1
|
Essawy MM, Rafik ST, Awaad AK, Mourad GM, El Achy SN. Photo-excitable zinc sulfide nanoparticles: A theranostic nanotool for cancer management. Oral Dis 2023; 29:3243-3258. [PMID: 35877467 DOI: 10.1111/odi.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Zinc sulfide nanoparticles (ZnS NPs), as one of the quantum dots less than 10 nm, possess unique size-dependent autofluorescence. Excitation of their valence electrons by energy higher than the bandgap reveals the ZnS NPs' inherited photocatalysis with additive cytotoxic consequences of reactive oxygen species (ROS) release. Coupling the cytotoxicity of photoactivated ZnS NPs with their autofluorescence would be a novel theranostic modality, combating superficially accessible carcinoma. MATERIAL AND METHODS After synthesizing and characterization of ZnS NPs, we verified their photocatalysis and electron donation upon UV excitation in degrading organic dye and DNA cleavage, respectively. We then tested the efficacy of UV-activated ZnS NPs to induce ROS-dependent apoptosis in squamous cell carcinoma and breast cancer cell lines. RESULTS The energetic electron-hole pairs generated upon UV excitation of ZnS NPs with the consequent cascade of ROS release revealed potent apoptotic cancer cell deaths, compared with single treatment modalities of nonexcited nanoparticles and UV. Moreover, the inherited luminescence of ZnS NPs enabled visualization of their predominant intracytoplasmic uptake with tracking of their cellular response. CONCLUSION The intensified luminescence and the fortified cytotoxicity of photoactivated ZnS NPs enhance their theranostic qualifications, boosting their antitumorigenic use.
Collapse
Affiliation(s)
- Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma T Rafik
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ghada M Mourad
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar N El Achy
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Pathology, Executive Manager of the Nanomedicine Laboratory at the Center of Excellence for Research in Regenerative Medicine (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Kwak JH, Kim S, Pak HK, Sung SK, Kwak J, Lee SW, Kim CH, Kim GR. Preparation of Giant Quantum Dot-Liposome Complexes by the Asolectin Lipid and Theoretical Model for Stabilization of Nanoparticle Inside the Liposome. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepare giant Quantum dot-Liposome Complexes (QLCs). Quantum dots (QDs) incorporated inside liposome above 10 μm. QLCs is made by using the electro-swelling method combined with spin coating techniques. Three types of PC lipids and asolectin lipid are used for QLCs with
HDA (hexadecylamine) coated QDs, which ranged from blue- (diameter ~2.1 nm) to red-emission (diameter ~5.0 nm). As expected, (blue- or) green-emission QDs (smaller than) comparable to the thickness of PC lipid bilayer (~4 nm) are successfully formed QLCs, but QDs bigger than that fail to reproduce.
This observation is well-consistent with those reported by Gopakumar et al. Surprisingly, all QDs irrespective of their size are, contrary to PC lipids, successfully loaded into asolectin lipid bilayer. In order to understand what makes different behaviors between PC and asolectin lipids on
QLC formation, we suggest a theoretical model based on a geometrical assumptions for deformed lipid bilayer surrounding QD. The main advantage of this model is that the critical size Rcr of QD radius can be decided without calculating elastic free energy. As a result, it
predicts that only QDs below the critical size (diameter ~3.0 nm) can be loaded in a typical PC-lipid, but all size of QDs can be incorporated into asolectin bilayer under the assumption of two different curvatures on deformed monolayer.
Collapse
Affiliation(s)
- Jong Hyeok Kwak
- Department of Radiology, Pusan National University Yang-san Hospital, Yangsan, 50612, Korea
| | - Sungho Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hyuk Kyu Pak
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Soon Ki Sung
- Department of Neurosurgery, Pusan National University Yang-san Hospital, Yangsan, 50612, Korea
| | - Jinsung Kwak
- Department of Physics, Changwon National University, Changwon, 51140, Korea
| | - Sang Weon Lee
- Department of Neurosurgery, Pusan National University Yang-san Hospital, Yangsan, 50612, Korea
| | - Chang Hyeun Kim
- Department of Neurosurgery, Pusan National University Yang-san Hospital, Yangsan, 50612, Korea
| | - Gyeong Rip Kim
- Department of Neurosurgery, Pusan National University Yang-san Hospital, Yangsan, 50612, Korea
| |
Collapse
|
3
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
4
|
Liu X, Ge W. The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Front Med (Lausanne) 2022; 9:814986. [PMID: 35273976 PMCID: PMC8901503 DOI: 10.3389/fmed.2022.814986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| | - Weidong Ge
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| |
Collapse
|
5
|
Li J, Wu X, Li Y, Wang X, Huang H, Jian D, Shan Y, Zhang Y, Wu C, Tan G, Wang S, Liu F. Amplification-free smartphone-based attomolar HBV detection. Biosens Bioelectron 2021; 194:113622. [PMID: 34543826 DOI: 10.1016/j.bios.2021.113622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Classical gold standard HBV detection relies on expensive devices and complicated procedures, thus is always restricted in large-scale hospitals and centers for disease control and prevention. To extend HBV detection to primary clinics especially in underdeveloped areas, we design amplification-free smartphone-based attomolar HBV detecting technique based on single molecule sensing. Verified by synthesized HBV target DNA, this technique reaches a detection limit at attomolar concentration (100 aM); and verified by 110 clinical samples, it also reaches a rather high sensitivity of 104 copy/mL (≈2000 IU/mL) with a high accuracy of 93.64% certificated by gold standard HBV detecting devices. Besides, this technique can quantify HBV viral load in 70 min only using portable and inexpensive devices as well as simple operations. Because of its cost-effective, field-portable and operable design, highly sensitive and selective detecting capability and wireless data connectivity, this technique can be potentially used in mobile HBV diagnoses and share HBV epidemic information especially in resource limited situations.
Collapse
Affiliation(s)
- Jiahao Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Yue Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Jian
- OptiX+ Laboratory, Wuxi, Jiangsu, 214000, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yue Zhang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chengcheng Wu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guolei Tan
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; OptiX+ Laboratory, Wuxi, Jiangsu, 214000, China.
