1
|
Su L, Zhu X, Ding H, Hu L, Chen J, Qi S, Luo K, Ling W, Tian X. Intraoperative tumor mapping using pyridine-carbazole based multifunctional fluorescent probes for precise resection and photodynamic therapeutics. SENSORS AND ACTUATORS B: CHEMICAL 2024; 412:135792. [DOI: 10.1016/j.snb.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Huang Z, Tian H, Luo H, Yang K, Chen J, Li G, Ding Z, Luo Y, Tang S, Xu J, Wu H, Dong F. Assessment of Oxygen Saturation in Breast Lesions Using Photoacoustic Imaging: Correlation With Benign and Malignant Disease. Clin Breast Cancer 2024; 24:e210-e218.e1. [PMID: 38423948 DOI: 10.1016/j.clbc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Hypoxia is a hallmark of breast cancer (BC). Photoacoustic (PA) imaging, based on the use of laser-generated ultrasound (US), can detect oxygen saturation (So2) in the tissues of breast lesion patients. PURPOSE To measure the oxygenation status of tissue in and on both sides of the lesion in breast lesion participants using a multimodal Photoacoustic/ultrasound (PA/US) imaging system and to determine the correlation between So2 measured by PA imaging and benign or malignant disease. MATERIALS AND METHODS Multimodal PA/US imaging and gray-scale US (GSUS) of breast lesion was performed in consecutive breast lesion participants imaged in the US Outpatient Clinic between 2022 and 2023. Dual-wavelength PA imaging was used to measure the So2 value inside the lesion and on both sides of the tissue, and to distinguish benign from malignant lesions based on the So2 value. The ability of So2 to distinguish benign from malignant breast lesions was evaluated by the receiver operating characteristic curve (ROC) and the De-Long test. RESULTS A total of 120 breast lesion participants (median age, 42.5 years) were included in the study. The malignant lesions exhibited lower So2 levels compared to benign lesions (malignant: 71.30%; benign: 83.81%; P < .01). Moreover, PA/US imaging demonstrates superior diagnostic results compared to GSUS, with an area under the curve (AUC) of 0.89 versus 0.70, sensitivity of 89.58% versus 85.42%, and specificity of 86.11% versus 55.56% at the So2 cut-off value of 78.85 (P < .001). The false positive rate in GSUS reduced by 30.75%, and the false negative rate diminished by 4.16% with PA /US diagnosis. Finally, the So2 on both sides tissues of malignant lesions are lower than that of benign lesions (P < .01). CONCLUSION PA imaging allows for the assessment of So2 within the lesions of breast lesion patients, thereby facilitating a superior distinction between benign and malignant lesions.
Collapse
Affiliation(s)
- Zhibin Huang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Hongtian Tian
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hui Luo
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Keen Yang
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jing Chen
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Guoqiu Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Zhimin Ding
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yuwei Luo
- Department of Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Department of General Surgery, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Shuzhen Tang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Huaiyu Wu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
3
|
Liu J, Qu H, Hang L, Sun Y, Li W, Chen Y, Li H, Wen W, Feng Y, Jiang G. Dual-targeting nanotheranostics for MRI-guided enhanced chemodynamic therapy of hepatoma via regulating the tumor microenvironment. Dalton Trans 2023; 52:16433-16441. [PMID: 37872809 DOI: 10.1039/d3dt02715e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT), as a reactive oxygen species (ROS)-based therapeutic modality, has attracted much attention in recent years. However, the insufficient therapeutic effect of CDT is due to the antioxidant system in the tumor microenvironment, such as high levels of glutathione (GSH). In this study, we developed a biological/physical dual-targeting nanotheranostic agent (relaxation rate, r1: 6.3 mM-1 s-1 and r2: 13.11 mM-1 s-1) for enhanced CDT of SMCC-7721 tumors. This nanotheranostic agent is composed of a homologous tumor cell membrane (TCM), magnetic ferric oxide, and manganese oxide and is denoted as FM@TCM nanoparticles (NPs). A favorable effect of in vitro CDT on SMCC-7721 cells (IC50: 20 μg mL-1) is demonstrated, attributed to the Fenton reaction and oxidative stress resulting from the reduction of the GSH level. In vivo T1/T2 magnetic resonance imaging (MRI) confirms that the tumor accumulation of FM@TCM NPs is promoted by concurrent bioactive targeting of the homologous TCM and physico-magnetic targeting of tumor tissues with an external magnetic field. Impressive chemodynamic therapeutic effects on SMCC-7721 tumors are demonstrated through the catalysis of endogenous hydrogen peroxide and depletion of GSH to generate high levels of ROS. Dual-targeting FM@TCM NPs inhibit SMCC-7721 tumor growth (∼90.9%) in vivo without any biotoxicity. This nanotheranostic agent has great potential for use in MRI-guided CDT.
Collapse
Affiliation(s)
- Jinwu Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
| | - Hong Li
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China.
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510282, P. R. China.
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China.
- School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
4
|
Li Z, Gao Y, Tian J, Song Q, Wang M, Lei J. Thirty years of research on photoacoustic imaging in the field of cancer: A scientometric analysis of hotspots, bursts, and research trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99399-99411. [PMID: 37610544 DOI: 10.1007/s11356-023-29243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
As a novel imaging modality based on photoacoustic effects, photoacoustic imaging (PAI) has shown great potential in biomedical applications, especially in the field of cancer. The purpose of our research was to identify collaborations between different institutions, authors, and countries, and to explore the hotspots and prospects of PAI research in the field of cancer. We downloaded publications on PAI research from the Science Citation Index-Expanded (SCI-E) of the Web of Science Core Collection database. Bibliometric analysis was performed using VOSviewer and CiteSpace software. A total of 2561 papers related to PAI research in the field of cancer were identified. A total of 10,105 authors participated in the PAI study, of which the majority (69.33%) authors participated in only 1 article. China (1638, 63.96%) was the country with the most articles in this field, and the Chinese Academy of Sciences (329, 12.85%) was the most productive institution. ACS Applied Materials & Interfaces (146, 5.70%) was the most productive journal and ACS Nano (7262 co-citations) was the most co-cited journal. Current hot topics of PAI research in the cancer field were the construction and development of multifunctional photoacoustic nanoprobes to achieve the integration of tumor detection and treatment. The application of photoacoustic imaging in the field of cancer is in the vigorous development stage and has a bright prospect. There was a wealth of cooperation between authors, countries, and institutions. Our findings can provide information about the future direction of funding agencies and research groups.
Collapse
Affiliation(s)
- Zhifan Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ya Gao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qihua Song
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mingyuan Wang
- Department of Ultrasonography, The First Hospital of Lanzhou University, Lanzhou, China
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
- Department of Radiology, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan Distract, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
5
|
Kim D, Ahn J, Park E, Kim JY, Kim C. In vivo quantitative photoacoustic monitoring of corticosteroid-induced vasoconstriction. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082805. [PMID: 36844430 PMCID: PMC9951467 DOI: 10.1117/1.jbo.28.8.082805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Significance Corticosteroids-commonly prescribed medications for skin diseases-inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids. Aim In this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction. Approach Using OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method. Results In the case of corticosteroid topical application, vasoconstriction was observed in the papillary ( 56.4 ± 10.9 % ) and reticular ( 45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular ( 49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application. Conclusions Our results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.
