1
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
2
|
Zhu S, Liu Y, Gong Y, Sun Y, Chen K, Liu Y, Liu W, Xia T, Zheng Q, Gao H, Guo H, Wang R. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305062. [PMID: 37803476 DOI: 10.1002/smll.202305062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Indexed: 10/08/2023]
Abstract
PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.
Collapse
Affiliation(s)
- Shiyu Zhu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kang Chen
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Weidi Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, ST Lucia, QLD, 4072, Australia
| | - Tianyu Xia
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Han Gao
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Xu S, Jiang L, Huang X, Ju W, Liang Y, Tao Z, Yang Y, Zhu B, Wei G. Efficient formaldehyde sensor based on PtPd nanoparticles-loaded nafion-modified electrodes. NANOTECHNOLOGY 2023; 35:025704. [PMID: 37804824 DOI: 10.1088/1361-6528/ad0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
The noble metal-based electrochemical sensor design for efficient and stable formaldehyde(FA) detection is important ongoing research. In this paper, PtPd/Nafion/GCE is prepared by electrochemical cyclic voltammetry deposition method based on electrodepositing nanostructured platinum (Pt)-palladium (Pd) nanoparticles in Nafion film-coated glassy carbon electrode (GCE). The influence of deposition parameters and chemical composition (atomic ratio of Pt and Pd) on the electrochemical behaviour of PtPd/Nafion/GCE has been investigated. PtPd/Nafion/GCE displays a remarked electrocatalytic activity for the oxidation of FA and exhibits a linear relationship in the range of 10-5000μM, with a detection limit of 3.3μM in 0.1 M H2SO4solution. It is proved that the detection performance of PtPd/Nafion/GCE electrode is valuable for further application with low detection limit, wide linear range, favourable selectivity and high response.
Collapse
Affiliation(s)
- Shuting Xu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Li Jiang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Xiaowei Huang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Wentao Ju
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Yanxia Liang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Zhu Tao
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Yumeng Yang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Benfeng Zhu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
4
|
Sun M, Gong S, Li Z, Huang H, Chen Y, Niu Z. Terrace-Rich Ultrathin PtCu Surface on Earth-Abundant Metal for Oxygen Reduction Reaction. ACS NANO 2023; 17:19421-19430. [PMID: 37721808 DOI: 10.1021/acsnano.3c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The activity and stability of the platinum electrode toward the oxygen reduction reaction are size-dependent. Although small nanoparticles have high Pt utilization, the undercoordinated Pt sites on their surface are assumed to have too strong oxygen binding strength, thus often leading to compromised activity and surface instability. Herein, we report an extended nanostructured PtCu ultrathin surface to reduce the number of low-coordination sites without sacrificing the electrochemical active surface area (ECSA). The surface shows (111)-oriented characteristics, as proven by electrochemical probe reactions and spectroscopies. The PtCu surface brings over an order of magnitude increase in specific activity relative to commercial Pt/C and nearly 4-fold enhancement in ECSA compared to traditional thin films. Moreover, due to the weak absorption of air impurities (e.g., SO2, NO, CO) on highly coordinated sites, the catalyst displays enhanced contaminant tolerance compared with nanoparticulate Pt/C. This work promises a broad screening of extended nanostructured surface catalysts for electrochemical conversions.
Collapse
Affiliation(s)
- Mingze Sun
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuyan Gong
- Department of Chemistry Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, China
| | - Zhengwen Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanjun Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Zhang X, Wang J, Zhao Y. Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1275. [PMID: 37049368 PMCID: PMC10097321 DOI: 10.3390/nano13071275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The oxygen reduction reaction (ORR) is one of the key catalytic reactions for hydrogen fuel cells, biofuel cells and metal-air cells. However, due to the complex four-electron catalytic process, the kinetics of the oxygen reduction reaction are sluggish. Platinum group metal (PGM) catalysts represented by platinum and palladium are considered to be the most active ORR catalysts. However, the price and reserves of Pt/Pd are major concerns and issues for their commercial application. Improving the catalytic performance of PGM catalysts can effectively reduce their loading and material cost in a catalytic system, and they will be more economical and practical. In this review, we introduce the kinetics and mechanisms of Pt/Pd-based catalysts for the ORR, summarize the main factors affecting the catalytic performance of PGMs, and discuss the recent progress of Pt/Pd-based catalysts. In addition, the remaining challenges and future prospects in the design and improvement of Pt/Pd-based catalysts of the ORR are also discussed.
Collapse
|
6
|
Li C, Clament Sagaya Selvam N, Fang J. Shape-Controlled Synthesis of Platinum-Based Nanocrystals and Their Electrocatalytic Applications in Fuel Cells. NANO-MICRO LETTERS 2023; 15:83. [PMID: 37002489 PMCID: PMC10066057 DOI: 10.1007/s40820-023-01060-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 06/05/2023]
Abstract
To achieve environmentally benign energy conversion with the carbon neutrality target via electrochemical reactions, the innovation of electrocatalysts plays a vital role in the enablement of renewable resources. Nowadays, Pt-based nanocrystals (NCs) have been identified as one class of the most promising candidates to efficiently catalyze both the half-reactions in hydrogen- and hydrocarbon-based fuel cells. Here, we thoroughly discuss the key achievement in developing shape-controlled Pt and Pt-based NCs, and their electrochemical applications in fuel cells. We begin with a mechanistic discussion on how the morphology can be precisely controlled in a colloidal system, followed by highlighting the advanced development of shape-controlled Pt, Pt-alloy, Pt-based core@shell NCs, Pt-based nanocages, and Pt-based intermetallic compounds. We then select some case studies on models of typical reactions (oxygen reduction reaction at the cathode and small molecular oxidation reaction at the anode) that are enhanced by the shape-controlled Pt-based nanocatalysts. Finally, we provide an outlook on the potential challenges of shape-controlled nanocatalysts and envision their perspective with suggestions.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, USA
| | | | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, USA.
