ivan Sanchis
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Roque Spinelli
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Alvaro Siano
- Laboratory of Bioactive Peptides, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.
- Ministry of Science, Technology and Innovation, National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
20
|
Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Lett 2023; 597:2879-2896. [PMID: 37884438 DOI: 10.1002/1873-3468.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization. We focus on the influence of molecular assembly on hydrolysis rates in aqueous media and suggest that assembly was crucial for biopolymer selection. In this model, incremental enrichment of some molecular species during chemical evolution was partially driven by the interplay of kinetics of synthesis and hydrolysis. We document a general attenuation of hydrolysis by assembly (i.e., recalcitrance) for all universal biopolymers and highlight the likely role of assembly in the survival of the 'fittest' molecules during chemical evolution.
Collapse
Affiliation(s)
- Rotem Edri
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Sarah Fisher
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Cesar Menor-Salvan
- Department of Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Moran Frenkel-Pinter
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
21
|
Song Q, Cheng Z, Perrier S. Supramolecular peptide nanotubes as artificial enzymes for catalysing ester hydrolysis. Polym Chem 2023; 14:4712-4718. [PMID: 38013987 PMCID: PMC10594401 DOI: 10.1039/d3py00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/29/2023]
Abstract
Peptide-based artificial enzymes are attracting significant interest because of their remarkable resemblance in both composition and structure to native enzymes. Herein, we report the construction of histidine-containing cyclic peptide-based supramolecular polymeric nanotubes to function as artificial enzymes for ester hydrolysis. The optimized catalyst shows a ca. 70-fold increase in reaction rate compared to the un-catalysed reaction when using 4-nitrophenyl acetate as a model substrate. Furthermore, the amphiphilic nature of the supramolecular catalysts enables an enhanced catalytic activity towards hydrophobic substrates. By incorporating an internal hydrophobic region within the self-assembled polymeric nanotube, we achieve a 55.4-fold acceleration in hydrolysis rate towards a more hydrophobic substrate, 4-nitrophenyl butyrate. This study introduces supramolecular peptide nanotubes as an innovative class of supramolecular scaffolds for fabricating artificial enzymes with better structural and chemical stability, catalysing not only ester hydrolysis, but also a broader spectrum of catalytic reactions.
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Zihe Cheng
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
22
|
Rahmanian M, Ghahremani A, Kesharwani P, Oroojalian F, Sahebkar A. Nanomedicine innovations in spinal cord injury management: Bridging the gap. ENVIRONMENTAL RESEARCH 2023; 235:116563. [PMID: 37423366 DOI: 10.1016/j.envres.2023.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Spinal cord injury (SCI) has devastating effects on a person's physical, social, and professional well-being. It is a life-altering neurological condition that significantly impacts individuals and their caregivers on a socioeconomic level. Recent advancements in medical therapy have greatly improved the diagnosis, stability, survival rates, and overall well-being of SCI patients. However, there are still limited options available for enhancing neurological outcomes in these patients. The complex pathophysiology of SCI, along with the numerous biochemical and physiological changes that occur in the damaged spinal cord, contribute to this gradual improvement. Currently, there are no therapies that offer the possibility of recovery for SCI, although several therapeutic approaches are being developed. However, these therapies are still in the early stages and have not yet demonstrated effectiveness in repairing the damaged fibers, which hinders cellular regeneration and the full restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering in treating neural tissue injuries, this review focuses on the latest advancements in nanotechnology for SCI therapy and tissue healing. It examines research articles from the PubMed database that specifically address SCI in the field of tissue engineering, with an emphasis on nanotechnology as a therapeutic approach. The review evaluates the biomaterials used for treating this condition and the techniques employed to create nanostructured biomaterials.