Collapse
Affiliation(s)
- Donggyu Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Joongho Ahn
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Eunwoo Park
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Jin Young Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and Medical Device Innovation Center Group, Pohang, Republic of Korea
| |
Collapse
|
6
|
Zhang J, Sun X, Li H, Ma H, Duan F, Wu Z, Zhu B, Chen R, Nie L. In vivo characterization and analysis of glioblastoma at different stages using multiscale photoacoustic molecular imaging. PHOTOACOUSTICS 2023; 30:100462. [PMID: 36865670 PMCID: PMC9972568 DOI: 10.1016/j.pacs.2023.100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Simultaneous spatio-temporal description of tumor microvasculature, blood-brain barrier, and immune activity is pivotal to understanding the evolution mechanisms of highly aggressive glioblastoma, one of the most common primary brain tumors in adults. However, the existing intravital imaging modalities are still difficult to achieve it in one step. Here, we present a dual-scale multi-wavelength photoacoustic imaging approach cooperative with/without unique optical dyes to overcome this dilemma. Label-free photoacoustic imaging depicted the multiple heterogeneous features of neovascularization in tumor progression. In combination with classic Evans blue assay, the microelectromechanical system based photoacoustic microscopy enabled dynamic quantification of BBB dysfunction. Concurrently, using self-fabricated targeted protein probe (αCD11b-HSA@A1094) for tumor-associated myeloid cells, unparalleled imaging contrast of cells infiltration associated with tumor progression was visualized by differential photoacoustic imaging in the second near-infrared window at dual scale. Our photoacoustic imaging approach has great potential for tumor-immune microenvironment visualization to systematically reveal the tumor infiltration, heterogeneity, and metastasis in intracranial tumors.
Collapse
Affiliation(s)
- Jinde Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Xiang Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Honghui Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, 510000 Guangzhou, China
| | - Haosong Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Zhiyou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Bowen Zhu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102 China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
7
|
Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS APPLIED BIO MATERIALS 2023; 6:1323-1338. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Roqya Najafi-Taher
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 11114115, Iran
| | - Zahra Beiram Zadeh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Mohammad Tanhaei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
8
|
Liu Y, Wong TTW, Shi J, He Y, Nie L, Wang LV. Label-free differential imaging of cellular components in mouse brain tissue by wide-band photoacoustic microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530195. [PMID: 36909457 PMCID: PMC10002654 DOI: 10.1101/2023.02.27.530195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Mapping diverse cellular components with high spatial resolution is important to interrogate biological systems and study disease pathogenesis. Conventional optical imaging techniques for mapping biomolecular profiles with differential staining and labeling methods are cumbersome. Different types of cellular components exhibit distinctive characteristic absorption spectra across a wide wavelength range. By virtue of this property, a lab-made wide-band optical-resolution photoacoustic microscopy (wbOR-PAM) system, which covers wavelengths from the ultraviolet and visible to the shortwave infrared regions, was designed and developed to capture multiple cellular components in 300-μm-thick brain slices at nine different wavelengths without repetitive staining and complicated processing. This wbOR-PAM system provides abundant spectral information. A reflective objective lens with an infinite conjugate design was applied to focus laser beams with different wavelengths, avoiding chromatic aberration. The molecular components of complex brain slices were probed without labeling. The findings of the present study demonstrated a distinctive absorption of phospholipids, a major component of the cell membrane, brain, and nervous system, at 1690 nm and revealed their precise distribution with microscopic resolution in a mouse brain, for the first time. This novel imaging modality provides a new opportunity to investigate important biomolecular components without either labeling or lengthy specimen processing, thus, laying the groundwork for revealing cellular mechanisms involved in disease pathogenesis.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Terence T W Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yun He
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Chen C, Chen Y, Wang X, Zhang L, Luo Y, Tang Q, Wang Y, Liang X, Ma C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023; 26:106066. [PMID: 36818293 PMCID: PMC9929682 DOI: 10.1016/j.isci.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Nanozymes have attracted extensive research interest due to their ideal enzymatic catalytic performance; however, uncontrollable activities and nonspecific accumulation limit their further clinical application. To overcome these obstacles, we proposed in situ synthesized nanozyme, and realized the concept through an intelligent nanosystem (ISSzyme) based on Prussian blue (PB) precursor. PB nanozyme was synthesized at the tumor sites through the interaction of ISSzyme with glutathione, which was demonstrated by comparing with conventional PB nanozyme. ISSzyme is capable of tumor-specific photoacoustic imaging (PAI) and photothermal therapy (PTT), reducing the false-positive signals of PAI and the treatment side effects of PTT. ISSzyme has catalase-like activities, resulting in tumor hypoxia relief and metastasis inhibition. More importantly, the in situ synthesized PB nanozyme has the favorable property of minimal liver accumulation. Considering the above advantages, ISSzyme is expected to shed light on the design of the next-generation artificial enzymes, with many new biomedical applications.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China,Corresponding author
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China,Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China,Corresponding author
| |
Collapse
|
10
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
11
|
Chen C, Chen Y, Zhang L, Wang X, Tang Q, Luo Y, Wang Y, Ma C, Liang X. Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics. J Nanobiotechnology 2022; 20:466. [PMID: 36329465 PMCID: PMC9632160 DOI: 10.1186/s12951-022-01662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor phototheranostics holds a great promise on account of its high spatiotemporal resolution, tumor-specificity, and noninvasiveness. However, physical limitation of light penetration and "always on" properties of conventional photothermal-conversion agents usually cause difficulty in accurate diagnosis and completely elimination of tumor. Meanwhile, nanozymes mediated Fenton reactions can well utilize the tumor microenvironment (TME) to generate hydroxyl radicals for chemodynamic therapy (CDT), but limited by the concentration of H2O2 in TME and the delivery efficiency of nanozymes. To overcome these problems, a dual-targeting nanozyme (FTRNPs) is developed for tumor-specific in situ theranostics, based upon the assembling of ultrasmall Fe3O4 nanoparticles, 3,3',5,5'-tetrameth-ylbenzidine (TMB) and the RGD peptide. The FTRNPs after H2O2 treatment exhibits superior photothermal stability and high photothermal conversion efficiency (η = 50.9%). FTRNPs shows extraordinary accumulation and retention in the tumor site by biological/physical dual-targeting, which is 3.54-fold higher than that without active targeting. Cascade-dual-response to TME for nanozymes mediated Fenton reactions and TMB oxidation further improves the accuracy of both photoacoustic imaging and photothermal therapy (PTT). The tumor inhibition rate of photo-chemodynamic therapy is ~ 97.76%, which is ~ 4-fold higher than that of PTT or CDT only. Thus, the combination of CDT and PTT to construct "turn on" nanoplatform is of great significance to overcome their respective limitations. Considering its optimized "all-in-one" performance, this new nanoplatform is expected to provide an advanced theranostic strategy for the future treatment of cancers.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
- Institute for Precision Healthcare, Tsinghua University, 100084, Beijing, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, 49 North Garden Rd., Haidian District Beijing, 100191, Beijing, China.
| |
Collapse
|
12
|
Yu TF, Wang K, Yin L, Li WZ, Li CP, Zhang W, Tian J, He W. A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 18:1321-1324. [PMID: 36453418 PMCID: PMC9838144 DOI: 10.4103/1673-5374.357907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge. We injected porous Ag/Au@SiO2 bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography. At each measured time point, the total photoacoustic signal was significantly higher on the affected side than on the healthy side. Twelve hours after reperfusion, cerebral perfusion on the affected side increased, cerebrovascular injury worsened, and anti-tropomyosin 4 expression increased. Twenty-four hours after reperfusion and later, perfusion on the affected side declined slowly and stabilized after 1 week; brain injury was also alleviated. Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes. The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.
Collapse
Affiliation(s)
- Teng-Fei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lu Yin
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Zhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuan-Ping Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui Province, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China,Correspondence to: Wen He, ; Jie Tian, .