| |
Collapse
|
7
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
8
|
Zhang W, Li F, Shi F, Hu H, Liang J, Yang H, Ye Y, Mao Z, Shang W, Deng T, Ke X, Wu J. Tensile-Strained Platinum-Cobalt Alloy Surface on Palladium Octahedra as a Highly Durable Oxygen Reduction Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3993-4000. [PMID: 36642872 DOI: 10.1021/acsami.2c18600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing shape-controlled Pt-based core-shell nanocrystals is a prospective strategy to maximize the utilization of Pt while maintaining high activity for oxygen reduction reaction (ORR). However, the core-shell structures with ultrathin Pt shell exhibit limited electrochemical durability. Therefore, a thicker shell is proposed to successfully improve the durability of the core-shell structures by preventing the core from dissolution. Nevertheless, the deposition of Pt tends to switch to the Stranski-Krastanov (S-K) growth mode with the increase of the number of layer, resulting in the absence of a conformal morphology. Herein, we realize the deposition of three-to-five-layer epitaxial Pt-Co layers on Pd octahedral seeds by introducing tensile strain in the epitaxial layer to impede the S-K growth. The as-obtained Pd@Pt-Co octahedra with four layers exhibit enhanced mass activity (0.69 A/mgPt) and specific activity (1.00 mA/cm2) for ORR, which are 4.93 and 5 times that of the commercial Pt/C, respectively. Furthermore, it shows only 17% decay for specific activity after a 30,000-cycle durability test. This work is expected to enlighten the design and synthesis of related core-shell nanocrystals with facetted multicomponent shells, offering a promising strategy for designing cost-effective and efficient catalysts.
Collapse
Affiliation(s)
- Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Hao Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jing Liang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaoli Ye
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Zhengsong Mao
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaoxing Ke
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Gloag L, Poerwoprajitno AR, Cheong S, Ramadhan ZR, Adschiri T, Gooding JJ, Tilley RD. Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas. SCIENCE ADVANCES 2023; 9:eadf6075. [PMID: 36630515 PMCID: PMC9833653 DOI: 10.1126/sciadv.adf6075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.
Collapse
Affiliation(s)
- Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zeno R. Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tadafumi Adschiri
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Advanced Institute of Materials Research, WPI-AIMR, Tohoku University, Sendai 980-8577, Japan
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
11
|
Ahn H, Ahn H, An J, Kim H, Hong JW, Han SW. Role of Surface Strain at Nanocrystalline Pt{110} Facets in Oxygen Reduction Catalysis. NANO LETTERS 2022; 22:9115-9121. [PMID: 36350225 DOI: 10.1021/acs.nanolett.2c03611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have developed a synthesis method of rhombic dodecahedral Pd@Pt core-shell nanocrystals bound exclusively by {110} facets with controlled numbers of Pt atomic layers to study the surface strain-catalytic activity relationship of Pt{110} facets. Through control over growth kinetics, the epitaxial and conformal overgrowth of Pt shells on the {110} facets of rhombic dodecahedral Pd nanocrystals could be achieved. Notably, the electrocatalytic activity of the Pd@Pt nanocrystals toward oxygen reduction reaction decreased as their Pt shells became thinner and thus more in-plane compressive surface strain was applied, which is in sharp contrast to previous reports on Pt-based catalysts. Density functional theory calculations revealed that the characteristic strain-activity relationship of Pt{110} facets is the result of the counteraction of out-of-plane surface strain against the applied in-plane surface strain, which can effectively impose a tensile environment on the surface atoms of the Pd@Pt nanocrystals under the compressive in-plane strain.