Collapse
Affiliation(s)
- Mohsen Rahmanian
- School of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Amirali Ghahremani
- Department of Neurology, North Khorasan University of Medical Sciences, Bojnord, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Chen X, Kriebisch BAK, Bergmann AM, Boekhoven J. Design rules for reciprocal coupling in chemically fueled assembly. Chem Sci 2023; 14:10176-10183. [PMID: 37772095 PMCID: PMC10530897 DOI: 10.1039/d3sc02062b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Biology regulates the function and assembly of proteins through non-equilibrium reaction cycles. Reciprocally, the assembly of proteins can influence the reaction rates of these cycles. Such reciprocal coupling between assembly and reaction cycle is a prerequisite for behavior like dynamic instabilities, treadmilling, pattern formation, and oscillations between morphologies. While assemblies regulated by chemical reaction cycles gained traction, the concept of reciprocal coupling is under-explored. In this work, we provide two molecular design strategies to tweak the degree of reciprocal coupling between the assembly and reaction cycle. The strategies involve spacing the chemically active site away from the assembly or burying it into the assembly. We envision that design strategies facilitate the creation of reciprocally coupled and, by extension, dynamic supramolecular materials in the future.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Brigitte A K Kriebisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
24
|
Qin Q, Li J, Dellemme D, Fossépré M, Barozzino-Consiglio G, Nekkaa I, Boborodea A, Fernandes AE, Glinel K, Surin M, Jonas AM. Dynamic self-assembly of supramolecular catalysts from precision macromolecules. Chem Sci 2023; 14:9283-9292. [PMID: 37712032 PMCID: PMC10498719 DOI: 10.1039/d3sc03133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
We show the emergence of strong catalytic activity at low concentrations in dynamic libraries of complementary sequence-defined oligomeric chains comprising pendant functional catalytic groups and terminal recognition units. In solution, the dynamic constitutional library created from pairs of such complementary oligomers comprises free oligomers, self-assembled di(oligomeric) macrocycles, and a virtually infinite collection of linear poly(oligomeric) chains. We demonstrate, on an exemplary catalytic system requiring the cooperation of no less than five chemical groups, that supramolecular di(oligomeric) macrocycles exhibit a catalytic turnover frequency ca. 20 times larger than the whole collection of linear poly(oligomers) and free chains. Molecular dynamics simulations and network analysis indicate that self-assembled supramolecular di(oligomeric) macrocycles are stabilized by different interactions, among which chain end pairing. We mathematically model the catalytic properties of such complex dynamic libraries with a small set of physically relevant parameters, which provides guidelines for the synthesis of oligomers capable to self-assemble into functionally-active supramolecular macrocycles over a larger range of concentrations.
Collapse
Affiliation(s)
- Qian Qin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Jie Li
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Gabriella Barozzino-Consiglio
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Imane Nekkaa
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | | | - Antony E Fernandes
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
- Certech rue Jules Bordet 45 7180 Seneffe Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| |
Collapse
|
25
|
Muñoz-Gutiérrez C, Adasme-Carreño F, Alzate-Morales J, Ireta J. Effect of strand register in the stability and reactivity of crystals from peptides forming amyloid fibrils. Phys Chem Chem Phys 2023; 25:23885-23893. [PMID: 37642522 DOI: 10.1039/d3cp01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Amyloids are cytotoxic protein aggregates that deposit in human tissues, leading to several health disorders. Their aggregates can also exhibit catalytic properties, and they have been used as candidates for the development of functional biomaterials. Despite being polymorphic, amyloids often assemble as cross-β fibrils formed by in-register β sheet layers. Recent studies of some amyloidogenic protein segments revealed that they crystallize as antiparallel out-of-register β sheets. Such arrangement has been proposed to be responsible for the cytotoxicity in amyloid diseases, however, there is still no consensus on the molecular mechanism. Interestingly, two amyloidogenic peptide segments, NFGAILS and FGAILSS, arrange into out-of-register and in-register β sheets, respectively, even though they solely differ by one aminoacid residue at both termini. In this work, we used density functional theory (DFT) to address how the strand register contributes into the packing and molecular properties of the NFGAILS and FGAILSS crystals. Our results show that the out-of-register structure is substantially more stable, at 0 K, than the in-register one due to stronger inter-strand contacts. Based on an analysis of the electrostatic potential of the crystal slabs, it is suggested that the out-of-register may potentially interact with negatively charged groups, like those found in cell membranes. Moreover, calculated reactivity descriptors indicate a similar outcome, where only the out-of-register peptide exhibits intrinsic reactive surface sites at the exposed amine and carboxylic groups. It is therefore suggested that the out-of-register arrangement may indeed be crucial for amyloid cytotoxicity. The findings presented here could help to further our understanding of amyloid aggregation, function, and toxicity.