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
6
|
Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13122073. [PMID: 34959354 PMCID: PMC8705306 DOI: 10.3390/pharmaceutics13122073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
Quantum dots (QDs) are a promising tool to detect and monitor tumors. However, their small size allows them to accumulate in large quantities inside the healthy cells (in addition to the tumor cells), which increases their toxicity. In this study, we synthesized stealth liposomes encapsulating hydrophilic graphene quantum dots and triggered their release with ultrasound with the goal of developing a safer and well-controlled modality to deliver fluorescent markers to tumors. Our results confirmed the successful encapsulation of the QDs inside the core of the liposomes and showed no effect on the size or stability of the prepared liposomes. Our results also showed that low-frequency ultrasound is an effective method to release QDs encapsulated inside the liposomes in a spatially and temporally controlled manner to ensure the effective delivery of QDs to tumors while reducing their systemic toxicity.
Collapse
|
7
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Wu QL, Xu HL, Xiong C, Lan QH, Fang ML, Cai JH, Li H, Zhu ST, Xu JH, Tao FY, Lu CT, Zhao YZ, Chen B. c(RGDyk)-modified nanoparticles encapsulating quantum dots as a stable fluorescence probe for imaging-guided surgical resection of glioma under the auxiliary UTMD. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:143-158. [PMID: 32207347 DOI: 10.1080/21691401.2019.1699821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Surgical resection remains the preferred approach for some patients with glioblastoma (GBM), and eradication of the residual tumour niche after surgical resection is very helpful for prolonging patient survival. However, complete surgical resection of invasive GBM is difficult because of its ambiguous boundary. Herein, a novel targeting material, c(RGDyk)-poloxamer-188, was synthesized by modifying carboxyl-terminated poloxamer-188 with a glioma-targeting cyclopeptide, c(RGDyk). Quantum dots (QDs) as fluorescent probe were encapsulated into the self-assembled c(RGDyk)-poloxamer-188 polymer nanoparticles (NPs) to construct glioma-targeted QDs-c(RGDyk)NP for imaging-guided surgical resection of GBM. QDs-c(RGDyk)NP exhibited a moderate hydrodynamic diameter of 212.4 nm, a negative zeta potential of -10.1 mV and good stability. QDs-c(RGDyk)NP exhibited significantly lower toxicity against PC12 and C6 cells and HUVECs than free QDs. Moreover, in vitro cellular uptake experiments demonstrated that QDs-c(RGDyk)NP specifically targeted C6 cells, making them display strong fluorescence. Combined with ultrasound-targeted microbubble destruction (UTMD), QDs-c(RGDyk)NP specifically accumulated in glioma tissue in orthotropic tumour rats after intravenous administration, evidenced by ex vivo NIR fluorescence imaging of bulk brain and glioma tissue sections. Furthermore, fluorescence imaging with QDs-c(RGDyk)NP guided accurate surgical resection of glioma. Finally, the safety of QDs-c(RGDyk)NP was verified using pathological HE staining. In conclusion, QDs-c(RGDyk)NP may be a potential imaging probe for imaging-guided surgery.
Collapse
Affiliation(s)
- Qi-Long Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui Xiong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qing-Hua Lan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ming-Ling Fang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jin-Hua Cai
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Hui Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Shu-Ting Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jing-Hong Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Fang-Yi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
9
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
10
|
Singh AK, Yadav AN, Srivastav S, Jaiswal RK, Srivastava A, Mondal AC, Singh K. CdSe- Reduced graphene oxide nanocomposite toxicity alleviation via V 2O 5 shell formation over CdSe core: in vivo and in vitro studies. NANOTECHNOLOGY 2020; 31:415101. [PMID: 32311687 DOI: 10.1088/1361-6528/ab8b0f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present article demonstrates the synthesis of the nanocomposite of reduced graphene oxide (rGO) with CdSe and CdSe/V2O5 core/shell quantum dots by a two-step facile synthesis approach and subsequently studies their relative biocompatibility in different cells. Various characterization techniques have been applied including transmission electron microscopy (TEM), an x-ray diffractometer (XRD) and Raman spectroscopy to confirm the successful formation of CdSe-rGO and CdSe/V2O5-rGO nanocomposites. The average sizes of CdSe and CdSe/V2O5 QDs have found to be ∼3 and 5.5 nm, respectively with a good dispersion over the surface of rGO nanosheets. A crystal phase change has occurred during the formation of the V2O5 shell over the surface of CdSe QDs and confirmed through XRD. Raman spectroscopy has shown some useful insight of the surface state of CdSe and consequent changes in the surface with V2O5 shell growth. Further, MTT and cell growth assays have been performed to analyze their biocompatibility in A549 and Hela cells with various concentrations of as-synthesized materials. Our results demonstrate the toxicity of CdSe-rGO nanocomposite to be substantially reduced by the growth of the V2O5 shell. The in vivo studies in Drosophila show a remarkable decrease in the reactive oxygen species (ROS) and apoptosis levels for a CdSe/V2O5-rGO composite as compared to a CdSe-rGO nanocomposite, which paves a promising pathway for the CdSe/V2O5-rGO nanocomposite to be used as an efficient biocompatible material.
Collapse
Affiliation(s)
- Ashwani Kumar Singh
- Center for Semiconductor and Nanotechnology Components, State University of Campinas, UNICAMP, Sao Paulo, Brazil. School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Zacheo A, Bizzarro L, Blasi L, Piccirillo C, Cardone A, Gigli G, Ragusa A, Quarta A. Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Front Bioeng Biotechnol 2020; 8:690. [PMID: 32719782 PMCID: PMC7350901 DOI: 10.3389/fbioe.2020.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid nanovesicles (NVs) are the first nanoformulation that entered the clinical use in oncology for the treatment of solid tumors. They are indeed versatile systems which can be loaded with either hydrophobic or hydrophilic molecules, for both imaging and drug delivery, and with high biocompatibility, and limited immunogenicity. In the present work, NVs with a lipid composition resembling that of natural vesicles were prepared using the ultrasonication method. The NVs were successfully loaded with fluorophores molecules (DOP-F-DS and a fluorescent protein), inorganic nanoparticles (quantum dots and magnetic nanoparticles), and anti-cancer drugs (SN-38 and doxorubicin). The encapsulation of such different molecules showed the versatility of the developed systems. The size of the vesicles varied from 100 up to 300 nm depending on the type of loaded species, which were accommodated either into the lipid bilayer or into the aqueous core according to their hydrophobic or hydrophilic nature. Viability assays were performed on cellular models of breast cancer (MCF-7 and MDA-MB-231). Results showed that NVs with encapsulated both drugs simultaneously led to a significant reduction of the cellular activity (up to 22%) compared to the free drugs or to the NVs encapsulated with only one drug. Lipidomic analysis suggested that the mechanism of action of the drugs is the same, whether they are free or encapsulated, but administration of the drugs by means of nanovesicles is more efficient in inducing cellular damage, likely because of a quicker internalization and a sustained release. This study confirms the versatility and the potential of lipid NVs for cancer treatment, as well as the validity of the ultrasound preparation method for their preparation.