Collapse
Affiliation(s)
- Hojin Ahn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hochan Ahn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jihun An
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyungjun Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan 44776, Korea
| | - Sang Woo Han
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
12
|
Chemical synthesis of metallic silver-based nanopowder catalysts on the conductive carbon black particles as the active materials applied in a Zn-Ag/Zn-air hybrid energy storage system. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Li JY, Zhu J, Li X, Weng GJ, Li JJ, Zhao JW. Tuning the structure and plasmonic properties of Pt–Au triangular nanoprisms: from deposition to etching. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Kabiraz MK, Kim HJ, Hong Y, Chang Q, Choi S. Excess dopant effect in
platinum‐based
alloys toward the oxygen electroreduction reaction. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Hee Jin Kim
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Youngmin Hong
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Qiaowan Chang
- Department of Chemical Engineering Columbia University New York New York USA
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
- Department of Hydrogen and Renewable Energy Kyungpook National University Daegu South Korea
| |
Collapse
|
15
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
16
|
Zhai P, Shi Y, Wang Q, Xia Y, Ding K. Elucidating the surface compositions of Pd@Pt nL core-shell nanocrystals through catalytic reactions and spectroscopy probes. NANOSCALE 2021; 13:18498-18506. [PMID: 34730167 DOI: 10.1039/d1nr05636k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The catalytic behaviors or properties of bimetallic catalysts are highly dependent on the surface composition, but it has been a grand challenge to acquire such information. In this work, we employ Pd@PtnL core-shell nanocrystals with an octahedral shape and tunable Pt shell thickness as a model system to elucidate their surface compositions using catalytic reactions based upon the selective hydrogenation of butadiene and acetylene. Our results indicate that the surface of the core-shell nanocrystals changed from Pt-rich to Pd-rich when they were subjected to calcination under oxygen, a critical step involved in the preparation of many industrial catalysts. The inside-out migration can be attributed to both atomic interdiffusion and the oxidation of Pd atoms during the calcination process. The changes in surface composition were further confirmed using infrared and X-ray photoelectron spectroscopy. This work offers insightful guidance for the development and optimization of bimetallic catalysts toward various reactions.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
17
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
18
|
Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Shi F, Peng J, Li F, Qian N, Shan H, Tao P, Song C, Shang W, Deng T, Zhang H, Wu J. Design of Highly Durable Core-Shell Catalysts by Controlling Shell Distribution Guided by In-Situ Corrosion Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101511. [PMID: 34346100 DOI: 10.1002/adma.202101511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Most degradations in electrocatalysis are caused by corrosion in operation, for example the corrosion of the core in a core-shell electrocatalyst during the oxygen reduction reaction (ORR). Herein, according to the in-situ study on nanoscale corrosion kinetics via liquid cell transmission electron microscopy (LC-TEM) in the authors' previous work, they sequentially designed an optimized nanocube with the protection of more layers on the corners by adjusting the Pt atom distribution on corners and terraces. This modified nanocube (MNC) is much more corrosion resistant in the in-situ observation. Furthermore, in the practical electrochemical stability testing, the MNC catalyst also showed the best stability performance with the 0.37% and 9.01% loss in specific and mass activity after 30 000 cycles accelerated durability test (ADT). This work also demonstrates that how an in-situ study can guide the design of desired materials with improved properties and build a bridge between in-situ study and practical application.
Collapse
Affiliation(s)
- Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
20
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
21
|
Zhang Y, Ye K, Gu Q, Jiang Q, Qin J, Leng D, Liu Q, Yang B, Yin F. Optimized oxygen reduction activity by tuning shell component in Pd@Pt-based core-shell electrocatalysts. J Colloid Interface Sci 2021; 604:301-309. [PMID: 34265687 DOI: 10.1016/j.jcis.2021.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
Combining the interests of core-shell and alloy structures, herein we report the versatile co-reduction synthesis of Pd@Pt-based core-shell nanoparticles. The current strategy can effectively tune the component of shell, from isolated Pt to binary PtNi alloy, then ternary PtNi-M (M = Fe or Cu) alloy. Further, significant improvement of oxygen reduction reaction (ORR) activity is optimized by the change in shell component. Compared to Pd@Pt/C, Pd@PtNi/C catalyst presents the ORR-helpful mass activity of 1.29 A mg-1Pt. By incorporating a third metal (M) into shell layer, the optimized mass activity of Pd@PtNiFe/C and Pd@PtNiCu/C catalysts is 1.1 times and 1.4 times higher than that of Pd@PtNi/C, respectively. Meanwhile, the lower activity decays of 11.0% for Pd@PtNiFe/C and 10.6% for Pd@PtNiCu/C are obtained compared with that of Pd@PtNi/C (12.4%) after 5,000 cycles, respectively.
Collapse
Affiliation(s)
- Yafeng Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Kai Ye
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
| | - Juan Qin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Deying Leng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Qianru Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China.
| | - Feng Yin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Syngas Conversion of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
22
|
Jeong HY, Kim DG, Akpe SG, Paidi VK, Park HS, Lee SH, Lee KS, Ham HC, Kim P, Yoo SJ. Hydrogen-Mediated Thin Pt Layer Formation on Ni 3N Nanoparticles for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24624-24633. [PMID: 34003000 DOI: 10.1021/acsami.1c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple wet-chemical route for the preparation of core-shell-structured catalysts was developed to achieve high oxygen reduction reaction (ORR) activity with a low Pt loading amount. Nickel nitride (Ni3N) nanoparticles were used as earth-abundant metal-based cores to support thin Pt layers. To realize the site-selective formation of Pt layers on the Ni3N core, hydrogen molecules (H2) were used as a mild reducing agent. As H2 oxidation is catalyzed by the surface of Ni3N, the redox reaction between H2 and Pt(IV) in solution was facilitated on the Ni3N surface, which resulted in the selective deposition of Pt on Ni3N. The controlled Pt formation led to a subnanometer (0.5-1 nm)-thick Pt shell on the Ni3N core. By adopting the core-shell structure, higher ORR activity than the commercial Pt/C was achieved. Electrochemical measurements showed that the thin Pt layer on Ni3N nanoparticle exhibits 5 times higher mass activity and specific activity than that of commercial Pt/C. Furthermore, it is expected that the proposed simple wet-chemical method can be utilized to prepare various transition-metal-based core-shell nanocatalysts for a wide range of energy conversion reactions.