Collapse
Affiliation(s)
- Camila Muñoz-Gutiérrez
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Box 721, Talca, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480112, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Box 721, Talca, Chile
| | - Joel Ireta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Ciudad de México 09340, Mexico.
| |
Collapse
|
26
|
Navarro S, Díaz-Caballero M, Peccati F, Roldán-Martín L, Sodupe M, Ventura S. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes. ACS NANO 2023; 17:16968-16979. [PMID: 37647583 PMCID: PMC10510724 DOI: 10.1021/acsnano.3c04164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Enzymes typically fold into defined 3D protein structures exhibiting a high catalytic efficiency and selectivity. It has been proposed that the earliest enzymes may have arisen from the self-assembly of short peptides into supramolecular amyloid-like structures. Several artificial amyloids have been shown to display catalytic activity while offering advantages over natural enzymes in terms of modularity, flexibility, stability, and reusability. Hydrolases, especially esterases, are the most common artificial amyloid-like nanozymes with some reported to act as carbonic anhydrases (CA). Their hydrolytic activity is often dependent on the binding of metallic cofactors through a coordination triad composed of His residues in the β-strands, which mimic the arrangement found in natural metalloenzymes. Tyr residues contribute to the coordination of metal ions in the active center of metalloproteins; however, their use has been mostly neglected in the design of metal-containing amyloid-based nanozymes. We recently reported that four different polar prion-inspired heptapeptides spontaneously self-assembled into amyloid fibrils. Their sequences lack His but contain three alternate Tyr residues exposed to solvent. We combine experiments and simulations to demonstrate that the amyloid fibrils formed by these peptides can efficiently coordinate and retain different divalent metal cations, functioning as both metal scavengers and nanozymes. The metallized fibrils exhibit esterase and CA activities without the need for a histidine triad. These findings highlight the functional versatility of prion-inspired peptide assemblies and provide a new sequential context for the creation of artificial metalloenzymes. Furthermore, our data support amyloid-like structures acting as ancestral catalysts at the origin of life.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Marta Díaz-Caballero
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Francesca Peccati
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), 48160 Derio, Spain
| | - Lorena Roldán-Martín
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Mariona Sodupe
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut
de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
27
|
Li Z, Joshi SY, Wang Y, Deshmukh SA, Matson JB. Supramolecular Peptide Nanostructures Regulate Catalytic Efficiency and Selectivity. Angew Chem Int Ed Engl 2023; 62:e202303755. [PMID: 37194941 PMCID: PMC10330506 DOI: 10.1002/anie.202303755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/18/2023]
Abstract
We report three constitutionally isomeric tetrapeptides, each comprising one glutamic acid (E) residue, one histidine (H) residue, and two lysine (KS ) residues functionalized with side-chain hydrophobic S-aroylthiooxime (SATO) groups. Depending on the order of amino acids, these amphiphilic peptides self-assembled in aqueous solution into different nanostructures:nanoribbons, a mixture of nanotoroids and nanoribbons, or nanocoils. Each nanostructure catalyzed hydrolysis of a model substrate, with the nanocoils exhibiting the greatest rate enhancement and the highest enzymatic efficiency. Coarse-grained molecular dynamics simulations, analyzed with unsupervised machine learning, revealed clusters of H residues in hydrophobic pockets along the outer edge of the nanocoils, providing insight for the observed catalytic rate enhancement. Finally, all three supramolecular nanostructures catalyzed hydrolysis of the l-substrate only when a pair of enantiomeric Boc-l/d-Phe-ONp substrates were tested. This study highlights how subtle molecular-level changes can influence supramolecular nanostructures, and ultimately affect catalytic efficiency.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| | - John B Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, USA
| |
Collapse
|
28
|
Janković P, Otović E, Mauša G, Kalafatovic D. Manually curated dataset of catalytic peptides for ester hydrolysis. Data Brief 2023; 48:109290. [PMID: 37383747 PMCID: PMC10294096 DOI: 10.1016/j.dib.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Catalytic peptides are low cost biomolecules able to catalyse chemical reactions such as ester hydrolysis. This dataset provides a list of catalytic peptides currently reported in literature. Several parameters were evaluated, including sequence length, composition, net charge, isoelectric point, hydrophobicity, self-assembly propensity and mechanism of catalysis. Along with the analysis of physico-chemical properties, the SMILES representation for each sequence was generated to provide an easy-to-use means of training machine learning models. This offers a unique opportunity for the development and validation of proof-of-concept predictive models. Being a reliable manually curated dataset, it also enables the benchmark for comparison of new models or models trained on automatically gathered peptide-oriented datasets. Moreover, the dataset provides an insight in the currently developed catalytic mechanisms and can be used as the foundation for the development of next-generation peptide-based catalysts.