Collapse
Affiliation(s)
- Antonella Zacheo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Luca Bizzarro
- Dipartimento di Scienze Biomolecolari (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Blasi
- CNR, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Antonio Cardone
- Institute of Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Council of Research-CNR, Bari, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Mathematics and Physics E. de Giorgi, University of Salento, Campus Ecotekne, Lecce, Italy
| | - Andrea Ragusa
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
12
|
Shen P, Zhao G, Liu Y, Ge Q, Sun Q. Liposomal Spherical Nucleic Acid Scaffolded Site-Selective Hybridization of Nanoparticles for Visual Detection of MicroRNAs. ACS APPLIED BIO MATERIALS 2020; 3:1656-1665. [PMID: 35021656 DOI: 10.1021/acsabm.9b01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, the advanced liposomal spherical nucleic acid (L-SNA) is exploited for the first time to establish a spherical, three-dimensional biosensing platform by hybridizing with a set of nanoparticles. By hydrophilic and hydrophobic interactions as well as programmable base-pairing, red-emission quantum dots (QDs), green-emission QDs, and gold nanoparticles (AuNPs) are encapsulated into the internal aqueous core, the intermediate lipid bilayer, and the outer SNA shell, respectively, producing an L-SNA-nanoparticle hybrid. As a result of the site-selective encapsulation, the hybrid constitutes a liposomal fluorescent "core-resonance energy transfer" system surrounded by a SNA shell, as is imaged at the single-particle resolution by confocal microscopy. With the outer SNA shell as three-dimensional substrate for duplex-specific nuclease target recycling reaction, the hybrid is capable of amplified detection of microRNAs, featuring one target to many AuNP-manipulated, dual-emission QD-based ratiometric fluorescence. More importantly, the ratiometric fluorescence facilitates the hybrid to visualize microRNAs with remarkably high resolution, which is exemplified by traffic light-type transition in fluorescence color for diagnosing circulating microRNAs in clinical serum samples. Substantially, the controllable hybridization with functional nanoparticles opens an avenue for the exciting biomedical applications of liposomal spherical nucleic acids.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guihong Zhao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Targeting and imaging of monocyte-derived macrophages in rat's injured artery following local delivery of liposomal quantum dots. J Control Release 2020; 318:145-157. [DOI: 10.1016/j.jconrel.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 12/27/2022]
|
14
|
Yang Z, Xu J, Zong S, Xu S, Zhu D, Zhang Y, Chen C, Wang C, Wang Z, Cui Y. Lead Halide Perovskite Nanocrystals-Phospholipid Micelles and Their Biological Applications: Multiplex Cellular Imaging and in Vitro Tumor Targeting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47671-47679. [PMID: 31633335 DOI: 10.1021/acsami.9b12924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) are promising optical materials in many fields. However, their poor moisture stability, significant toxicity, and difficulty to be further functionalized greatly hinder their applications in bioimaging. Here, a universal strategy is demonstrated by simply encapsulating CsPbX3 (X = Cl, Br, I) NCs into phospholipids to achieve CsPbX3-phospholipid micelles (CsPbX3@phospholipid) as probes for multiplex encoding cellular imaging or tumor-targeted imaging. The layer of phospholipids endows CsPbX3 NCs with superior water-resistant characteristics, the ability to be further biofunctionalized, and greatly improved biocompatibility. The CsPbX3@phospholipid micelles exhibited strong luminescence with narrow fwhm in water for more than four months. Specifically, even after being modified with folic acid, the bright fluorescence of the micelles was well retained, which were employed for the targeting of Hela cells. Finally, the greatly reduced toxicity of the CsPbX3@phospholipid micelles was verified using HeLa cells and zebrafish as in vitro and in vivo models, respectively.
Collapse
Affiliation(s)
- Zhaoyan Yang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Jingkun Xu
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Shenfei Zong
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Shuhong Xu
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Dan Zhu
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Yizhi Zhang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Chen Chen
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Chunlei Wang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | - Zhuyuan Wang
- Advanced Photonics Center , Southeast University , Nanjing 210096 , China
| | | |
Collapse
|
15
|
Al-Ahmady ZS, Donno R, Gennari A, Prestat E, Marotta R, Mironov A, Newman L, Lawrence MJ, Tirelli N, Ashford M, Kostarelos K. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13318-13331. [PMID: 31478662 DOI: 10.1021/acs.langmuir.9b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.
Collapse
Affiliation(s)
- Zahraa S Al-Ahmady
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- Pharmacology Department, School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Roberto Donno
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Arianna Gennari
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Eric Prestat
- SuperSTEM Laboratory , SciTech Daresbury Campus , Keckwick Lane, Warrington WA4 4AD , U.K
| | - Roberto Marotta
- Electron Microscopy Laboratory , Fondazione Istituto Italiano di Tecnologia , 16163 Genova , Italy
| | | | - Leon Newman
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
| | - M Jayne Lawrence
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| | - Nicola Tirelli
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
- Laboratory of Polymers and Biomaterials , Fondazione Istituto Italiano di Tecnologia , 16163 , Genova , Italy
| | - Marianne Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, IMED Biotech Unit , AstraZeneca , Macclesfield SK10 2NA , U.K
| | - Kostas Kostarelos
- Nanomedicine Lab, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health , University of Manchester , Av Hill Building , Manchester M13 9PT , U.K
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Stopford Building , Manchester , M13 9PT , U.K
| |
Collapse
|
16
|
Muralidhara S, Malu K, Gaines P, Budhlall BM. Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging. Colloids Surf B Biointerfaces 2019; 182:110348. [DOI: 10.1016/j.colsurfb.2019.110348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
|
17
|
Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci Rep 2019; 9:13859. [PMID: 31554912 PMCID: PMC6761283 DOI: 10.1038/s41598-019-50424-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/12/2019] [Indexed: 01/16/2023] Open
Abstract
Antibody-coated nanoparticles have recently attracted considerable attention, with the focus falling on diagnostics. Nevertheless, controlled antibody bioconjugation remains a challenge. Here, we present two strategies of bioconjugation with the aim of evaluating the best approach for the coupling of antibodies on the surface of nanomaterials in an oriented way. We employed electrostatic interaction (physical adsorption) and covalent conjugation in the orientation of antibodies on the metallic surface as coupling methods, and their influence on the detection of 17β-estradiol was addressed with localized surface plasmon resonance. The understanding of these mechanisms is fundamental for the development of reproducible inorganic bioconjugates with oriented surface as well sensibility of immunoassays.