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Correspondence to: Wen He, ; Jie Tian, .
| |
Collapse
|
13
|
Guo L, Zhao DM, Chen S, Yu YL, Wang JH. Smartphone-Integrated Photoacoustic Analytical Device for Point-of-Care Testing of Food Contaminant Azodicarbonamide. Anal Chem 2022; 94:14004-14011. [PMID: 36166592 DOI: 10.1021/acs.analchem.2c03319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azodicarbonamide (ADA) is widely used as a flour additive due to its oxidizing and bleaching properties, but it reacts with wet flour during heat processing and is easily decomposed into semicarbazide with genotoxicity and carcinogenicity. In order to improve the efficiency of food safety supervision and expand the scope of food safety control, it is of great significance to develop a facile method for point-of-care testing (POCT) of ADA. Herein, a field-portable and universal smartphone-based photoacoustic (PA) integration device is constructed for quantitative POCT of ADA in flour. The recognition probe Prussian blue with favorable stability is loaded on a flexible substrate for fabricating a portable test strip. In the presence of target ADA, the PA signal changes driven by a modulated 808 nm laser beam can be conveniently collected through the recording application (Audio Lab) of the smartphone. By combining the economic test strip and portable PA device with smartphone readout, it not only greatly simplifies the operation steps but also dramatically reduces the size and cost of the instrument. There is a favorable linear relationship between the PA signal and ADA concentration in the range of 10-200 μmol L-1 (R2 = 0.9928), and a detection limit of 5 μmol L-1 obtained is much lower than the maximum allowable ADA level in the extract of flour (388 μmol L-1). The present miniature PA device with strong POCT ability holds enormous public health significance and economic value in the field of food safety, especially in resource-limited settings.
Collapse
Affiliation(s)
- Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Dong-Mei Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
14
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
15
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
16
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
17
|
Pilot Study: Quantitative Photoacoustic Evaluation of Peripheral Vascular Dynamics Induced by Carfilzomib In Vivo. SENSORS 2021; 21:s21030836. [PMID: 33513784 PMCID: PMC7865712 DOI: 10.3390/s21030836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Carfilzomib is mainly used to treat multiple myeloma. Several side effects have been reported in patients treated with carfilzomib, especially those associated with cardiovascular events, such as hypertension, congestive heart failure, and coronary artery disease. However, the side effects, especially the manifestation of cardiovascular events through capillaries, have not been fully investigated. Here, we performed a pilot experiment to monitor peripheral vascular dynamics in a mouse ear under the effects of carfilzomib using a quantitative photoacoustic vascular evaluation method. Before and after injecting the carfilzomib, bortezomib, and PBS solutions, we acquired high-resolution three-dimensional PAM data of the peripheral vasculature of the mouse ear during each experiment for 10 h. Then, the PAM maximum amplitude projection (MAP) images and five quantitative vascular parameters, i.e., photoacoustic (PA) signal, diameter, density, length fraction, and fractal dimension, were estimated. Quantitative results showed that carfilzomib induces a strong effect on the peripheral vascular system through a significant increase in all vascular parameters up to 50%, especially during the first 30 min after injection. Meanwhile, bortezomib and PBS do not have much impact on the peripheral vascular system. This pilot study verified PAM as a comprehensive method to investigate peripheral vasculature, along with the effects of carfilzomib. Therefore, we expect that PAM may be useful to predict cardiovascular events caused by carfilzomib.
Collapse
|
18
|
Sun M, Li C, Chen N, Zhao H, Ma L, Liu C, Shen Y, Lin R, Gong X. Full three-dimensional segmentation and quantification of tumor vessels for photoacoustic images. PHOTOACOUSTICS 2020; 20:100212. [PMID: 33101929 PMCID: PMC7569216 DOI: 10.1016/j.pacs.2020.100212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
Quantitative analysis of tumor vessels is of great significance for tumor staging and diagnosis. Photoacoustic imaging (PAI) has been proven to be an effective way to visualize comprehensive tumor vascular networks in three-dimensional (3D) volume, while previous studies only quantified the vessels projected in one plane. In this study, tumor vessels were segmented and quantified in a full 3D framework. It had been verified in the phantom experiments that the 3D quantification results have better accuracy than 2D. Furthermore, in vivo vessel images were quantified by 2D and 3D quantification methods respectively. And the difference between these two results is significant. In this study, complete vessel segmentation and quantification method within a 3D framework was implemented, which showed obvious advantage in the analysis accuracy of 3D photoacoustic images, and potentially improve tumor study and diagnosis.
Collapse
Affiliation(s)
- Mingjian Sun
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Chao Li
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huangxuan Zhao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liyong Ma
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Shen
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Wang S, Chen R, Yu Q, Huang W, Lai P, Tang J, Nie L. Near-Infrared Plasmon-Boosted Heat/Oxygen Enrichment for Reversing Rheumatoid Arthritis with Metal/Semiconductor Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45796-45806. [PMID: 32931233 DOI: 10.1021/acsami.0c13261] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that often causes progressive joint dysfunction, even disability and death in severe cases. The radical improvement of inflammatory cell infiltration and the resulting disorder in oxygen supply is a novel therapeutic direction for RA. Herein, a near-infrared-absorbing metal/semiconductor composite, polyethylene glycol-modified ceria-shell-coated gold nanorod (Au@CeO2), is fabricated for topical photothermal/oxygen-enriched combination therapy for RA in a mouse model. Upon laser irradiation, the photothermal conversion of Au@CeO2 is exponentially enhanced by the localized surface plasma resonance-induced light focusing. The elevated temperature can not only remarkably obliterate hyperproliferative inflammatory cells gathered in diseased joints but also vastly increase the catalase-like activity of ceria to accelerate the decomposition of H2O2 to produce much oxygen, which relieves hypoxia. Significantly, RA-induced lesions are improved, and the expression of proinflammatory cytokines and hypoxia-inducible factors is effectively repressed under the cooperation of heat and oxygen. Overall, the core/shell-structured Au@CeO2 is a promising nanotherapeutic platform that can well realize light-driven heat/oxygen enrichment to completely cure RA from the perspective of pathogenesis.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Qian Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
20
|
Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, Rodríguez-Yoldi MJ. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. NANOMATERIALS 2020; 10:nano10081617. [PMID: 32824730 PMCID: PMC7466705 DOI: 10.3390/nano10081617] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/28/2022]
Abstract
Carbon nanomaterials have attracted increasing attention in biomedicine recently to be used as drug nanocarriers suitable for medical treatments, due to their large surface area, high cellular internalization and preferential tumor accumulation, that enable these nanomaterials to transport chemotherapeutic agents preferentially to tumor sites, thereby reducing drug toxic side effects. However, there are widespread concerns on the inherent cytotoxicity of carbon nanomaterials, which remains controversial to this day, with studies demonstrating conflicting results. We investigated here in vitro toxicity of various carbon nanomaterials in human epithelial colorectal adenocarcinoma (Caco-2) cells and human breast adenocarcinoma (MCF-7) cells. Carbon nanohorns (CNH), carbon nanotubes (CNT), carbon nanoplatelets (CNP), graphene oxide (GO), reduced graphene oxide (GO) and nanodiamonds (ND) were systematically compared, using Pluronic F-127 dispersant. Cell viability after carbon nanomaterial treatment followed the order CNP < CNH < RGO < CNT < GO < ND, being the effect more pronounced on the more rapidly dividing Caco-2 cells. CNP produced remarkably high reactive oxygen species (ROS) levels. Furthermore, the potential of these materials as nanocarriers in the field of drug delivery of doxorubicin and camptothecin anticancer drugs was also compared. In all cases the carbon nanomaterial/drug complexes resulted in improved anticancer activity compared to that of the free drug, being the efficiency largely dependent of the carbon nanomaterial hydrophobicity and surface chemistry. These fundamental studies are of paramount importance as screening and risk-to-benefit assessment towards the development of smart carbon nanomaterial-based nanocarriers.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (R.G.); (M.J.R.-Y.); Tel.: +34-976-762294 (R.G.); +34-976-761649 (M.J.R-Y.)