Collapse
Affiliation(s)
- Patrizia Janković
- University of Rijeka, Department of Biotechnology, Rijeka 51000, Croatia
| | - Erik Otović
- University of Rijeka, Faculty of Engineering, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| | - Goran Mauša
- University of Rijeka, Faculty of Engineering, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| | - Daniela Kalafatovic
- University of Rijeka, Department of Biotechnology, Rijeka 51000, Croatia
- University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka 51000, Croatia
| |
Collapse
|
29
|
Tian Y, Yang L, Peng X, Qi W, Wang M. A covalent crosslinking strategy to construct a robust peptide-based artificial esterase. SOFT MATTER 2023; 19:3458-3463. [PMID: 37129250 DOI: 10.1039/d3sm00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peptide-based artificial enzymes derived from the supramolecular assembly of short peptides have attracted growing attention in recent years. However, the stability of these artificial enzymes is still a problem since their noncovalent supramolecular structure is quite sensitive and frail under environmental conditions. In this study, we reported a covalent crosslinking strategy for the fabrication of a robust peptide-based artificial esterase. Inspired by the di-tyrosine bonds in many natural structural proteins, multi-tyrosines were designed into a peptide sequence with histidine as the catalytic residue for the ester hydrolysis reaction. Upon the photo-induced oxidation reaction, the short peptide YYHYY rapidly transferred into nanoparticle-shaped aggregates (CL-YYHYY) and displayed improved esterase-like catalytic activity than some previously reported noncovalent-based artificial esterases. Impressively, CL-YYHYY showed outstanding reusability and superior stability under high temperature, strong acid and alkaline and organic solvent conditions. This study provides a promising approach to improving the catalytic activity and stability of peptide-based artificial enzymes.
Collapse
Affiliation(s)
- Yi Tian
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| |
Collapse
|
30
|
Wang Z, Lu Y, Yang J, Xiao W, Chen T, Yi C, Xu Z. Engineering the Hydrophobic Microenvironment in Polystyrene-Supported Artificial Catalytic Triad Nanocatalysts: An Effective Strategy for Improving Catalytic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5929-5935. [PMID: 37040596 DOI: 10.1021/acs.langmuir.3c00486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hydrophobic environments have been identified as one of the main parameters affecting the catalytic performance of artificial catalytic triads but are often ignored as an approach to engineering these catalysts. Here, we have developed a simple yet powerful strategy to engineer the hydrophobic environment in polystyrene-supported artificial catalytic triad (PSACT) nanocatalysts. Hydrophobic copolymers containing either oligo(ethylene glycol) side chains or hydrocarbon side chains were synthesized and used for the preparation of nanocatalysts through nanoprecipitation in aqueous media. By using the hydrolysis of 4-nitrophenyl acetate (4NA) as a model reaction, we studied the influence of chemical structures and effective constituent ratios of hydrophobic copolymers on the catalytic performance of PSACT nanocatalysts. Additionally, PSACT nanocatalysts could catalyze the hydrolysis of a few carboxylic esters, even polymers, and be reused for five consecutive runs without significant loss of catalytic activity. This strategy may open an avenue for engineering other artificial enzymes, and these PSACT nanocatalysts have potential applications for the hydrolysis of carboxylic esters.