Collapse
|
18
|
Xue Z, Wang P, Peng A, Wang T. Architectural Design of Self-Assembled Hollow Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801441. [PMID: 30256464 DOI: 10.1002/adma.201801441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Colloidal nanoparticle assemblies are widely designed and fabricated via various building blocks to enhance their intrinsic properties and potential applications. Self-assembled hollow superstructures have been a focal point in nanotechnology for several decades and are likely to remain so for the foreseeable future. The novel properties of self-assembled hollow superstructures stem from their effective spatial utilization. As such, a comprehensive appreciation of the interactive forces at play among individual building blocks is a prerequisite for designing and managing the self-assembly process, toward the fabrication of optimal hollow nanoproducts. Herein, the emerging approaches to the fabrication of self-assembled hollow superstructures, including hard-templated, soft-templated, self-templated, and template-free methods, are classified and discussed. The corresponding reinforcement mechanisms, such as strong ligand interaction strategies and extra-capping strategies, are discussed in detail. Finally, possible future directions for the construction of multifunctional hollow superstructures with highly efficient catalytic reaction systems and an integration platform for bioapplications are discussed.
Collapse
Affiliation(s)
- Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, 100081, P. R. China
| | - Aidong Peng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Study on intracellular delivery of liposome encapsulated quantum dots using advanced fluorescence microscopy. Sci Rep 2019; 9:10504. [PMID: 31324829 PMCID: PMC6642191 DOI: 10.1038/s41598-019-46732-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Quantum dots increasingly gain popularity for in vivo applications. However, their delivery and accumulation into cells can be challenging and there is still lack of detailed information. Thereby, the application of advanced fluorescence techniques can expand the portfolio of useful parameters for a more comprehensive evaluation. Here, we encapsulated hydrophilic quantum dots into liposomes for studying cellular uptake of these so-called lipodots into living cells. First, we investigated photophysical properties of free quantum dots and lipodots observing changes in the fluorescence decay time and translational diffusion behaviour. In comparison to empty liposomes, lipodots exhibited an altered zeta potential, whereas their hydrodynamic size did not change. Fluorescence lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS), both combined with two-photon excitation (2P), were used to investigate the interaction behaviour of lipodots with an insect epithelial tissue. In contrast to the application of free quantum dots, their successful delivery into the cytosol of salivary gland duct cells could be observed when applying lipodots. Lipodots with different lipid compositions and surface charges did not result in considerable differences in the intracellular labelling pattern, luminescence decay time and diffusion behaviour. However, quantum dot degradation after intracellular accumulation could be assumed from reduced luminescence decay times and blue-shifted luminescence signals. In addition to single diffusing quantum dots, possible intracellular clustering of quantum dots could be assumed from increased diffusion times. Thus, by using a simple and manageable liposome carrier system, 2P-FLIM and 2P-FCS recording protocols could be tested, which are promising for investigating the fate of quantum dots during cellular interaction.
Collapse
|
20
|
Sedighi M, Sieber S, Rahimi F, Shahbazi MA, Rezayan AH, Huwyler J, Witzigmann D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv Transl Res 2019; 9:404-413. [PMID: 30306459 DOI: 10.1007/s13346-018-0587-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here, we present a systematic approach for the rapid size optimization of liposomes. The combination of microfluidics with a design-of-experiment (DoE) approach offers a strategy to rapidly screen and optimize various liposome formulations, i.e., up to 30 liposome formulations in 1 day. Five representative liposome formulations based on clinically approved lipid compositions were formulated using systematic variations in microfluidics flow rate settings, i.e., flow rate ratio (FRR) and total flow rate (TFR). Interestingly, flow rate-dependent DoE models for the prediction of liposome characteristics could be grouped according to lipid-phase transition temperature and surface characteristics. For all formulations, the FRR had a significant impact (p < 0.001) on hydrodynamic diameter and size distribution of liposomes, while the TFR mainly affected the production rate. Liposome characteristics remained constant for TFRs above 8 mL/min. The stability study revealed an influence of lipid:cholesterol ratio (1:1 and 2:1 ratio) and presence of PEG on liposome characteristics during storage. To validate our DoE models, we formulated liposomes incorporating hydrophobic dodecanethiol-coated gold nanoparticles. This proof-of-concept step showed that flow rate settings predicted by DoE models successfully determined the size of resulting empty liposomes (109.3 ± 15.3 nm) or nanocomposites (111 ± 17.3 nm). This study indicates that a microfluidics-based formulation approach combined with DoE is suitable for the routine development of monodisperse and size-specific liposomes in a reproducible and rapid manner.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Sandro Sieber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Fereshteh Rahimi
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800, Kongens Lyngby, Denmark.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Dominik Witzigmann
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Pereira SGT, Hudoklin S, Kreft ME, Kostevsek N, Stuart MCA, Al-Jamal WT. Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature Toward Prodrug-Nanomedicine Design. Mol Pharm 2019; 16:1573-1585. [DOI: 10.1021/acs.molpharmaceut.8b01257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara G. T. Pereira
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| | - Samo Hudoklin
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Nina Kostevsek
- Department for Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Marc C. A. Stuart
- Electron Microscopy, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Wafa T. Al-Jamal
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| |
Collapse
|
22
|
Sun A, Lai Z, Zhao M, Mu L, Hu X. Native nanodiscs from blood inhibit pulmonary fibrosis. Biomaterials 2019; 192:51-61. [DOI: 10.1016/j.biomaterials.2018.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/29/2018] [Accepted: 10/28/2018] [Indexed: 12/27/2022]
|
23
|
Wlodek M, Kolasinska-Sojka M, Szuwarzynski M, Kereïche S, Kovacik L, Zhou L, Islas L, Warszynski P, Briscoe WH. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. NANOSCALE 2018; 10:17965-17974. [PMID: 30226255 DOI: 10.1039/c8nr05877f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding interactions between functional nanoparticles and lipid bilayers is important to many emerging biomedical and bioanalytical applications. In this paper, we report incorporation of hydrophobic cadmium sulphide quantum dots (CdS QDs) into mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) liposomes, and into their supported bilayers (SLBs). The QDs were found embedded in the hydrophobic regions of the liposomes and the supported bilayers, which retained the QD fluorescent properties. In particular, we studied the effect of the QD size (2.7-5.4 nm in diameter) on the formation kinetics and structure of the supported POPC/POPE bilayers, monitored in situ using quartz crystal microbalance with dissipation monitoring (QCM-D), as the liposomes ruptured onto the substrate. The morphology of the obtained QD-lipid hybrid bilayers was studied using atomic force microscopy (AFM), and their structure by synchrotron X-ray reflectivity (XRR). It was shown that the incorporation of hydrophobic QDs promoted bilayer formation on the PEI cushion, evident from the rupture and fusion of the QD-endowed liposomes at a lower surface coverage compared to the liposomes without QDs. Furthermore, the degree of disruption in the supported bilayer structure caused by the QDs was found to be correlated with the QD size. Our results provide mechanistic insights into the kinetics of the rupturing and formation process of QD-endowed supported lipid bilayers via liposome fusion on polymer cushions.