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (T.H.-C.); (J.O.)
| | - Miguel Palos
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Vicente L. Cebolla
- Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (V.L.C.); (E.M.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular, Universidad de Zaragoza, 50013 Zaragoza, Spain; (T.H.-C.); (J.O.)
- CIBEROBN (ISCIII), IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - Edgar Muñoz
- Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (V.L.C.); (E.M.)
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- CIBEROBN (ISCIII), IIS Aragón, IA2, 50009 Zaragoza, Spain
- Correspondence: (R.G.); (M.J.R.-Y.); Tel.: +34-976-762294 (R.G.); +34-976-761649 (M.J.R-Y.)
| |
Collapse
|
21
|
Wang S, Ouyang L, Deng G, Deng Z, Wang S. DNA adsorption on nanoscale zeolitic imidazolate framework-8 enabling rational design of a DNA-based nanoprobe for gene detection and regulation in living cells. RSC Adv 2020; 10:31012-31021. [PMID: 35516055 PMCID: PMC9056336 DOI: 10.1039/d0ra06218a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
DNA functionalized nanomaterials have attracted tremendous attention for bioanalytical applications. Owing to exceptional fluorescence quenching ability, most DNA-based nanoprobes were designed with turn-on signals for target gene detection, while only a few of them could simultaneously achieve gene detection and regulation in one system. In this study, we explored the use of nanoscale zeolitic imidazolate framework-8 (ZIF-8) as a building block to construct a DNA-based nanoprobe. We found ZIF-8 could stably adsorb DNA to resist the dissociation by various biological ligands, enabling potential biological applications. However, ZIF-8 was not a nano-quencher to turn off the fluorophore labeling on the adsorbed DNA. We therefore designed a DNAzyme embedded molecular beacon (DMB) to functionalize ZIF-8. After endocytosis, ZIF-8 was disintegrated to release DMB for target mRNA detection, and the co-released Zn2+ acted as an effective cofactor to activate the embedded DNAzyme for mRNA regulation. This study provides a versatile nano-platform to realize multiple functions inside cells by using functional nucleic acids, which holds great promise for theranostic applications.
Collapse
Affiliation(s)
- Shengmei Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 China
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine Changsha Hunan 410007 China
| | - Linqi Ouyang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 China
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine Changsha Hunan 410007 China
| | - Guiming Deng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine Changsha Hunan 410007 China
| | - Zhenzhen Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University Changsha Hunan 410013 China
| |
Collapse
|
22
|
Li T, Hu X, Fan Q, Chen Z, Zheng Z, Zhang R. The Novel DPP-BDT Nanoparticles as Efficient Photoacoustic Imaging and Positron Emission Tomography Agents in Living Mice. Int J Nanomedicine 2020; 15:5017-5026. [PMID: 32764933 PMCID: PMC7369373 DOI: 10.2147/ijn.s238679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Molecular imaging is of great benefit to early disease diagnosis and timely treatment. One of the most striking innovations is the development of multimodal molecular imaging technology, which integrates two or more imaging modalities, largely in view of making the best of the advantages of each modality while overcoming their respective shortcomings. Hence, engineering a versatile and easily prepared nanomaterial with integrating multimodal molecular imaging function holds great promise, but is still a great challenge. Materials and Methods We firstly designed and synthesized a BDT-DPP conjugated polymer and then noncovalent self-assembly with phospholipid-polyethylene glycol endowed BDT-DPP with water solubility and biocompatibility. Followed by [Cu] labeling, the acquired multifunctional nanoparticles (NPs) were studied in detail for the photophysical property. The cytotoxicity and biocompatibility of DPP-BDT NPs were examined through MTT assay and H&E stained analysis. In addition, we investigated the accumulation of the NPs in HepG2 tumor models by positron emission tomography (PET) and photoacoustic (PA) dual-mode imaging. Results and Discussion The DPP-BDT NPs exhibited excellent optical stability, strong near-infrared (NIR) light absorption as well as fine biocompatibility. After tail vein injection into the living mice, the PA signals in the neoplastic tissues were gradually increased and reached to the maximum at the 4-h post-injection, which was consistent with the PET analysis. Such strong PA and PET signals were attributed to the efficient NPs accumulation resulting from the enhanced permeability and retention (EPR) effect. Conclusion The biocompatible DPP-BDT NPs demonstrated to be strong NIR absorption property and PAI sensitivity. Besides, these novel DPP-BDT NPs can act not only as a PA imaging contrast agent but also as an imaging agent for PET.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoming Hu
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, People's Republic of China
| | - Zejing Chen
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Ziliang Zheng
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ruiping Zhang
- Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
23
|
Zhang J, Duan F, Liu Y, Nie L. High-Resolution Photoacoustic Tomography for Early-Stage Cancer Detection and Its Clinical Translation. Radiol Imaging Cancer 2020; 2:e190030. [PMID: 33778711 PMCID: PMC7983802 DOI: 10.1148/rycan.2020190030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 04/22/2023]
Abstract
Diagnosing cancer during early stages can substantially increase the cure rate, decrease the recurrence rate, and reduce health care costs. Over the past few decades, the continual development of new medical imaging modalities has been an important factor for diagnosing cancer, selecting therapies, and monitoring response to treatment. Photoacoustic tomography (PAT) is a hybrid imaging modality combining optical contrast from absorption of light with the outstanding spatiotemporal resolution of US imaging, providing biomedical morphologic and functional information of early-stage cancer. In this review, the basics and modalities of PAT, as well as a summary of its state-of-art applications in early-stage cancer (breast cancer, melanoma, and prostate cancer) detection and treatment guidance will be introduced. The potential clinical translation in cancer detection of PAT and prospects for the possibilities to lead to further clinical breakthroughs will also be discussed. Keywords: Molecular Imaging-Cancer, Photoacoustic Imaging © RSNA, 2020.
Collapse
|
24
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Hedhli J, Kim M, Knox HJ, Cole JA, Huynh T, Schuelke M, Dobrucki IT, Kalinowski L, Chan J, Sinusas AJ, Insana MF, Dobrucki LW. Imaging the Landmarks of Vascular Recovery. Am J Cancer Res 2020; 10:1733-1745. [PMID: 32042333 PMCID: PMC6993245 DOI: 10.7150/thno.36022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Peripheral arterial disease (PAD) is a major worldwide health concern. Since the late 1990s therapeutic angiogenesis has been investigated as an alternative to traditional PAD treatments. Although positive preclinical results abound in the literature, the outcomes of human clinical trials have been discouraging. Among the challenges the field has faced has been a lack of standardization of the timings and measures used to validate new treatment approaches. Methods: In order to study the spatiotemporal dynamics of both perfusion and neovascularization in mice subjected to surgically-induced hindlimb ischemia (n= 30), we employed three label-free imaging modalities (a novel high-sensitivity ultrasonic Power Doppler methodology, laser speckle contrast, and photoacoustic imaging), as well as a tandem of radio-labeled molecular probes, 99mTc-NC100692 and 99mTc-BRU-5921 respectively, designed to detect two key modulators of angiogenic activity, αVβ3 and HIF-1α , via scintigraphic imaging. Results: The multimodal imaging strategy reveals a set of “landmarks”—key physiological and molecular events in the healing process—that can serve as a standardized framework for describing the impact of emerging PAD treatments. These landmarks span the entire process of neovascularization, beginning with the rapid decreases in perfusion and oxygenation associated with ligation surgery, extending through pro-angiogenic changes in gene expression driven by the master regulator HIF-1α , and ultimately leading to complete functional revascularization of the affected tissues. Conclusions: This study represents an important step in the development of multimodal non-invasive imaging strategies for vascular research; the combined results offer more insight than can be gleaned through any of the individual imaging methods alone. Researchers adopting similar imaging strategies and will be better able to describe changes in the onset, duration, and strength of each of the landmarks of vascular recovery, yielding greater biological insight, and enabling more comprehensive cross-study comparisons. Perhaps most important, this study paves the road for more efficient translation of PAD research; emerging experimental treatments can be more effectively assessed and refined at the preclinical stage, ultimately leading to better next-generation therapies.