Collapse
Affiliation(s)
- Zihao Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinxiang Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wei Xiao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
31
|
Zheng T, Tang Q, Wan L, Zhao Y, Xu R, Xu X, Li H, Han D. Controlled Self-Assembly of the Catalytic Core of Hydrolases Using DNA Scaffolds. NANO LETTERS 2023; 23:2081-2086. [PMID: 36854101 DOI: 10.1021/acs.nanolett.2c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precisely organizing functional molecules of the catalytic cores in natural enzymes to promote catalytic performance is a challenging goal in respect to artificial enzyme construction. In this work, we report a DNA-scaffolded mimicry of the catalytic cores of hydrolases, which showed a controllable and hierarchical acceleration of the hydrolysis of fluorescein diacetate (FDA). The results revealed that the efficiency of hydrolysis was greatly increased by the DNA-scaffold-induced proximity of catalytic amino acid residues (histidine and arginine) with up to 4-fold improvement relative to the free amino acids. In addition, DNA-scaffolded one-dimensional and two-dimensional assemblies of multiple catalytic cores could further accelerate the hydrolysis. This work demonstrated that the DNA-guided assembly could be used as a promising platform to build enzyme mimics in a programmable and hierarchical way.
Collapse
Affiliation(s)
- Tingting Zheng
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Tang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumeng Zhao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haowen Li
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
32
|
Heerde T, Bansal A, Schmidt M, Fändrich M. Cryo-EM structure of a catalytic amyloid fibril. Sci Rep 2023; 13:4070. [PMID: 36906667 PMCID: PMC10008563 DOI: 10.1038/s41598-023-30711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Catalytic amyloid fibrils are novel types of bioinspired, functional materials that combine the chemical and mechanical robustness of amyloids with the ability to catalyze a certain chemical reaction. In this study we used cryo-electron microcopy to analyze the amyloid fibril structure and the catalytic center of amyloid fibrils that hydrolyze ester bonds. Our findings show that catalytic amyloid fibrils are polymorphic and consist of similarly structured, zipper-like building blocks that consist of mated cross-β sheets. These building blocks define the fibril core, which is decorated by a peripheral leaflet of peptide molecules. The observed structural arrangement differs from previously described catalytic amyloid fibrils and yielded a new model of the catalytic center.
Collapse
Affiliation(s)
- Thomas Heerde
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Akanksha Bansal
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
33
|
Wu Y, Xia T, Ma X, Lei L, Du L, Xu X, Liu X, Shi Y, Li X, Lin D. Autocatalytic strategy for tunning drug release from peptide-drug supramolecular hydrogel. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
34
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
35
|
Zhao Z, Zhang Z, Zhang H, Liang Z. Small Peptides in the Detection of Mycotoxins and Their Potential Applications in Mycotoxin Removal. Toxins (Basel) 2022; 14:toxins14110795. [PMID: 36422969 PMCID: PMC9698726 DOI: 10.3390/toxins14110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins pose significant risks to humans and livestock. In addition, contaminated food- and feedstuffs can only be discarded, leading to increased economic losses and potential ecological pollution. Mycotoxin removal and real-time toxin level monitoring are effective approaches to solve this problem. As a hot research hotspot, small peptides derived from phage display peptide libraries, combinatorial peptide libraries, and rational design approaches can act as coating antigens, competitive antigens, and anti-immune complexes in immunoassays for the detection of mycotoxins. Furthermore, as a potential approach to mycotoxin degradation, small peptides can mimic the natural enzyme catalytic site to construct artificial enzymes containing oxidoreductases, hydrolase, and lyase activities. In summary, with the advantages of mature synthesis protocols, diverse structures, and excellent biocompatibility, also sharing their chemical structure with natural proteins, small peptides are widely used for mycotoxin detection and artificial enzyme construction, which have promising applications in mycotoxin degradation. This paper mainly reviews the advances of small peptides in the detection of mycotoxins, the construction of peptide-based artificial enzymes, and their potential applications in mycotoxin control.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737055
| |
Collapse
|
36
|