Collapse
Affiliation(s)
- Hui-Yun Jeong
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Gun Kim
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Shedrack G Akpe
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Vinod K Paidi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun S Park
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soo-Hyoung Lee
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Pil Kim
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Xie M, Lyu Z, Chen R, Shen M, Cao Z, Xia Y. Pt-Co@Pt Octahedral Nanocrystals: Enhancing Their Activity and Durability toward Oxygen Reduction with an Intermetallic Core and an Ultrathin Shell. J Am Chem Soc 2021; 143:8509-8518. [PMID: 34043340 DOI: 10.1021/jacs.1c04160] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite extensive efforts devoted to the synthesis of Pt-Co bimetallic nanocrystals for fuel cell and related applications, it remains a challenge to simultaneously control atomic arrangements in the bulk and on the surface. Here we report a synthesis of Pt-Co@Pt octahedral nanocrystals that feature an intermetallic, face-centered tetragonal Pt-Co core and an ultrathin Pt shell, together with the dominance of {111} facets on the surface. When evaluated as a catalyst toward the oxygen reduction reaction (ORR), the nanocrystals delivered a mass activity of 2.82 A mg-1 and a specific activity of 9.16 mA cm-2, which were enhanced by 13.4 and 29.5 times, respectively, relative to the values of a commercial Pt/C catalyst. More significantly, the mass activity of the nanocrystals only dropped 21% after undergoing 30 000 cycles of accelerated durability test, promising an outstanding catalyst with optimal performance for ORR and related reactions.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Min Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Zhenming Cao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Li C, Chen X, Zhang L, Yan S, Sharma A, Zhao B, Kumbhar A, Zhou G, Fang J. Synthesis of Core@Shell Cu‐Ni@Pt‐Cu Nano‐Octahedra and Their Improved MOR Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Can Li
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Xiaobo Chen
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| | - Lihua Zhang
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Shaohui Yan
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
- Present address: College of Environmental Science and Engineering Taiyuan University of Technology Taiyuan Shanxi Province China
| | - Anju Sharma
- Analytical and Diagnostics Lab State University of New York at Binghamton Binghamton NY 13902 USA
| | - Bo Zhao
- College of Arts & Sciences Microscopy Texas Tech University Lubbock TX 79409 USA
| | - Amar Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Guangwen Zhou
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| | - Jiye Fang
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| |
Collapse
|
25
|
Liu M, Lyu Z, Zhang Y, Chen R, Xie M, Xia Y. Twin-Directed Deposition of Pt on Pd Icosahedral Nanocrystals for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. NANO LETTERS 2021; 21:2248-2254. [PMID: 33599510 DOI: 10.1021/acs.nanolett.1c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Platinum nanocrystals featuring a multiply twinned structure and uniform sizes below 5 nm are superb catalytic materials, but it is difficult to synthesize such particles owing to the high twin-boundary energy (166 mJ/m2) of Pt. Here, we report a simple route to the synthesis of such nanocrystals by selectively growing them from the vertices of Pd icosahedral seeds. The success of this synthesis critically depends on the introduction of Br- ions to slow the reduction kinetics of the Pt(II) precursor while limiting the surface diffusion of Pt adatoms by conducting the synthesis at 30 °C. Owing to the small size and multiply twinned structure of Pt dots, the as-obtained Pd-Pt nanocrystals show remarkably enhanced activity and durability toward oxygen reduction, with a mass activity of 1.23 A mg-1Pt and a specific activity of 0.99 mA cm-2Pt, which are 8.2 and 4.5 times as high as those of the commercial Pt/C.
Collapse
Affiliation(s)
- Mingkai Liu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Li C, Chen X, Zhang L, Yan S, Sharma A, Zhao B, Kumbhar A, Zhou G, Fang J. Synthesis of Core@Shell Cu‐Ni@Pt‐Cu Nano‐Octahedra and Their Improved MOR Activity. Angew Chem Int Ed Engl 2021; 60:7675-7680. [DOI: 10.1002/anie.202014144] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Can Li
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Xiaobo Chen
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| | - Lihua Zhang
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Shaohui Yan
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
- Present address: College of Environmental Science and Engineering Taiyuan University of Technology Taiyuan Shanxi Province China
| | - Anju Sharma
- Analytical and Diagnostics Lab State University of New York at Binghamton Binghamton NY 13902 USA
| | - Bo Zhao
- College of Arts & Sciences Microscopy Texas Tech University Lubbock TX 79409 USA
| | - Amar Kumbhar
- Chapel Hill Analytical and Nanofabrication Laboratory University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Guangwen Zhou
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| | - Jiye Fang
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
- Materials Science and Engineering Program State University of New York at Binghamton Binghamton NY 13902 USA
| |
Collapse
|
27
|
Zhang H, Pan J, Zhou Q, Xia F. Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005771. [PMID: 33458963 DOI: 10.1002/smll.202005771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Nanometals have been proven to be efficient thermocatalysts in the last decades. Their enhanced catalytic activity and tunable functionalities make them intriguing candidates for a wide range of catalytic applications, such as gaseous reactions and compound synthesis/decomposition. On the other hand, the enhanced specific surface energy and reactivity of nanometals can lead to configuration transformation and thus catalytic deactivation during the synthesis and catalysis, which largely undermines the activity and service time, thereby calling for urgent research effort to understand the deactivating mechanisms and develop efficient mitigating methods. Herein, the recent progress in understanding the configuration transformation-induced catalytic deactivation within nanometals is reviewed. The major pathways of configuration transformations, and their kinetics controlled by the environmental factors are presented. The approaches toward mitigating the transformation-induced deactivation are also presented. Finally, a perspective on the future academic approaches toward in-depth understanding of the kinetics of the deactivation of nanometals is proposed.