Collapse
Affiliation(s)
- Magdalena Wlodek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li WQ, Wang Z, Hao S, Sun L, Nisic M, Cheng G, Zhu C, Wan Y, Ha L, Zheng SY. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. NANOSCALE 2018; 10:3744-3752. [PMID: 29411807 DOI: 10.1039/c7nr08816g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The application of engineered bacteria-based drug delivery vehicles to treat cancer has been practiced for more than a century. Mitochondria, evolutionarily originated from bacteria, are ubiquitous, semi-autonomous cellular organelles. In this study, we present the first exploration of using mitochondria as a delivery system of carbon quantum dots (CQDs) for in vivo imaging and administration of the anticancer drug doxorubicin (DOX). The results show that mitochondria as carriers are compatible with CQD loading and preserve the optical properties of CQDs. Moreover, the mitochondria delivery system can improve the CQD bio-distribution in organs and prolong the retention time of CQDs after intravenous injection. Furthermore, mitochondria loaded with doxorubicin hydrochloride (Mito-DOX) show an enhanced therapeutic effect compared to free DOX. The mitochondria-based "aircraft" system may be a promising novel therapeutic platform with high potential for biological imaging and drug delivery to fight cancer and other diseases.
Collapse
Affiliation(s)
- Wen-Qing Li
- Department of Biomedical Engineering, Penn State Materials Research Institute, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen D, Wan D, Wang R, Liu Y, Sun K, Tao X, Qu Y, Dai K, Ai S, Tao K. Multimodal Nanoprobe Based on Upconversion Nanoparticles for Monitoring Implanted Stem Cells in Bone Defect of Big Animal. ACS Biomater Sci Eng 2018; 4:626-634. [PMID: 33418751 DOI: 10.1021/acsbiomaterials.7b00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monitoring implanted stem cells in bone regeneration and other cell therapies is of great importance to reveal the mechanism of tissue repair and to optimize clinical treatments. However, big challenge still remained in lacking an imaging nanoprobe. Herein, we designed surface modified upconversion nanoparticles (UCNs) with multimodal imaging capabilities of fluorescence, magnetic resonance imaging (MRI) and dual-energy computed tomography (CT). It was found that the UCNs can label stem cells in an efficient (over 200 pg/cell) and long-term (at least 14 days) manner, with almost no influence on the viability, cell cycle, apoptosis, and multilineage differentiation. Thus, clinical dual-energy CT and MRI were successfully applied to observe the migration of labeled cells on a bone-defect model of rabbit for at least 14 days. The results visualized the gathering of stem cells at the defect site of cortical bone, and the in vivo images were well-correlated with the in vitro fluorescence observation without extra staining. Therefore, a potentially translatable nanoprobe was developed for noninvasive and real-time tracking of cells, which may be meaningful for understanding the bone regeneration in clinic and shed light on the visualization of cells in other cell therapies.
Collapse
Affiliation(s)
- Dexin Chen
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Daqian Wan
- Department of Orthopedics, Orthopedic Institute of Harbin, The Fifth Hospital in Harbin, Harbin 150040, P. R. China
| | - Rongying Wang
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanyue Liu
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | | | | | | | - Ke Tao
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Geng S, Wu L, Cui H, Tan W, Chen T, Chu PK, Yu XF. Synthesis of lipid–black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release. Chem Commun (Camb) 2018; 54:6060-6063. [DOI: 10.1039/c8cc03423k] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black phosphorus quantum dots are incorporated into liposomal bilayers to produce a drug delivery system with excellent near-infrared (NIR) photothermal properties and drug release capability controlled by light.
Collapse
Affiliation(s)
- Shengyong Geng
- Clinical Research Center
- The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station
| | - Lie Wu
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Haodong Cui
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| | - Wenyong Tan
- Clinical Research Center
- The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Department of Oncology
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering
- City University of Hong Kong
- Tat Chee Avenue, Kowloon
- China
| | - Xue-Feng Yu
- Center for Biomedical Materials and Interfaces
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
- China
| |
Collapse
|
27
|
Park K, Kuo Y, Shvadchak V, Ingargiola A, Dai X, Hsiung L, Kim W, Zhou H, Zou P, Levine AJ, Li J, Weiss S. Membrane insertion of-and membrane potential sensing by-semiconductor voltage nanosensors: Feasibility demonstration. SCIENCE ADVANCES 2018; 4:e1601453. [PMID: 29349292 PMCID: PMC5770167 DOI: 10.1126/sciadv.1601453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 12/08/2017] [Indexed: 05/22/2023]
Abstract
We developed membrane voltage nanosensors that are based on inorganic semiconductor nanoparticles. We provide here a feasibility study for their utilization. We use a rationally designed peptide to functionalize the nanosensors, imparting them with the ability to self-insert into a lipid membrane with a desired orientation. Once inserted, these nanosensors could sense membrane potential via the quantum confined Stark effect, with a single-particle sensitivity. With further improvements, these nanosensors could potentially be used for simultaneous recording of action potentials from multiple neurons in a large field of view over a long duration and for recording electrical signals on the nanoscale, such as across one synapse.