Collapse
|
26
|
Lv J, Li S, Zhang J, Duan F, Wu Z, Chen R, Chen M, Huang S, Ma H, Nie L. In vivo photoacoustic imaging dynamically monitors the structural and functional changes of ischemic stroke at a very early stage. Am J Cancer Res 2020; 10:816-828. [PMID: 31903152 PMCID: PMC6929999 DOI: 10.7150/thno.38554] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and accounts for 85% of stroke cases. Since the symptoms are not obvious, diagnosis of IS, particularly at an early stage, is a great challenge. Photoacoustic imaging combines high sensitivity of optical imaging and fine resolution of ultrasonography to non-invasively provide structural and functional information of IS. Methods: We adopted three rapid photoacoustic imaging systems with varying characteristics, including a portable handheld photoacoustic system, high-sensitivity bowl-shaped array photoacoustic computed tomography (PACT), and high-resolution photoacoustic microscopy (PAM) to assess the stereoscopic and comprehensive pathophysiological status of IS at an early stage. Two representative models of IS, referring to photothrombosis and middle cerebral artery occlusion (MCAO) models, were established to verify the feasibility of photoacoustic imaging detection. Results: Non-invasive, rapid PACT of the IS model in mouse provided structural information of the brain lesion, achieving early disease identification (5 min after the onset of disease). Moreover, it was able to dynamically reflect disease progression. Quantitative high-resolution PAM allowed observation of pathological changes in the microvascular system of mouse brain. In terms of functional imaging, significant differences in oxygen saturation (sO2) levels between infarcted and normal areas could be observed by PACT, permitting effective functional parameters for the diagnosis of IS. Conclusions: We used PACT to perform full-view structural imaging and functional imaging of sO2 in IS at the macroscopic level, and then observed the microvascular changes in the infarcted area at the microscopic level by using PAM. This work may provide new tools for the early diagnosis of IS and its subsequent complications as well as assessment of disease progression.
Collapse
|
27
|
Yu Q, Huang S, Wu Z, Zheng J, Chen X, Nie L. Label-Free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-Guided Surgery by Photoacoustic Imaging. J Nucl Med 2019; 61:1079-1085. [PMID: 31806769 DOI: 10.2967/jnumed.119.233155] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
The detection of cancer micrometastasis for early diagnosis and treatment poses a great challenge for conventional imaging techniques. The aim of our study was to evaluate the performance of photoacoustic imaging (PAI) in detecting hepatic micrometastases from melanoma at a very early stage and in aiding tumor resection by intraoperative guidance. Methods: In vivo studies were performed by following protocols approved by the Ethical Committee for Animal Research at Xiamen University. First, a mouse model of B16 melanoma metastatic to the liver (n = 10) was established to study the development of micrometastases in vivo. Next, the mice were imaged by a scalable PAI instrument, ultrasound, 9.4-T high-resolution MRI, PET/CT, and bioluminescence imaging. PAI scans acquired with optical wavelengths of 680-850 nm were kept spectrally unmixed by using a linear least-squares method to differentiate various components. Differences in signal-to-background ratios among different modalities were determined with the 2-tailed paired t test. The diagnostic results were assessed with histologic examination. Excised liver samples from patients diagnosed with hepatic cancer were also examined to identify the tumor boundaries. Surgical removal of metastatic melanoma was precisely guided in vivo by the portable PAI system. Results: PAI was able to detect metastases as small as approximately 400 μm at a depth of up to 7 mm in vivo-a size that is smaller than can be detected with ultrasound and MRI. The tumor-to-liver ratio for PAI at 8 d (4.2 ± 0.2, n = 6) and 14 d (9.2 ± 0.4, n = 5) was significantly higher than for PET/CT (1.8 ± 0.1, n = 5, and 4.5 ± 0.2, n = 5, respectively; P < 0.001 for both). Functional PAI revealed dynamic oxygen saturation changes during tumor growth. The limit of detection was approximately 219 cells/μL in vitro. We successfully performed intraoperative PAI-guided surgery in vivo using the portable PAI system. Conclusion: Our findings offer a rapid and effective complementary clinical imaging application to noninvasively detect micrometastases and guide intraoperative resection.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Shanshan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhiyou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jiadi Zheng
- Department of Neurosurgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, China; and
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Huang W, Chen R, Peng Y, Duan F, Huang Y, Guo W, Chen X, Nie L. In Vivo Quantitative Photoacoustic Diagnosis of Gastric and Intestinal Dysfunctions with a Broad pH-Responsive Sensor. ACS NANO 2019; 13:9561-9570. [PMID: 31361949 DOI: 10.1021/acsnano.9b04541] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gastrointestinal diseases affect many people in the world and significantly impair life quality and burden the healthcare system. The functional parameters of the gastrointestinal tract such as motility and pH can effectively reflect the changes of gastrointestinal activity in physiological and pathological conditions. Thus, a noninvasive method for real-time and quantitative measurement of gastrointestinal functional parameters in vivo is highly desired. At present, there are many strategies widely used for the diagnosis of gastrointestinal diseases in clinic, including X-ray barium meal examination, ultrasound imaging, radionuclide examination, endoscopy, etc. However, these methods are limited in determining the gastrointestinal status and cannot provide comprehensive quantitative information. Photoacoustic imaging (PAI) is a rapid noninvasive real-time imaging technique in which multiple types of functional and quantitative information can be simultaneously obtained. Unfortunately, very few ratiometric PAI contrast agents have been reported for quantification of gastrointestinal functional parameters in vivo. In this work, a broad, pH-responsive ratiometric sensor based on polyaniline and Au triangular nanoplates was developed. Utilizing the sensor as a contrast agent, PAI served as an all-in-one technique, accurately measuring the gastrointestinal functional parameters in a single test. Notably, this sensor was examined to be ultrasensitive with pH responses as fast as 0.6 s and durability as long as 24 h, and was repeatable and reversible for longitudinal monitoring. The quantitative results demonstrated a significant disorder in motility and decrease in pH for gastric and duodenal ulcers. Collectively, the combination of PAI and this broad pH-responsive sensor might be a promising candidate for quantitative diagnosis of gastrointestinal diseases.
Collapse
Affiliation(s)
- Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Yanfang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| |
Collapse
|
29
|
Wu Z, Duan F, Zhang J, Li S, Ma H, Nie L. In vivo dual-scale photoacoustic surveillance and assessment of burn healing. BIOMEDICAL OPTICS EXPRESS 2019; 10:3425-3433. [PMID: 31467787 PMCID: PMC6706033 DOI: 10.1364/boe.10.003425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 05/11/2023]
Abstract
Accurate diagnoses of superficial and deep dermal burns are difficult to make even by experienced investigators due to slight differences in dermis damage. Many imaging technologies have been developed to improve the burn depth assessment. But these imaging tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid modality combining optical and ultrasound imaging that remains high resolution in deep imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional and volumetric images of the burn region. High-resolution PAM allowed for imaging of angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess the difference between the two damage degrees of burn injuries. Our proposed method suggests an effective tool to diagnose and monitor burn injury.