Collapse
Affiliation(s)
- Hanlei Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Jing Pan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Qitao Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| |
Collapse
|
28
|
Xu J, Yun Q, Wang C, Li M, Cheng S, Ruan Q, Zhu X, Kan C. Gold nanobipyramid-embedded silver-platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions. NANOSCALE 2020; 12:23663-23672. [PMID: 33216083 DOI: 10.1039/d0nr03315d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal hollow nanostructures based on gold nanobipyramids (Au NBPs) are of great interest for the combination of tunable plasmonic resonances and excellent physicochemical properties. Based on the core-shell Au NBP@Ag nanorods with desired sizes, herein we reported the synthesis and growth mechanism of Au NBP-embedded AgPt hollow nanostructures with tunable thickness and size. The Au NBP@AgPt nanoframes were obtained at lower temperature, in which cetyltrimethylammonium bromine (CTAB) was applied as a capping agent to guide the deposition of Pt atoms on the edges and corners of Au NBPs@Ag nanorods. With the increase of reaction temperature, the Au NBP@AgPt nanoframes convert into nanocages due to the atomic migration to the surfaces. The surface plasmon resonance of the Au NBP@AgPt hollow nanostructure shifts from red to blue, which is ascribed to the changes in coverage area and location site of the AgPt alloy. When CTAB was replaced by cetyltrimethylammonium chloride (CTAC), Au NBP@AgPt nanocages dominate the product. The surface roughness and thickness of the nanocages can be controlled by the temperature and the amount of Pt precursor. Moreover, Au NBP@AgPt hollow nanostructures show excellent surface-enhanced Raman scattering and exhibit remarkable stability in harsh environments. Taking into account the advantages of the plasmonic property (Au NBPs), catalytic activity (Pt) and plasmon-enhanced signal (Ag), the Au NBP@AgPt hollow nanostructures are a promising candidate for technological applications in catalytic reactions.
Collapse
Affiliation(s)
- Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu H, Liu P, Zhang W, Wang Q, Yang Y. Structure, stability, electronic and magnetic properties of monometallic Pd, Pt, and bimetallic Pd-Pt core–shell nanoparticles. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Peng X, Lu D, Qin Y, Li M, Guo Y, Guo S. Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30336-30342. [PMID: 32525299 DOI: 10.1021/acsami.0c05868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Pt bimetallic nanocrystals have become appealing in the electrocatalytic field by virtue of their synergy effects derived from the electronic coupling between two metals. Herein, a facile seed-mediated growth approach is reported for synthesis of Pt-on-Pd dendritic nanosheets (DNSs) through the growth of Pt branches on ultrathin Pd nanosheets (NSs). The as-obtained Pt-on-Pd DNSs exhibit superior catalytic activity toward both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR), with mass activities (MAs) 2.2 times higher for ORR and 3.4 times higher for MOR than commercial Pt/C catalysts. Moreover, these spatially separated Pt branches supported on 2D NSs also endow the Pt-on-Pd DNSs with impressive durability for ORR with only 18.9% loss in MA, whereas the Pt/C catalyst loses 50.0% after 10,000-cycle accelerated durability tests. This 2D DNS architecture can be extended to other 2D metallic NS substrates for constructing Pt-based electrocatalysts with excellent electrocatalytic performance.
Collapse
Affiliation(s)
- Xiuying Peng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Dongtao Lu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingnan Qin
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Miaomiao Li
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
32
|
Wang XX, Sokolowski J, Liu H, Wu G. Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63407-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Gamler JTL, Leonardi A, Sang X, Koczkur KM, Unocic RR, Engel M, Skrabalak SE. Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals. NANOSCALE ADVANCES 2020; 2:1105-1114. [PMID: 36133036 PMCID: PMC9419249 DOI: 10.1039/d0na00061b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/12/2023]
Abstract
Bimetallic nanocrystals with a core@shell architecture are versatile, multifunctional particles. The lattice mismatch between core and shell regions induces strain, affecting the electronic properties of the shell metal, which is important for applications in catalysis. Here, we analyze this strain in core@shell nanocubes as a function of lattice mismatch and shell thickness. Coupling geometric phase analysis from atomic resolution scanning transmission electron microscopy images with molecular dynamics simulations reveals lattice relaxation in the shell within only a few monolayers and an overexpansion in the axial direction. Interestingly, many works report core@shell metal nanocatalysts with optimum performance at greater shell thicknesses. Our findings suggest that not strain alone but secondary factors, such as structural defects or structural changes in operando, may account for observed enhancements in some strain-engineered nanocatalysts; e.g., Rh@Pt nanocubes for formic acid electrooxidation.
Collapse
Affiliation(s)
- Jocelyn T L Gamler
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alberto Leonardi
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 3 91058 Erlangen Germany
| | - Xiahan Sang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory One Bethel Valley Road Oak Ridge TN 37831 USA
| | - Kallum M Koczkur
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory One Bethel Valley Road Oak Ridge TN 37831 USA
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 3 91058 Erlangen Germany
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
34
|
Miyakawa M, Hiyoshi N, Koda H, Watanabe K, Kunigami H, Kunigami H, Miyazawa A, Nishioka M. Continuous syntheses of carbon-supported Pd and Pd@Pt core-shell nanoparticles using a flow-type single-mode microwave reactor. RSC Adv 2020; 10:6571-6575. [PMID: 35496000 PMCID: PMC9049753 DOI: 10.1039/c9ra10140c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 11/21/2022] Open
Abstract
Continuous syntheses of carbon-supported Pd@Pt core-shell nanoparticles were performed using microwave-assisted flow reaction in polyol to synthesize carbon-supported core Pd with subsequent direct coating of a Pt shell. By optimizing the amount of NaOH, almost all Pt precursors contributed to shell formation without specific chemicals.