Collapse
Affiliation(s)
- Kyoungwon Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yung Kuo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volodymyr Shvadchak
- Institute of Organic Chemistry and Biochemistry AS CR, Prague 166-10, Czech Republic
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinghong Dai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Hsiung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wookyeom Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Zou
- Department of Chemistry and Chemical Biology, Harvard University, MA 02138, USA
| | - Alex J. Levine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
28
|
Wu H, Santana I, Dansie J, Giraldo JP. In Vivo Delivery of Nanoparticles into Plant Leaves. ACTA ACUST UNITED AC 2017; 9:269-284. [PMID: 29241293 DOI: 10.1002/cpch.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, California
| | - Israel Santana
- Department of Botany and Plant Sciences, University of California, Riverside, California
| | - Joshua Dansie
- Department of Botany and Plant Sciences, University of California, Riverside, California
| | - Juan P Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California
| |
Collapse
|
29
|
De Leo V, Milano F, Paiano A, Bramato R, Giotta L, Comparelli R, Ruscigno S, Agostiano A, Bucci C, Catucci L. Luminescent CdSe@ZnS nanocrystals embedded in liposomes: a cytotoxicity study in HeLa cells. Toxicol Res (Camb) 2017; 6:947-957. [PMID: 30090555 PMCID: PMC6062261 DOI: 10.1039/c7tx00172j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
The use of fluorescent nanocrystals (NCs) as probes for bioimaging applications has emerged as an advantageous alternative to conventional organic fluorescent dyes. Therefore their toxicological evaluation and intracellular delivery are currently a primary field of research. In this work, hydrophobic and highly fluorescent CdSe@ZnS NCs were encapsulated into the lipid bilayer of liposomes by the micelle-to-vesicle transition (MVT) method. The obtained aqueous NC-liposome suspensions preserved the spectroscopic characteristics of the native NCs. A systematic study of the in vitro toxicological effect on HeLa cells of these red emitting NC-liposomes was then carried out and compared to that of empty liposomes. By using liposomes of different phospholipid composition, we evaluated the effect of the lipid carrier on the cytotoxicity towards HeLa cells. Surprisingly, a cell proliferation and death study along with the MTT test on HeLa cells treated with NC-liposomes have shown that the toxic effects of NCs, at concentrations up to 20 nM, are negligible compared to those of the lipid carrier, especially when this is constituted by the cationic phospholipid DOTAP. In particular, obtained data suggest that DOTAP has a dose- and time-dependent toxic effect on HeLa cells. In contrast, the addition of PEG to the liposomes does not alter significantly the viability of the cells. In addition, the ability of NC-liposomes to penetrate the HeLa cells was assessed by fluorescence and confocal microscopy investigation. Captured images show that NC-liposomes are internalized into cells through the endocytic pathway, enter early endosomes and reach lysosomes in 1 h. Interestingly, red emitting NCs co-localized with endosomes and were positioned at the limiting membrane of the organelles. The overall results suggest that the fluorescent system as a whole, NCs and their carrier, should be considered for the development of fully safe biological applications of CdSe@ZnS NCs, and provide essential indications to define the optimal experimental conditions to use the proposed system as an optical probe for future in vivo experiments.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Francesco Milano
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberta Bramato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberto Comparelli
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Silvia Ruscigno
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Angela Agostiano
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Lucia Catucci
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
30
|
Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions. Colloids Surf B Biointerfaces 2017; 158:667-674. [PMID: 28763774 DOI: 10.1016/j.colsurfb.2017.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
Abstract
The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion.
Collapse
|
31
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
32
|
Qu W, Zuo W, Li N, Hou Y, Song Z, Gou G, Yang J. Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J Drug Target 2017; 25:661-672. [DOI: 10.1080/1061186x.2017.1323334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenjing Qu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Na Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Zhihua Song
- Department of Pharmaceutical Science, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guojing Gou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
33
|
Preiss MR, Hart A, Kitchens C, Bothun GD. Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes. J Phys Chem B 2017; 121:5040-5047. [PMID: 28441023 DOI: 10.1021/acs.jpcb.7b01702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the effect of embedded nanoparticles on the characteristics and behavior of lipid bilayers is critical to the development of lipid-nanoparticle assemblies (LNAs) for biomedical applications. In this work we investigate the effect of hydrophobic nanoparticle size and concentration on liposomal thermal release behavior. Decorated LNAs (D-LNAs) were formed by embedding 2 nm (GNP2) and 4 nm (GNP4) dodecanethiol-capped gold nanoparticles into DPPC liposomes at lipid to nanoparticle ratios (L:N) of 25,000:1, 10,000:1, and 5,000:1. D-LNA structure was investigated by cryogenic transmission electron microscopy, and lipid bilayer permeability and phase behavior were investigated based on the leakage of a model drug, carboxyfluorescein, and by differential scanning calorimetry, respectively. The presence of bilayer nanoparticles caused changes in the lipid bilayer release and phase behavior compared to pure lipid controls at very low nanoparticle to bilayer volume fractions (0.3%-4.6%). Arrhenius plots of the thermal leakage show that GNP2 led to greater increases in the leakage energy barrier compared to GNP4, consistent with GNP4 causing greater bilayer disruption due to their size relative to the bilayer thickness. Embedding hydrophobic nanoparticles as permeability modifiers is a unique approach to controlling liposomal leakage based on nanoparticle size and concentration.
Collapse
Affiliation(s)
- Matthew Ryan Preiss
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Ashley Hart
- Department of Chemical and Biomolecular Engineering, Clemson University , 130 Earle Hall, Clemson, South Carolina 29634, United States
| | - Christopher Kitchens
- Department of Chemical and Biomolecular Engineering, Clemson University , 130 Earle Hall, Clemson, South Carolina 29634, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island , 51 Lower College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
34
|
Al-Ahmady Z, Lozano N, Mei KC, Al-Jamal WT, Kostarelos K. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. Int J Pharm 2017; 514:133-141. [PMID: 27863656 DOI: 10.1016/j.ijpharm.2016.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
The engineering of responsive multifunctional delivery systems that combine therapeutic and diagnostic (theranostic) capabilities holds great promise and interest. We describe the design of thermosensitive liposome-nanoparticle (NP) hybrids that can modulate drug release in response to external heating stimulus. These hybrid systems were successfully engineered by the incorporation of gold, silver, and iron oxide NPs into the lipid bilayer of lysolipid-containing thermosensitive liposomes (LTSL). Structural characterization of LTSL-NP hybrids using cryo-EM and AFM revealed the incorporation of metallic NPs into the lipid membranes without compromising doxorubicin loading and retention capability. The presence of metallic NPs in the lipid bilayer reinforced bilayer retention and offered a nanoparticle concentration-dependent modulation of drug release in response to external heating. In conclusion, LTSL-NP hybrids represent a promising versatile platform based on LTSL liposomes that could further utilize the properties of the embedded NPs for multifunctional theranostic applications.