Diaz-Espinoza R. Catalytically Active Amyloids as Future Bionanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3802. [PMID: 36364578 PMCID: PMC9656882 DOI: 10.3390/nano12213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Peptides and proteins can aggregate into highly ordered and structured conformations called amyloids. These supramolecular structures generally have convergent features, such as the formation of intermolecular beta sheets, that lead to fibrillary architectures. The resulting fibrils have unique mechanical properties that can be exploited to develop novel nanomaterials. In recent years, sequences of small peptides have been rationally designed to self-assemble into amyloids that catalyze several chemical reactions. These amyloids exhibit reactive surfaces that can mimic the active sites of enzymes. In this review, I provide a state-of-the-art summary of the development of catalytically active amyloids. I will focus especially on catalytic activities mediated by hydrolysis, which are the most studied examples to date, as well as novel types of recently reported activities that promise to expand the possible repertoires. The combination of mechanical properties with catalytic activity in an amyloid scaffold has great potential for the development of future bionanomaterials aimed at specific applications.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 3363, Chile
| |
Collapse
|
37
|
Singh A, Joo JU, Kim DP. Microfluidic-driven ultrafast self-assembly of a dipeptide into stimuli-responsive 0D, 1D, and 2D nanostructures and as hydrolase mimic. NANOSCALE 2022; 14:15010-15020. [PMID: 36193959 DOI: 10.1039/d2nr03092f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous peptides have been utilized to explore the efficacy of their self-assembly to produce nanostructures to mimic the self-organization capability of biomolecules in nature. Self-assembled nanostructures have significant applicability for a range of diverse applications. While the ability to create self-assembled functional materials has greatly improved, the self-assembly process, which results in ordered 0D, 1D, and 2D nanostructures, is still time-consuming. Moreover, in situ structural transformation from one self-assembled structure to another with different dimensions presents an additional challenge. Therefore, in this report, we demonstrate self-assembly in an ultrafast fashion to access four different nanostructures, namely, twisted bundle (TB), nanoparticle (NP), nanofiber (NF), and nanosheet (NS), from a simple dipeptide with the aid of simple microfluidic reactors by applying different stimuli. Additionally, an integrated microfluidic system enabled rapid structural switchover between two types in an ultrashort period of time. It is interesting to note that the formation of the twisted bundle (TB) morphology enabled the formation of an extended entangled network, which resulted in the formation of a hydrogel (1 w/v%). In addition, the nanostructures obtained using the ultrafast self-assembly process were investigated to study their hydrolase enzyme activity mimicking performance against a model substrate (p-NPA) reaction. Intriguingly, we found that our nanostructures were suitably well ordered, and when taking molecular mass into consideration, showed improved catalytic efficiency as compared to the native enzymes.
Collapse
Affiliation(s)
- Ashmeet Singh
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jeong-Un Joo
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
38
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
39
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
40
|
Liang S, Wu XL, Zong MH, Lou WY. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J Colloid Interface Sci 2022; 622:860-870. [PMID: 35561606 DOI: 10.1016/j.jcis.2022.04.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Nanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides. Under mild condition, divalent zinc (Zn2+) impelled the spontaneous assembly of short peptides (i.e. Ac-IHIHIQI-CONH2, Ac-IHIHIYI-CONH2, and Ac-IHVHLQI-CONH2), forming hydrolase-mimicking bionanozymes with β-sheet secondary conformation and nanofibrous architecture. As expected, the resultant bionanozymes were able to hydrolyze a serious of p-nitrophenyl esters, including not only the simple substrate with short side-chain (p-NPA), but also more complicated ones (p-NPB, p-NPH, p-NPO, and p-NPS). Moreover, the self-assembled Zn-heptapeptide bionanozymes were also proven to be capable of degrading di(2-ethylhexyl) phthalate (DEHP), a typical plasticizer, showing great potential for environmental remediation. Based on this study, we aim to provide theoretical references and exemplify a specific case for directing the construction and application of bionanozyme.