Collapse
Affiliation(s)
- Masato Miyakawa
- National Institute of Advanced Industrial Science and Technology, AIST 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan
| | - Norihito Hiyoshi
- National Institute of Advanced Industrial Science and Technology, AIST 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan
| | - Hidekazu Koda
- Shinko Kagaku Kogyosyo Co., Ltd. 1544-19, Mashimori Koshigaya-shi Saitama 343-0012 Japan
| | - Kenichi Watanabe
- Shinko Kagaku Kogyosyo Co., Ltd. 1544-19, Mashimori Koshigaya-shi Saitama 343-0012 Japan
| | - Hideki Kunigami
- Shinko Kagaku Kogyosyo Co., Ltd. 1544-19, Mashimori Koshigaya-shi Saitama 343-0012 Japan
| | - Hiroshi Kunigami
- Shinko Kagaku Kogyosyo Co., Ltd. 1544-19, Mashimori Koshigaya-shi Saitama 343-0012 Japan
| | - Akira Miyazawa
- National Institute of Advanced Industrial Science and Technology, AIST 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan
| | - Masateru Nishioka
- National Institute of Advanced Industrial Science and Technology, AIST 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan
| |
Collapse
|
35
|
Yang T, Wang Y, Wei W, Ding X, He M, Yu T, Zhao H, Zhang D. Synthesis of octahedral Pt-Ni-Ir yolk-shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions. NANOSCALE 2019; 11:23206-23216. [PMID: 31782479 DOI: 10.1039/c9nr07235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fuel cells are expected to be one of the most promising alternatives to the increasingly scarce fossil fuels, and Pt is the most commonly used catalyst for anodic and cathodic electrochemical reactions. To realize large-scale commercialization, it is most urgent to improve the efficiency of Pt and reduce the cost. Here, we synthesized an octahedral Pt-Ni-Ir yolk-shell catalyst through stepwise co-deposition (SCD), surface-limited Pt deposition (SLPD) and Ni-coordinating etching (NCE) processes. Experimental studies showed that the catalytic activities of the as-prepared trimetal yolk-shell catalyst were several times higher than that of the commercial Pt/C towards oxygen reduction and methanol oxidization under both acidic and alkaline conditions. This work may be extended to designing other multimetallic functional materials with complex hierarchical nanostructures, which is conducive to greatly enhancing the performance.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yihui Wang
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wenxian Wei
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Xinran Ding
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Maoshuai He
- State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China and School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tingting Yu
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Hong Zhao
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Dongen Zhang
- School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
36
|
Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co “Core-shell” Carbon Nitride-Based Electrocatalysts. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00569-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Kim J, Kim H, Lee WJ, Ruqia B, Baik H, Oh HS, Paek SM, Lim HK, Choi CH, Choi SI. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core–Shell Nanocrystals. J Am Chem Soc 2019; 141:18256-18263. [DOI: 10.1021/jacs.9b09229] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Won-Jae Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Bibi Ruqia
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seung-Min Paek
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Hyung-Kyu Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
38
|
Dionigi F, Weber CC, Primbs M, Gocyla M, Bonastre AM, Spöri C, Schmies H, Hornberger E, Kühl S, Drnec J, Heggen M, Sharman J, Dunin-Borkowski RE, Strasser P. Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. NANO LETTERS 2019; 19:6876-6885. [PMID: 31510752 DOI: 10.1021/acs.nanolett.9b02116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report and study the translation of exceptionally high catalytic oxygen electroreduction activities of molybdenum-doped octahedrally shaped PtNi(Mo) nanoparticles from conventional thin-film rotating disk electrode screenings (3.43 ± 0.35 A mgPt-1 at 0.9 VRHE) to membrane electrode assembly (MEA)-based single fuel cell tests with sustained Pt mass activities of 0.45 A mgPt-1 at 0.9 Vcell, one of the highest ever reported performances for advanced shaped Pt alloys in real devices. Scanning transmission electron microscopy with energy dispersive X-ray analysis (STEM-EDX) reveals that Mo preferentially occupies the Pt-rich edges and vertices of the element-anisotropic octahedral PtNi particles. Furthermore, by combining in situ wide-angle X-ray spectroscopy, X-ray fluorescence, and STEM-EDX elemental mapping with electrochemical measurements, we finally succeeded to realize high Ni retention in activated PtNiMo nanoparticles even after prolonged potential-cycling stability tests. Stability losses at the anodic potential limits were mainly attributed to the loss of the octahedral particle shape. Extending the anodic potential limits of the tests to the Pt oxidation region induced detectable Ni losses and structural changes. Our study shows on an atomic level how Mo adatoms on the surface impact the Ni surface composition, which, in turn, gives rise to the exceptionally high experimental catalytic ORR reactivity and calls for strategies on how to preserve this particular surface composition to arrive at performance stabilities comparable with state-of-the-art spherical dealloyed Pt core-shell catalysts.