Collapse
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Neus Lozano
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Kuo-Ching Mei
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wafa' T Al-Jamal
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom; University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
35
|
Aizik G, Waiskopf N, Agbaria M, Levi-Kalisman Y, Banin U, Golomb G. Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue. ACS NANO 2017; 11:3038-3051. [PMID: 28196324 DOI: 10.1021/acsnano.7b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantum dots (QDs), semiconductor nanocrystals, are fluorescent nanoparticles of growing interest as an imaging tool of a diseased tissue. However, a major concern is their biocompatibility, cytotoxicity, and fluorescence instability in biological milieu, impeding their use in biomedical applications, in general, and for inflammation imaging, in particular. In addition, for an efficient fluorescent signal at the desired tissue, and avoiding systemic biodistribution and possible toxicity, targeting is desired. We hypothesized that phagocytic cells of the innate immunity system (mainly circulating monocytes) can be exploited as transporters of specially designed liposomes containing QDs to the inflamed tissue. We developed a liposomal delivery system of QDs (LipQDs) characterized with high encapsulation yield, enhanced optical properties including far-red emission wavelength and fluorescent stability, high quantum yield, and protracted fluorescent decay lifetime. Treatment with LipQDs, rather than free QDs, exhibited high accumulation and retention following intravenous administration in carotid-injured rats (an inflammatory model). QD-monocyte colocalization was detected in the inflamed arterial segment only following treatment with LipQDs. No cytotoxicity was observed following LipQD treatment in cell cultures, and changes in liver enzymes and gross histopathological changes were not detected in mice and rats, respectively. Our results suggest that the LipQD formulation could be a promising strategy for imaging inflammation.
Collapse
Affiliation(s)
- Gil Aizik
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Nir Waiskopf
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Majd Agbaria
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Yael Levi-Kalisman
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Uri Banin
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Gershon Golomb
- Institute for Drug Research, Faculty of Medicine, ‡Institute of Chemistry and the §Institute for Life Sciences, Faculty of Life Sciences, and ∥The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| |
Collapse
|
36
|
Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol 2017; 101:2713-2733. [PMID: 28251268 DOI: 10.1007/s00253-017-8140-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/20/2023]
Abstract
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Collapse
|
37
|
Abstract
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.
Collapse
Affiliation(s)
- Qi Wang
- School of Medicine, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Yi-Min Chao
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
38
|
Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017; 46:2091-2126. [DOI: 10.1039/c6cs00632a] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive overview of the synthesis strategies and the progress made so far of bringing colloidal capsules closer to technical and biomedical applications.
Collapse
Affiliation(s)
- Tobias Bollhorst
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Kurosch Rezwan
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Michael Maas
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| |
Collapse
|
39
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
40
|
Pereira S, Egbu R, Jannati G, Al-Jamal WT. Docetaxel-loaded liposomes: The effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int J Pharm 2016; 514:150-159. [DOI: 10.1016/j.ijpharm.2016.06.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 10/20/2022]
|
41
|
Salvatore A, Montis C, Berti D, Baglioni P. Multifunctional Magnetoliposomes for Sequential Controlled Release. ACS NANO 2016; 10:7749-60. [PMID: 27504891 DOI: 10.1021/acsnano.6b03194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The simultaneous or sequential delivery of multiple therapeutic active principles to a specific target is one of the main challenges of nanomedicine. This goal requires the construction of complex devices often extremely time and cost consuming. Supramolecular self-assemblies, with building blocks of different nature, each providing a specific function to the final construct, can combine a facile synthetic route with a high tunability and structural control. In this study we provide the proof-of-principle of a drug delivery system, DDS, constituted of (i) liposomes, providing a fully biocompatible lipid scaffold suitable to host both hydrophobic and hydrophilic drugs; (ii) a double-stranded DNA conjugated with a cholesteryl unit that spontaneously inserts into the lipid membrane; and (iii) hydrophobic and hydrophilic superparamagnetic iron oxide nanoparticles (SPIONs) embedded inside the lipid membrane of liposomes or connected to the DNA, respectively. Upon application of an alternating magnetic field, the SPIONs can trigger, through thermal activation, the release of a DNA strand or of the liposomal payload, depending on the frequency and the application time of the field, as proved by both steady-state and time-resolved fluorescence studies. This feature is due to the different localization of the two kinds of SPIONS within the construct and demonstrates the feasibility of a multifunctional DDS, built up from self-assembly of biocompatible building blocks.
Collapse
Affiliation(s)
- Annalisa Salvatore
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Debora Berti
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence , Via della Lastruccia 3, 50019-Sesto Fiorentino, Florence, Italy
| |
Collapse
|
42
|
Guo X, Zhang Y, Liu J, Yang X, Huang J, Li L, Wan L, Wang K. Red blood cell membrane-mediated fusion of hydrophobic quantum dots with living cell membranes for cell imaging. J Mater Chem B 2016; 4:4191-4197. [PMID: 32264621 DOI: 10.1039/c6tb01067a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticle fusion with cell membranes is an interesting phenomenon that may have crucial implications for their biomedical applications. Here, we proposed a biomimetic and controlled route to fusion of hydrophobic quantum dots (QDs) with the cell membranes of living cells, while preserving their sensing and optical properties and thus their capability of membrane imaging and single-nanoparticle tracking. Red blood cell (RBC) membrane lipids were extracted to phase transfer hydrophobic QDs and the resulting RBC-encapsulated QDs (RBC-QDs) can be well fused within cell membranes as membrane markers. The fusion was validated through single-nanoparticle imaging and different movement behaviours were reliably discriminated. RBC-QDs possessed some novel features, such as controllable selective membrane staining, no invasion, and high photobleaching resistance, which allowed for long-term imaging, and single-nanoparticle tracking. This approach provides a versatile platform for controlled hydrophobic QD-based fluorescence investigation of living cell membranes.