Collapse
Affiliation(s)
- Shan Liang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
41
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Teng Q, Wu H, Sun H, Liu Y, Wang H, Wang ZG. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J Colloid Interface Sci 2022; 628:1004-1011. [PMID: 35970126 DOI: 10.1016/j.jcis.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Reconstruction of enzymatic active site in an artificial system is key to achieving high catalytic efficiency. Herein, we report the self-assembly of the lysine-containing peptides with guanine-rich DNA and hemin to form peroxidase-mimicking active sites and catalytic nanoparticles. The DNA strand self-folds into a G-quadruplex structure that provides a supramolecular scaffold and a potential axial ligand for hemin. The β-sheet forming capability of the lysine-containing peptides is found to affect the catalytic synergy between the G-quadruplex DNA and the peptide. It is hypothesized that the β-sheet formation of the peptides results in the enrichment of the lysine residues, which distribute on the distal side of hemin to promote the formation of Compound I, like distal arginine residue in natural heme pocket. Incorporation of the histidine residues into the lysine-containing peptides further enhanced the hemin activities, indicating the cooperation between the lysine and histidine. Furthermore, the peptide/DNA/hemin complexes can be switched between active and inactive state by reversible formation and deformation of the DNA G-quadruplex, which was attributed to the peptides-promoted conformational changes of the DNA components. This work opens an avenue to mimic the catalytic residues and their spatial distribution in the natural enzymes, and shed light on the design of the smart biocatalysts that can respond to the environmental stimuli.
Collapse
Affiliation(s)
- Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
43
|
Arad E, Jelinek R. Catalytic amyloids. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Bioinspired enzymatic compartments constructed by spatiotemporally confined in situ self-assembly of catalytic peptide. Commun Chem 2022; 5:81. [PMID: 36697908 PMCID: PMC9814850 DOI: 10.1038/s42004-022-00700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023] Open
Abstract
Enzymatic compartments, inspired by cell compartmentalization, which bring enzymes and substrates together in confined environments, are of particular interest in ensuring the enhanced catalytic efficiency and increased lifetime of encapsulated enzymes. Herein, we constructed bioinspired enzymatic compartments (TPE-Q18H@GPs) with semi-permeability by spatiotemporally controllable self-assembly of catalytic peptide TPE-Q18H in hollow porous glucan particles (GPs), allowing substrates and products to pass in/out freely, while enzymatic aggregations were retained. Due to the enrichment of substrates and synergistic effect of catalytic nanofibers formed in the confined environment, the enzymatic compartments exhibited stronger substrate binding affinity and over two-fold enhancement of second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in disperse system. Moreover, GPs enabled the compartments sufficient stability against perturbation conditions, such as high temperature and degradation. This work opens an intriguing avenue to construct enzymatic compartments using porous biomass materials and has fundamental implications for constructing artificial organelles and even artificial cells.
Collapse
|
45
|
Wang Z, Yang J, Xiao W, Chen T, Yi C, Xu Z. Engineering of polystyrene-supported artificial catalytic triad constructed by nanoprecipitation for efficient ester hydrolysis in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Peng F, Liu J, Zhang Y, Zhao G, Gong D, He L, Zhang W, Qiu F. Interaction Between Ropivacaine and a Self-Assembling Peptide: A Nanoformulation for Long-Acting Analgesia. Int J Nanomedicine 2022; 17:3371-3384. [PMID: 35937079 PMCID: PMC9346411 DOI: 10.2147/ijn.s369706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jing Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yujun Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Guoyan Zhao
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Deying Gong
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Liu He
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Correspondence: Feng Qiu; Wensheng Zhang, Email ;
| |
Collapse
|
47
|
Yeniterzi D, Demirsoy Z, Saylam A, Özçubukçu S, Gülseren G. Nanoarchitectonics of Fullerene Based Enzyme Mimics for Osteogenic Induction of Stem Cells. Macromol Biosci 2022; 22:e2200079. [PMID: 35751428 DOI: 10.1002/mabi.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Indexed: 11/06/2022]
Abstract
Enzyme mimicry is a topic of considerable interest in the development of multifunctional biomimetic materials. Mimicking enzyme activity is a major challenge in biomaterials research, and artificial analogs that simultaneously recapitulate the catalytic and metabolic activity of native enzymes are considered to be the ultimate goal of this field. This consensus may be challenged by self-assembling multifunctional nanostructures to develop close-to-fidelity enzyme mimics. Here, we present the ability of fullerene nanostructures decorated with active units to form enzyme-like materials that can mimic phosphatases in a metal-free manner. These nanostructures self-assemble into nanoclusters forming multiple random active sites that can cleave both phosphomonoesters and phosphodiesters while being more specific for the phosphomonoesters. Moreover, they are reusable and show an increase in catalytic activity over multiple cycles similar to their natural counterparts. In addition to having enzyme-like catalytic properties, these nanocatalysts imitate the biological functions of their natural analogs by inducing biomineralization and osteoinduction in preosteoblast and mesenchymal stem cells in vitro studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dilara Yeniterzi