Collapse
|
30
|
Wan SS, Cheng Q, Zeng X, Zhang XZ. A Mn(III)-Sealed Metal-Organic Framework Nanosystem for Redox-Unlocked Tumor Theranostics. ACS NANO 2019; 13:6561-6571. [PMID: 31136707 DOI: 10.1021/acsnano.9b00300] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, a Mn(III)-sealed metal-organic framework (MOF) nanosystem based on coordination between Mn(III) and porphyrin (TCPP) via a one-pot method was designed and constructed. Mn(III), as a sealer, not only quenched TCPP-based fluorescence but also inhibited reactive oxygen species (ROS) generation, which made MOFs an "inert" theranostic nanoparticle. Interestingly, upon endocytosis by tumor cells, MOFs were disintegrated into Mn(II) and free TCPP by intracellular glutathione (GSH) in tumor cells, owing to redox reaction between Mn(III) and GSH. This disintegration would lead to consumption of antioxidant GSH and activated Mn(II)-based magnetic resonance imaging (MRI) as well as TCPP-based fluorescent imaging. More importantly, such a GSH-regulated TCPP release could implement controllable ROS generation under irradiation, which avoided side effects (inflammation and damage of normal tissues). As a consequence, after unlocking by GSH, Mn(III)-sealed MOFs could significantly improve the therapeutic efficiency of photodynamic therapy by combining controlled ROS generation and GSH depletion after precise dual tumor homing.
Collapse
Affiliation(s)
- Shuang-Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Qian Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
31
|
Wang X, Geng Z, Cong H, Shen Y, Yu B. Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging. Chembiochem 2019; 20:1628-1636. [DOI: 10.1002/cbic.201800818] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Xuemei Wang
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Zhongmin Geng
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Hailin Cong
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Youqing Shen
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
- Center for Bionanoengineering and Key Laboratoryof Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Bing Yu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| |
Collapse
|
32
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
33
|
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805875. [PMID: 30556205 DOI: 10.1002/adma.201805875] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Illert P, Wängler B, Wängler C, Zöllner F, Uhrig T, Litau S, Pretze M, Röder T. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging. J Appl Polym Sci 2019. [DOI: 10.1002/app.47571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Patrick Illert
- Institute of Chemical Process EngineeringMannheim University of Applied Sciences Paul‐Wittsack‐Street 10, 68163 Mannheim Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Frank Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Tanja Uhrig
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear MedicineMedical Faculty Mannheim of Heidelberg University Theodor‐Kutzer‐Ufer 1‐3, 68167 Mannheim Germany
| | - Thorsten Röder
- Institute of Chemical Process EngineeringMannheim University of Applied Sciences Paul‐Wittsack‐Street 10, 68163 Mannheim Germany
| |
Collapse
|
35
|
Viseu T, Lopes CM, Fernandes E, Oliveira MECDR, Lúcio M. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer Theranostics. Pharmaceutics 2018; 10:E282. [PMID: 30558378 PMCID: PMC6321636 DOI: 10.3390/pharmaceutics10040282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Many graphene-based materials (GBNs) applied to therapy and diagnostics (theranostics) in cancer have been developed. Most of them are hybrid combinations of graphene with other components (e.g, drugs or other bioactives, polymers, and nanoparticles) aiming toward a synergic theranostic effect. However, the role of graphene in each of these hybrids is sometimes not clear enough and the synergic graphene effect is not proven. The objective of this review is to elaborate on the role of GBNs in the studies evaluated and to compare the nanoformulations in terms of some of their characteristics, such as therapeutic outcomes and toxicity, which are essential features for their potential use as bionanosystems. A systematic review was carried out using the following databases: PubMed, Scopus, and ISI Web of Science (2013⁻2018). Additional studies were identified manually by consulting the references list of relevant reviews. Only English papers presenting at least one strategy for cancer therapy and one strategy for cancer diagnostics, and that clearly show the role of graphene in theranostics, were included. Data extraction and quality assessment was made by reviewer pairings. Fifty-five studies met the inclusion criteria, but they were too heterogeneous to combine in statistical meta-analysis. Critical analysis and discussion of the selected papers are presented.
Collapse
Affiliation(s)
- Teresa Viseu
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- FP-ENAS/CEBIMED-Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| | - Eduarda Fernandes
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Elisabete C D Real Oliveira
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Marlene Lúcio
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
36
|
Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801778. [PMID: 30058244 DOI: 10.1002/adma.201801778] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Optical imaging has played a pivotal role in biology and medicine, but it faces challenges of relatively low tissue penetration and poor signal-to-background ratio due to light scattering and tissue autofluorescence. To overcome these issues, second near-infrared fluorescence, self-luminescence, and photoacoustic imaging have recently emerged, which utilize an optical region with reduced light-tissue interactions, eliminate real-time light excitation, and detect acoustic signals with negligible attenuation, respectively. Because there are only a few endogenous molecules absorbing or emitting above the visible region, development of contrast agents is essential for those deep-tissue optical imaging modalities. Organic semiconducting agents with π-conjugated frameworks can be synthesized to meet different optical imaging requirements due to their easy chemical modification and legible structure-property relation. Herein, the deep-tissue optical imaging applications of organic semiconducting agents including small-molecule agents and nanoparticle derivatives are summarized. In particular, the molecular engineering and nanoformulation approaches to further improve the tissue penetration and detection sensitivity of these optical imaging modalities are highlighted. Finally, current challenges and potential opportunities in this emerging subfield of biomedical imaging are discussed.
Collapse
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
37
|
Zheng S, Li H, Lai K, Chen M, Fu G, Liu WH, Fu G, Nie L. Noninvasive photoacoustic and fluorescent tracking of optical dye labeled T cellular activities of diseased sites at new depth. JOURNAL OF BIOPHOTONICS 2018; 11:e201800073. [PMID: 29701012 DOI: 10.1002/jbio.201800073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/25/2018] [Indexed: 05/06/2023]
Abstract
The migration of immune cells is crucial to the immune response. Visualization of these processes has previously been limited because of the imaging depth. We developed a deep-penetrating, sensitive and high-resolution method to use fast photoacoustic tomography (PAT) to image the dynamic changes of T cells in lymph node and diseases at new depth (up to 9.5 mm). T cells labeled with NIR-797-isothiocyanate, an excellent near-infrared photoacoustic and fluorescent agent, were intravenously injected to the mice. We used fluorescence imaging to determine the location of T cells roughly and photoacoustic imaging is used to observe T-cell responses in diseased sites deeply and carefully. The dynamic changes of T cells in lymph node, acute disease (bacterial infection) and chronic disease (tumor) were observed noninvasively by photoacoustic and fluorescence imaging at different time points. T cells accumulated gradually and reached a maximum at 4 hours and declined afterwards in lymph node and bacterial infection site. At tumor model, T cells immigrated to the tumor with a maximum at 12 hours. Our study can not only provide a new observing method for immune activities tracking, but also enable continuous monitoring for therapeutic interventions.
Collapse
Affiliation(s)
- Shuai Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Honghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Kejiong Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Maomao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Guofeng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Zhang D, Wang Z, Wang L, Wang Z, Wang H, Li G, Qiao ZY, Xu W, Wang H. High-Performance Identification of Human Bladder Cancer Using a Signal Self-Amplifiable Photoacoustic Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28331-28339. [PMID: 29989788 DOI: 10.1021/acsami.8b08357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer diagnostics has been an important research field, and identification of small lesions that are less noticeable plays a vital role in thoroughly removing the tumor, thereby reducing the recurrence rate of cancer. Herein, we synthesized a signal self-amplifiable photoacoustic (PA) liposomal nanoprobe composed by ammonium hydrogen carbonate (AHC) payload and aggregated purpurin-18 (P18) within the bilayer. Under PA laser irradiation, P18 aggregates efficiently generated local heat, leading to the launch of wide-band ultrasonic emission. In parallel, the heat also triggered the decomposition of AHC and production of CO2 bubbles, which consequently dramatically amplified the acoustic signal. For clinical translation, by decorating bladder cancer (BC) specific CD44v6 antibody onto nanoprobe, we were capable of utilizing this high sensitive and specific PA probe for human BC tissue imaging. The results indicated that small tumor lesion (<5 mm) was identified and the tumor-to-normal tissue ratio was ∼18 folds enhancement by using this PA probe, which rendered the tumor boundary distinct. All together, we developed a new strategy for exploring high-performance imaging probes, which might potentially benefit for the imaging-guided surgery in clinics.