Collapse
Affiliation(s)
- F Dionigi
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - C Cesar Weber
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - M Primbs
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - M Gocyla
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - A Martinez Bonastre
- Johnson Matthey Technology Centre , Blount's Court , Sonning Common, Reading RG4 9NH , United Kingdom
| | - C Spöri
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - H Schmies
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - E Hornberger
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - S Kühl
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
| | - J Drnec
- European Synchrotron Radiation Facility , ID 31 Beamline, BP 220, Cedex F-38043 Grenoble , France
| | - M Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - J Sharman
- Johnson Matthey Technology Centre , Blount's Court , Sonning Common, Reading RG4 9NH , United Kingdom
| | - R Edward Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - P Strasser
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division , Technical University Berlin , 10623 Berlin , Germany
- Ertl Center for Electrochemistry and Catalysis , Gwangju Institute of Science and Technology , Gwangju 500-712 , South Korea
| |
Collapse
|
39
|
Xie C, Niu Z, Kim D, Li M, Yang P. Surface and Interface Control in Nanoparticle Catalysis. Chem Rev 2019; 120:1184-1249. [DOI: 10.1021/acs.chemrev.9b00220] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenlu Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhiqiang Niu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dohyung Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mufan Li
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Zhang L, Liu H, Liu S, Norouzi Banis M, Song Z, Li J, Yang L, Markiewicz M, Zhao Y, Li R, Zheng M, Ye S, Zhao ZJ, Botton GA, Sun X. Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01677] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Zhang
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hanshuo Liu
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sihang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Zhongxin Song
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Lijun Yang
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8, Canada
| | - Matthew Markiewicz
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ruying Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Matthew Zheng
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Siyu Ye
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8, Canada
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
41
|
Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO 2 RR). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805617. [PMID: 30570788 DOI: 10.1002/adma.201805617] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In the face of the global energy challenge and progressing global climate change, renewable energy systems and components, such as fuel cells and electrolyzers, which close the energetic oxygen and carbon cycles, have become a technology development priority. The electrochemical oxygen reduction reaction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2 RR) are important electrocatalytic processes that proceed at gas diffusion electrodes of hydrogen fuel cells and CO2 electrolyzers, respectively. However, their low catalytic activity (voltage efficiency), limited long-term stability, and moderate product selectivity (related to their Faradaic efficiency) have remained challenges. To address these, suitable catalysts are required. This review addresses the current state of research on Pt-based and Cu-based nanoalloy electrocatalysts for ORR and CO2 RR, respectively, and critically compares and contrasts key performance parameters such as activity, selectivity, and durability. In particular, Pt nanoparticles alloyed with transition metals, post-transition metals and lanthanides, are discussed, as well as the material characterization and their performance for the ORR. Then, bimetallic Cu nanoalloy catalysts are reviewed and organized according to their main reaction product generated by the second metal. This review concludes with a perspective on nanoalloy catalysts for the ORR and the CO2 RR, and proposes future research directions.
Collapse
Affiliation(s)
- Cheonghee Kim
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Vera Beermann
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Xingli Wang
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Tim Möller
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| |
Collapse
|
42
|
Lee YW, Ahn H, Lee SE, Woo H, Han SW. Fine Control over the Compositional Structure of Trimetallic Core-Shell Nanocrystals for Enhanced Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25901-25908. [PMID: 31251023 DOI: 10.1021/acsami.9b06498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pt-based multimetallic nanocrystals (NCs) have attracted tremendous research interest because of their excellent catalytic properties in various electrocatalysis fields. However, the development of rational synthesis approaches that can give multimetallic NCs with desirable compositional structures is still a radical issue. In the present work, we devised an efficient strategy for the systematic control of the spatial distribution of constituent elements in Pt-based trimetallic core-shell NCs, through which NCs with distinctly different compositional structures, such as Au@PdPt, Au@Pd@Pt, AuPd@Pt, and AuPdPt@Pt core-shell NCs, could selectively be generated. The adjustment of the amount of a reducing agent, hydrazine, which can provide control over the relative reduction kinetics of multiple metals, is the key to the selective formation of NCs. Through extensive studies on the effect of the compositional structure of the trimetallic NCs on their catalytic function toward the methanol electro-oxidation reaction, we found that the Au@Pd@Pt NCs exhibited considerably enhanced catalytic performance in comparison to the other trimetallic NCs as well as to their binary counterparts, a commercial catalyst, and reported Pt-based nanocatalysts due to the optimized surface electronic structure. The present strategy will be useful to design and construct multicomponent catalytic systems for various energy and environmental applications.
Collapse
Affiliation(s)
- Young Wook Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hochan Ahn
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Seung Eun Lee
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Hyunje Woo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury , KAIST , Daejeon 34141 , Korea
| |
Collapse
|
43
|
Gamler JTL, Leonardi A, Ashberry HM, Daanen NN, Losovyj Y, Unocic RR, Engel M, Skrabalak SE. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores. ACS NANO 2019; 13:4008-4017. [PMID: 30957486 DOI: 10.1021/acsnano.8b08007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pt catalysts are widely studied for the oxygen reduction reaction, but their cost and susceptibility to poisoning limit their use. A strategy to address both problems is to incorporate a second transition metal to form a bimetallic alloy; however, the durability of such catalysts can be hampered by leaching of non-noble metal components. Here, we show that random alloyed surfaces can be stabilized to achieve high durability by depositing the alloyed phase on top of intermetallic seeds using a model system with PdCu cores and PtCu shells. Specifically, random alloyed PtCu shells were deposited on PdCu seeds that were either the atomically random face-centered cubic phase (FCC A1, Fm3m) or the atomically ordered CsCl-like phase (B2, Pm3m). Precise control over crystallite size, particle shape, and composition allowed for comparison of these two core@shell PdCu@PtCu catalysts and the effects of the core phase on electrocatalytic durability. Indeed, the nanocatalyst with the intermetallic core saw only an 18% decrease in activity after stability testing (and minimal Cu leaching), whereas the nanocatalyst with the random alloy core saw a 58% decrease (and greater Cu leaching). The origin of this enhanced durability was probed by classical molecular dynamics simulations of model catalysts, with good agreement between model and experiment. Although many random alloy and intermetallic nanocatalysts have been evaluated, this study directly compares random alloy and intermetallic cores for electrocatalysis with the enhanced durability achieved with the intermetallic cores likely general to other core@shell nanocatalysts.