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Zeynep Demirsoy
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Aytül Saylam
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Gülcihan Gülseren
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey.,Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, 42080, Turkey
| |
Collapse
|
48
|
Xu J, Gao T, Sheng L, Wang Y, Lou C, Wang H, Liu Y, Cao A. Conformationally engineering flexible peptides on silver nanoparticles. iScience 2022; 25:104324. [PMID: 35601913 PMCID: PMC9117549 DOI: 10.1016/j.isci.2022.104324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular conformational engineering is to engineer flexible non-functional molecules into unique conformations to create novel functions just like natural proteins fold. Obviously, it is a grand challenge with tremendous opportunities. Based on the facts that natural proteins are only marginally stable with a net stabilizing energy roughly equivalent to the energy of two hydrogen bonds, and the energy barriers for the adatom diffusion of some metals are within a similar range, we propose that metal nanoparticles can serve as a general replacement of protein scaffolds to conformationally engineer protein fragments on the surface of nanoparticles. To prove this hypothesis, herein, we successfully restore the antigen-recognizing function of the flexible peptide fragment of a natural anti-lysozyme antibody on the surface of silver nanoparticles, creating a silver nanoparticle-base artificial antibody (Silverbody). A plausible mechanism is proposed, and some general principles for conformational engineering are summarized to guide future studies in this area. A silver NP-based artificial antibody is created by conformational engineering Function emerges on NPs from non-functional peptide by mimicking the protein folding A general mechanism is proposed for the conformational engineering on metal NPs
Collapse
Affiliation(s)
- Jia Xu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Tiange Gao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Lingjie Sheng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chenxi Lou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Corresponding author
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Corresponding author
| |
Collapse
|
49
|
Zhang Y, Tian X, Li X. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling. J Mater Chem B 2022; 10:3716-3722. [PMID: 35451448 DOI: 10.1039/d2tb00375a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modulating enzyme activities or functionalities is one of the primary features of biological systems, which is, however, a great challenge for artificial enzyme systems. In this work, we designed and synthesized a series of self-assembling peptides from histidine and other amino acids (Asp, Ser, Lys or Arg), which exist in the active site of natural enzymes. These peptides could undergo a conformational transition from random coils to β-sheet structures under physiological conditions and formed self-assembled nanotubes with obvious hydrolase activities. After incorporation of transition metal ions such as Cu2+, these peptides could coordinate with Cu2+ ions, switch molecular conformations, and self-assemble into hybrid nanomaterials with altered morphologies and peroxidase-like activities. This work illustrates a facile approach for constructing artificial enzymes from self-assembling peptides with histidine residues whose catalytic functions could be modulated by incorporation of Cu2+ ions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
50
|
Pan T, Wang Y, Xue X, Zhang C. Rational design of allosteric switchable catalysts. EXPLORATION (BEIJING, CHINA) 2022; 2:20210095. [PMID: 37323883 PMCID: PMC10191014 DOI: 10.1002/exp.20210095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2021] [Indexed: 06/16/2023]
Abstract
Allosteric regulation, in many cases, involves switching the activities of natural enzymes, which further affects the enzymatic network and cell signaling in the living systems. The research on the construction of allosteric switchable catalysts has attracted broad interests, aiming to control the progress and asymmetry of catalytic reactions, expand the chemical biology toolbox, substitute unstable natural enzymes in the biological detection and biosensors, and fabricate the biomimetic cascade reactions. Thus, in this review, we summarize the recent outstanding works in switchable catalysts based on the allosterism of single molecules, supramolecular complexes, and self-assemblies. The concept of allosterism was extended from natural proteins to polymers, organic molecules, and supramolecular systems. In terms of the difference between these building scaffolds, a variety of design methods that tailor biological and synthetic molecules into controllable catalysts were introduced with emphasis.
Collapse
Affiliation(s)
- Tiezheng Pan
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yaling Wang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| |
Collapse
|