Collapse
Affiliation(s)
- Di Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Ziqi Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Zhichao Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Hongzhi Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Guangbin Li
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University , Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin 150001 , China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| |
Collapse
|
39
|
Using spectral-domain optical coherence tomography to evaluate the type and thickness of interdigitation zone band in adult Chinese. Sci Rep 2018; 8:12253. [PMID: 30115984 PMCID: PMC6095864 DOI: 10.1038/s41598-018-30848-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
To study types and thickness of interdigitation zone band in adult Chinese subjects, we conducted a cross-sectional study. The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6 ± 9.8 years. 263 people (263eyes) with a mean age of 64.8 years were randomly selected cases without macular diseases included in the study. A detailed ophthalmic examination was performed including SD-OCT for measurement of the thickness of interdigitation zone band. There are two types of interdigitation zone band; the type1 which can distinguish RPE–BM complex in 170 eyes; and the Type 2 which the two layers merged involved 93 eyes. In type1, the mean thickness of the interdigitation zone band was significantly thicker in the foveal center (16.46 ± 2.92 μm), then nasal macular region (16.19 ± 2.69 μm), temporal macular region (15.73 ± 2.68 . μm), superior region (15.72 ± 2.70 μm), and inferior macular region (14.84 ± 2.63 μm) (P all < 0.05). And the mean thickness of the interdigitation zone band in the foveal center associated with the subfoveal choroidal thickness (P = 0.025) and level of education (P = 0.033). The increase in the thickness of the interdigitation zone band may play a role in the pathophysiologic features of various age-related ocular conditions.
Collapse
|
40
|
Ma T, Zheng J, Zhang T, Xing D. Ratiometric photoacoustic nanoprobes for monitoring and imaging of hydrogen sulfide in vivo. NANOSCALE 2018; 10:13462-13470. [PMID: 29972183 DOI: 10.1039/c8nr03445a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection and visualization of hydrogen sulphide (H2S) is crucial for understanding its physiological and pathological roles towards human health and diseases, but precisely tracking of H2S in vivo remains challenging due to the limitations of available analytical methods. In this study, we developed a novel ratiometric photoacoustic (PA) nanoprobe for selective detection and imaging of H2S in biological fluids, live cells, brain tissues and animals. The nanoprobe AzHD-LP was fabricated by encapsulation of a newly synthesized H2S-responsive near-infrared (NIR) dye (AzHD) within a liposome (LP). The as-prepared AzHD-LP exhibits a dramatically red-shift response of its absorption peak after reduction reaction of AzHD with H2S: the absorbance of AzHD-LP centered at 600 and 700 nm is decreased and increased, respectively, producing a turn-on ratiometric PA signal in the presence of H2S. Typically, under the excitation of a 532 nm and 700 nm pulsed laser, the selective detection and imaging of H2S was achieved in aqueous solution, living cells and brain tissues of Alzheimer's diseased mice. Moreover, after AzHD-LP conjugated with a tumor-targeting peptide - c(RGDyK) as RGD-AzHD-LP - ratiometric PA mapping of the intratumoral generated H2S in the HCT116 colon tumor-bearing live mice was demonstrated.
Collapse
Affiliation(s)
- Teng Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
| | | | | | | |
Collapse
|
41
|
Peng Y, Liu Y, Lu X, Wang S, Chen M, Huang W, Wu Z, Lu G, Nie L. Ag-Hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy. J Mater Chem B 2018; 6:2813-2820. [PMID: 32254234 DOI: 10.1039/c8tb00617b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Core-shell metal nanostructures with versatile functions have attracted extensive attention and are highly desirable for imaging and therapeutic purposes. Among them, gold and silver nanomaterials are widely explored for biological applications due to their unique properties. Despite a wide range of applications, limited enhancement ability and insufficient photothermal performance have hampered their further development. In this work, a novel multifunctional nanoprobe, a Au@Ag nanoplate (NP), is fabricated with a biocompatible surface in the aqueous phase. The as-obtained nanocomposite possesses a unique core-shell triangular configuration, sharp apexes, and a large specific surface area, exhibiting strong absorption at 780 nm. PEG-Au@Ag NPs depict highly sensitive photoacoustic imaging (PAI) capacity and extraordinary photothermal conversion efficiency (η = 73%) under 808 nm laser irradiation. Raman signals are multiplied benefitting from the enhanced surface plasma resonance contributed by the silver layer and sharp spears. PAI provides deeper pathological information while Raman detection presents superficial optical properties. Their union forms comprehensive scale coverage for disease imaging and localization. Outstanding photothermal therapy and antibacterial efficacy are observed on animal disease models. This novel multifunctional nanocomposite not only holds great potential as an excellent contrast agent for the combination of PAI and Raman evaluation, but also allows tumor and infection therapy as well as the corresponding therapeutic monitoring.
Collapse
Affiliation(s)
- Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li W, Chen R, Lv J, Wang H, Liu Y, Peng Y, Qian Z, Fu G, Nie L. In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700277. [PMID: 29619293 PMCID: PMC5827566 DOI: 10.1002/advs.201700277] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/28/2017] [Indexed: 05/18/2023]
Abstract
Stem cell migration and interaction with pathology are critical to understand the complexity and status of disease recovery progress. However, the dynamic visualization still remains a great challenge due to imaging technical limitation, cell labeling difficulty, or blood-brain barrier (BBB). Herein, fast photoacoustic tomography (PAT) with optical molecular probes is applied to noninvasively monitor traumatic brain injury (TBI) and its rehabilitation. The vascular distribution and TBI hemorrhage are clearly imaged, longitudinally monitored, and quantified. Bone mesenchymal stem cells (BMSCs) labeled with modified Prussian blue particles (PBPs), excellent near-infrared dyes and photoacoustic contrasts, are intravenously injected to the mice for improved observation and efficient therapy. BMSCs are demonstrated to be capable of overcoming BBB with enhanced delivery of PBPs to the brain parenchyma. Notably, the versatile BMSCs are observed by PAT to home to the damage region and repair the ruptured vasculature. Moreover, the wound treated by BMSCs exhibits much faster recovery speed than that without treatment. These findings can potentially provide a new noninvasive and high-resolution approach to image TBI, monitor recovery process, and especially trace BMSCs. This study will stimulate extensive researches on brain diseases and provide promising strategies of dye labeled BMSCs in regenerative medicine.
Collapse
Affiliation(s)
- Weitao Li
- Department of Biomedical EngineeringCollege of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| | - Hongke Wang
- Department of Biomedical EngineeringCollege of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| | - Yu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| | - Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| | - Zhiyu Qian
- Department of Biomedical EngineeringCollege of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology and Innovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamen361102P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102P. R. China
| |
Collapse
|
43
|
Lu X, Zhao M, Chen P, Fan Q, Wang W, Huang W. Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J Mater Chem B 2018; 6:4531-4538. [DOI: 10.1039/c8tb01158c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2) plays a significant role in regulating the redox balance in the living body.