Collapse
Affiliation(s)
- Jocelyn T L Gamler
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Alberto Leonardi
- Institute for Multiscale Simulation , Friedrich-Alexander Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Hannah M Ashberry
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Nicholas N Daanen
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Yaroslav Losovyj
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , One Bethel Valley Road , Oak Ridge , Tennessee 37831 , United States
| | - Michael Engel
- Institute for Multiscale Simulation , Friedrich-Alexander Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Sara E Skrabalak
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
44
|
Lee C, Wang H, Zhao M, Yang T, Vara M, Xia Y. One‐Pot Synthesis of Pd@Pt
n
L
Core‐Shell Icosahedral Nanocrystals in High Throughput through a Quantitative Analysis of the Reduction Kinetics. Chemistry 2019; 25:5322-5329. [DOI: 10.1002/chem.201900229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Chi‐Ta Lee
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Helan Wang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Ming Zhao
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Madeline Vara
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
45
|
Pašti IA, Fako E, Dobrota AS, López N, Skorodumova NV, Mentus SV. Atomically Thin Metal Films on Foreign Substrates: From Lattice Mismatch to Electrocatalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Igor A. Pašti
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH−Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
| | - Edvin Fako
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Ana S. Dobrota
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Natalia V. Skorodumova
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH−Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Slavko V. Mentus
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia
| |
Collapse
|
46
|
Yahya N, Kamarudin SK, Karim NA, Basri S, Zanoodin AM. Nanostructured Pd-Based Electrocatalyst and Membrane Electrode Assembly Behavior in a Passive Direct Glycerol Fuel Cell. NANOSCALE RESEARCH LETTERS 2019; 14:52. [PMID: 30742238 PMCID: PMC6370893 DOI: 10.1186/s11671-019-2871-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to synthesize, characterize, and observe the catalytic activity of Pd1Au1 supported by vapor-grown carbon nanofiber (VGCNF) anode catalyst prepared via the chemical reduction method. The formation of the single-phase compounds was confirmed by X-ray diffraction (XRD) and Rietveld refinement analysis, which showed single peaks corresponding to the (111) plane of the cubic crystal structure. Further analysis was carried out by field emission scanning emission microscopy (FESEM), energy dispersive X-ray analysis (EDX), nitrogen adsorption/desorption measurements, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was examined by cyclic voltammetry tests. The presence of mesoporous VGCNF as support enables the use of a relatively small amount of metal catalyst that still produces an excellent current density (66.33 mA cm-2). Furthermore, the assessment of the kinetic activity of the nanocatalyst using the Tafel plot suggests that Pd1Au1/VGCNF exerts a strong electrocatalytic effect in glycerol oxidation reactions. The engineering challenges are apparent from the fact that the application of the homemade anode catalyst to the passive direct glycerol fuel cell shows the power density of only 3.9 mW cm-2. To understand the low performance, FESEM observation of the membrane electrode assembly (MEA) was carried out, examining several morphological defects that play a crucial role and affect the performance of the direct glycerol fuel cell.
Collapse
Affiliation(s)
- N. Yahya
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - S. K. Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| | - N. A. Karim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| | - S. Basri
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| | - A. M. Zanoodin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
47
|
Ge J, Li Z, Hong X, Li Y. Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry 2019; 25:5113-5127. [DOI: 10.1002/chem.201805332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Jingjie Ge
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Zhijun Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Yadong Li
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
48
|
Liu H, Qin J, Zhao S, Gao Z, Fu Q, Song Y. Two-dimensional circular platinum nanodendrites toward efficient oxygen reduction reaction and methanol oxidation reaction. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem Soc Rev 2018; 47:8173-8202. [PMID: 30009297 DOI: 10.1039/c8cs00336j] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim I, Seo MG, Choi C, Kim JS, Jung E, Han GH, Lee JC, Han SS, Ahn JP, Jung Y, Lee KY, Yu T. Studies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38109-38116. [PMID: 30335362 DOI: 10.1021/acsami.8b14166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The catalytic properties of materials are determined by their electronic structures, which are based on the arrangement of atoms. Using precise calculations, synthesis, analysis, and catalytic activity studies, we demonstrate that changing the lattice constant of a material can modify its electronic structure and therefore its catalytic activity. Pd/Au core/shell nanocubes with a thin Au shell thickness of 1 nm exhibit high H2O2 production rates due to their improved oxygen binding energy (Δ EO) and hydrogen binding energy (Δ EH), as well as their reduced activation barriers for key reactions.
Collapse
Affiliation(s)
- Inho Kim
- Department of Chemical Engineering, College of Engineering , Kyung Hee University , Yongin 17140 , Korea
| | | | - Changhyeok Choi
- Graduate School of EEWS , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | | | - Euiyoung Jung
- Department of Chemical Engineering, College of Engineering , Kyung Hee University , Yongin 17140 , Korea
| | | | | | | | | | - Yousung Jung
- Graduate School of EEWS , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | | | - Taekyung Yu
- Department of Chemical Engineering, College of Engineering , Kyung Hee University , Yongin 17140 , Korea
| |
Collapse
|