Collapse
Affiliation(s)
- Xi Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Troppmann S, König B. Functionalized Vesicles with Co-Embedded CdSe Quantum Dots and [FeFe]-Hydrogenase Mimic for Light-Driven Hydrogen Production. ChemistrySelect 2016. [DOI: 10.1002/slct.201600032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Stefan Troppmann
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93040 Regensburg Germany
| | - Burkhard König
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93040 Regensburg Germany
| |
Collapse
|
44
|
A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes. Anal Chim Acta 2016; 929:49-55. [PMID: 27251948 DOI: 10.1016/j.aca.2016.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 11/21/2022]
Abstract
In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability.
Collapse
|
45
|
Al-Ahmady Z, Kostarelos K. Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chem Rev 2016; 116:3883-918. [DOI: 10.1021/acs.chemrev.5b00578] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Stopford Building, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Medical & Human Sciences, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
- UCL
School of Pharmacy, Faculty of Life Science, University College London, Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
46
|
Pederzoli F, Ruozi B, Pracucci E, Signore G, Zapparoli M, Forni F, Vandelli MA, Ratto G, Tosi G. Nanoimaging: photophysical and pharmaceutical characterization of poly-lactide-co-glycolide nanoparticles engineered with quantum dots. NANOTECHNOLOGY 2016; 27:015704. [PMID: 26597894 DOI: 10.1088/0957-4484/27/1/015704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantum dots (QDs) and polymeric nanoparticles (NPs) are considered good binomials for the development of multifunctional nanomedicines for multimodal imaging. Fluorescent imaging of QDs can monitor the behavior of QD-labeled NPs in both cells and animals with high temporal and spatial resolutions. The comprehension of polymer interaction with the metallic QD surface must be considered to achieve a complete chemicophysical characterization of these systems and to describe the QD optical properties to be used for their unequivocal identification in the tissue. In this study, by comparing two different synthetic procedures to obtain polymeric nanoparticles labeled with QDs, we investigated whether their optical properties may change according to the formulation methods, as a consequence of the different polymeric environments. Atomic force microscopy, transmission electron microscopy, confocal and fluorescence lifetime imaging microscopy characterization demonstrated that NPs modified with QDs after the formulation process (post-NPs-QDs) conserved the photophysical features of the QD probe. In contrast, by using a polymer modified with QDs to formulate NPs (pre-NPs-QDs), a significant quenching of QD fluorescence and a blueshift in its emission spectra were observed. Our results suggest that the packaging of QDs into the polymeric matrix causes a modification of the QD optical properties: these effects must be characterized in depth and carefully considered when developing nanosystems for imaging and biological applications.
Collapse
Affiliation(s)
- F Pederzoli
- National Enterprise for nanoScience and nanoTechnology, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy. Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fei X, Yu M, Zhang B, Cao L, Yu L, Jia G, Zhou J. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:343-351. [PMID: 26232578 DOI: 10.1016/j.saa.2015.07.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
The LCC-CdTe quantum dots (QDs) hybrid was fabricated by mixing the N-lauryl-N, O-carboxymethyl chitosan (LCC) micelle with water-soluble CdTe QDs in an aqueous solution via hydrophobic forces and the electronic attraction. The structures of LCC and LCC-CdTe QDs hybrid were determined by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The results showed that the lauryl and carboxymethyl were successfully grafted to chitosan oligosaccharide (CSO), and a number of CdTe QDs were encapsulated by LCC micelle to form a core/shell structure. The tested results of the fluorescent characteristics of LCC, CdTe QDs and LCC-CdTe QDs hybrid showed that there were some obvious fluorescent interactions between LCC and CdTe QDs. Meanwhile, with the change in LCC space structure, the fluorescent interactions between LCC and QDs showed different fluorescent characteristics. The QDs fluorescent (FL) intensity increased first and then decreased to almost quenching, while LCC FL intensity decreased continually.
Collapse
Affiliation(s)
- Xuening Fei
- Colleges of Science, Tianjin Chengjian University, Tianjin 300384, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Miaozhuo Yu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Baolian Zhang
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Lingyun Cao
- Colleges of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Lu Yu
- Colleges of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Guozhi Jia
- Colleges of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianguo Zhou
- Colleges of Science, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
48
|
Lim SJ, McDougle DR, Zahid MU, Ma L, Das A, Smith AM. Lipoprotein Nanoplatelets: Brightly Fluorescent, Zwitterionic Probes with Rapid Cellular Entry. J Am Chem Soc 2015; 138:64-7. [PMID: 26687504 DOI: 10.1021/jacs.5b11225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Semiconductor nanoplatelets (NPLs) are planar nanocrystals that have recently attracted considerable attention due to their quantum-well-like physics, atomically precise thickness, and unique photophysical properties such as narrow-band fluorescence emission. These attributes are of potential interest for applications in biomolecular and cellular imaging, but it has been challenging to colloidally stabilize these nanocrystals in biological media due to their large dimensions and tendency to aggregate. Here we introduce a new colloidal material that is a hybrid between a NPL and an organic nanodisc composed of phospholipids and lipoproteins. The phospholipids adsorb to flat surfaces on the NPL, and lipoproteins bind to sharp edges to enable monodisperse NPL encapsulation with long-term stability in biological buffers and high-salt solutions. The lipoprotein NPLs (L-NPLs) are highly fluorescent, with brightness comparable to that of wavelength-matched quantum dots at both the ensemble and single-molecule levels. They also exhibit a unique feature of rapid internalization into living cells, after which they retain their fluorescence. These unique properties suggest that L-NPLs are particularly well suited for applications in live-cell single-molecule imaging and multiplexed cellular labeling.
Collapse
Affiliation(s)
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign , Urbana, Illinois 61802, United States
| | | | | | - Aditi Das
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign , Urbana, Illinois 61802, United States
| | | |
Collapse
|
49
|
Ferreira G, Hernandez-Martinez AR, Pool H, Molina G, Cruz-Soto M, Luna-Barcenas G, Estevez M. Synthesis and functionalization of silica-based nanoparticles with fluorescent biocompounds extracted from Eysenhardtia polystachya for biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:49-57. [DOI: 10.1016/j.msec.2015.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/19/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
|
50
|
Zhou J, Yang Y, Zhang CY. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem Rev 2015; 115:11669-717. [DOI: 10.1021/acs.chemrev.5b00049] [Citation(s) in RCA: 472] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Zhou
- State
Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|