Collapse
Affiliation(s)
- Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Meng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Pengfei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wenjun Wang
- Key Lab of Optical Communication Science and Technology of Shandong Province & School of Physics Science and Information Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE)
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| |
Collapse
|
44
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
45
|
Wu YL, Engl W, Hu B, Cai P, Leow WR, Tan NS, Lim CT, Chen X. Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. ACS NANO 2017; 11:6996-7005. [PMID: 28530823 DOI: 10.1021/acsnano.7b02376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A detailed understanding of chemotherapy is determined by the response of cell to the formation of the drug-target complex and its corresponding sudden or eventual cell death. However, visualization of this early but important process, encompassing the fast dynamics as well as complex network of molecular pathways, remains challenging. Herein, we report that the nanomechanical traction force is sensitive enough to reflect the early cellular response upon the addition of chemotherapeutical molecules in a real-time and noninvasive manner, due to interactions between chemotherapeutic drug and its cytoskeleton targets. This strategy has outperformed the traditional cell viability, cell cycle, cell impendence as well as intracellular protein analyses, in terms of fast response. Furthermore, by using the nanomechanical traction force as a nanoscale biophysical marker, we discover a cellular nanomechanical change upon drug treatment in a fast and sensitive manner. Overall, this approach could help to reveal the hidden mechanistic steps in chemotherapy and provide useful insights in drug screening.
Collapse
Affiliation(s)
- Yun-Long Wu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University , Xiamen, Fujian 361102, China
| | - Wilfried Engl
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wan Ru Leow
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University , 59 Nanyang Drive, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research , Singapore 138673, Singapore
- KK Research Centre, KK Women's and Children Hospital , 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, Department of Biomedical Engineering & Department of Mechanical Engineering, National University of Singapore , Singapore 117576, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
46
|
Wang YT, Tseng WL. Surfen-Assembled Graphene Oxide for Fluorescence Turn-On Detection of Sulfated Glycosaminoglycans in Biological Matrix. ACS Sens 2017; 2:748-756. [PMID: 28723112 DOI: 10.1021/acssensors.7b00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sulfated glycosaminoglycans (GAGs) not only serve as a biomarker for mucopolysaccharidoses disease but also participate in various biological processes, such as blood clot medication (heparin) and signal transduction (heparan sulfate). However, few fluorescent sensors, such as 1,9-dimethylmethylene blue, have been developed for the detection of sulfated GAGs in the real world. Herein, we fabricated a surfen/few-layer graphene oxide (FLGO) nanocomplex for sensing sulfated GAGs in biological fluids. Surfen molecules are self-assembled onto the surface of FLGO through electrostatic attraction, and their fluorescence was then quenched by the creation of the FLGO-surfen complex (static quenching) and partially combined with the energy transfer from surfen to FLGO (dynamic quenching). The presence of sulfated GAGs resulted in the fluorescence recovery through the formation of the surfen-GAGs complex, which exhibits weak binding to FLGO and keeps surfen molecules away from the FLGO surface. Because FLGO efficiently reduced the fluorescence background from surfen and competed with sulfated GAGs for binding to surfen, surfen-assembled FLGO exhibited higher sensitivity and better selectivity for sulfated GAGs than surfen. The strategy mentioned above was exemplified by the analysis of heparin in human plasma and sulfated GAGs in an artificial cerebrospinal fluid; the limits of detection at a signal-to-noise ratio of 3 for heparin, dermatan sulfate, and heparin sulfate were determined to be 30, 30, and 60 ng/mL, respectively.
Collapse
Affiliation(s)
- Yen-Ting Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, 804, Taiwan
| | - Wei-Lung Tseng
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, 804, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| |
Collapse
|
47
|
Zhang Y, Yu J, Kahkoska AR, Gu Z. Photoacoustic Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1400. [PMID: 28617354 PMCID: PMC5492670 DOI: 10.3390/s17061400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) technology holds great potential in clinical translation as a new non-invasive bioimaging modality. In contrast to conventional optical imaging, PA imaging (PAI) enables higher resolution imaging with deeper imaging depth. Besides applications for diagnosis, PA has also been extended to theranostic applications. The guidance of PAI facilitates remotely controlled drug delivery. This review focuses on the recent development of PAI-mediated drug delivery systems. We provide an overview of the design of different PAI agents for drug delivery. The challenges and further opportunities regarding PA therapy are also discussed.
Collapse
Affiliation(s)
- Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Liu Y, Wang S, Ma Y, Lin J, Wang HY, Gu Y, Chen X, Huang P. Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606129. [PMID: 28224711 PMCID: PMC5553071 DOI: 10.1002/adma.201606129] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/16/2017] [Indexed: 05/22/2023]
Abstract
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
Collapse
Affiliation(s)
- Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai-Yan Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yueqing Gu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
49
|
Yin C, Zhen X, Fan Q, Huang W, Pu K. Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. ACS NANO 2017; 11:4174-4182. [PMID: 28296388 DOI: 10.1021/acsnano.7b01092] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Upregulation of highly reactive oxygen species (ROS) such as hypochlorite (ClO-) is associated with many pathological conditions including cardiovascular diseases, neuron degeneration, lung injury, and cancer. However, real-time imaging of ClO- is limited to the probes generally relying on fluorescence with shallow tissue-penetration depth. We here propose a self-assembly approach to develop activatable and degradable photoacoustic (PA) nanoprobes for in vivo imaging of ClO-. A near-infrared absorbing amphiphilic oligomer is synthesized to undergo degradation in the presence of a specific ROS (ClO-), which integrates a π-conjugated but ClO- oxidizable backbone with hydrophilic PEG side chains. This molecular architecture allows the oligomer to serve as a degradable nanocarrier to encapsulate the ROS-inert dye and self-assemble into structurally stable nanoparticles through both π-π stacking and hydrophobic interactions. The self-assembled nanoprobe exhibits sensitive and specific ratiometric PA signals toward ClO-, permitting ratiometric PA imaging of ClO- in the tumor of living mice.
Collapse
Affiliation(s)
- Chao Yin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
50
|
Tserevelakis GJ, Vrouvaki I, Siozos P, Melessanaki K, Hatzigiannakis K, Fotakis C, Zacharakis G. Photoacoustic imaging reveals hidden underdrawings in paintings. Sci Rep 2017; 7:747. [PMID: 28389668 PMCID: PMC5429688 DOI: 10.1038/s41598-017-00873-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/20/2017] [Indexed: 11/19/2022] Open
Abstract
A novel, non-invasive, imaging methodology, based on the photoacoustic effect, is introduced in the context of artwork diagnostics with emphasis on the uncovering of hidden features such as underdrawings or original sketch lines in paintings. Photoacoustic microscopy, a rapidly growing imaging method widely employed in biomedical research, exploits the ultrasonic acoustic waves, generated by light from a pulsed or intensity modulated source interacting with a medium, to map the spatial distribution of absorbing components. Having over three orders of magnitude higher transmission through strongly scattering media, compared to light in the visible and near infrared, the photoacoustic signal offers substantially improved detection sensitivity and achieves excellent optical absorption contrast at high spatial resolution. Photoacoustic images, collected from miniature oil paintings on canvas, illuminated with a nanosecond pulsed Nd:YAG laser at 1064 nm on their reverse side, reveal clearly the presence of pencil sketch lines coated over by several paint layers, exceeding 0.5 mm in thickness. By adjusting the detection bandwidth of the optically induced ultrasonic waves, photoacoustic imaging can be used for looking into a broad variety of artefacts having diverse optical properties and geometrical profiles, such as manuscripts, glass objects, plastic modern art or even stone sculpture.
Collapse
Affiliation(s)
- George J Tserevelakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| | - Ilianna Vrouvaki
- Department of Chemistry, University of Crete, Heraklion, Crete, Greece
| | - Panagiotis Siozos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Krystallia Melessanaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Kostas Hatzigiannakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.,Department of Physics, University of Crete, Heraklion, Crete, Greece
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| |
Collapse
|