1
|
Nguyen AT, Baucom DR, Wang Y, Heyes CD. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:251-259. [PMID: 37388960 PMCID: PMC10302876 DOI: 10.1021/cbmi.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 07/01/2023]
Abstract
Quantum dots (QDs) can be used as fluorescent probes in single molecule localization microscopy to achieve subdiffraction limit resolution (super-resolution fluorescence imaging). However, the toxicity of Cd in the prototypical CdSe-based QDs can limit their use in biological applications. Furthermore, commercial CdSe QDs are usually modified with relatively thick shells of both inorganic and organic materials to render them in the 10-20 nm size range, which is relatively large for biological labels. In this report, we present compact (4-6 nm) CuInS2/ZnS (CIS/ZnS) and compare them to commercially sourced CdSe/ZnS QDs for their blinking behavior, localization precision and super-resolution imaging. Although commercial CdSe/ZnS QDs are brighter than the more compact Cd-free CIS/ZnS QD, both give comparable results of 4.5-5.0-fold improvement in imaging resolution over conventional TIRF imaging of actin filaments. This likely results from the fact that CIS/ZnS QDs show very short on-times and long off times which leads to less overlap in the point spread functions of emitting CIS/ZnS QD labels on the actin filaments at the same labeling density. These results demonstrate that CIS/ZnS QDs are an excellent candidate to complement and perhaps even replace the larger and more toxic CdSe-based QDs for robust single- molecule super-resolution imaging.
Collapse
Affiliation(s)
- Anh T. Nguyen
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Dustin R. Baucom
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Yong Wang
- Department
of Physics, University of Arkansas, 825 West Dickson Street, Fayetteville, Arkansas 72701, United States
| | - Colin D. Heyes
- Department
of Chemistry and Biochemistry, University
of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Alvelid J, Bucci A, Testa I. Far Red-Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy. Chemphyschem 2023; 24:e202200698. [PMID: 36239140 PMCID: PMC10098508 DOI: 10.1002/cphc.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Indexed: 02/03/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a widely used nanoscopy technique. Two-colour STED imaging in fixed and living cells is standardised today utilising both fluorescent dyes and fluorescent proteins. Solutions to image additional colours have been demonstrated using spectral unmixing, photobleaching steps, or long-Stokes-shift dyes. However, these approaches often compromise speed, spatial resolution, and image quality, and increase complexity. Here, we present multicolour STED nanoscopy with far red-shifted semiconductor CdTe quantum dots (QDs). STED imaging of the QDs is optimized to minimize blinking effects and maximize the number of detected photons. The far-red and compact emission spectra of the investigated QDs free spectral space for the simultaneous use of fluorescent dyes, enabling straightforward three-colour STED imaging with a single depletion beam. We use our method to study the internalization of QDs in cells, opening up the way for future super-resolution studies of particle uptake and internalization.
Collapse
Affiliation(s)
- Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Andrea Bucci
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| |
Collapse
|
3
|
Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light. NANOMATERIALS 2021; 11:nano11123331. [PMID: 34947680 PMCID: PMC8708662 DOI: 10.3390/nano11123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.
Collapse
|
4
|
Paydary P, Larese-Casanova P. Water chemistry influences on long-term dissolution kinetics of CdSe/ZnS quantum dots. J Environ Sci (China) 2020; 90:216-233. [PMID: 32081318 DOI: 10.1016/j.jes.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Widespread usage of engineered metallic quantum dots (QDs) within consumer products has evoked a need to assess their fate within environmental systems. QDs are mixed-metal nanocrystals that often include Cd2+ which poses a health risk as a nanocrystal or when leached into water. The goal of this work is to study the long-term metal cation leaching behavior and the factors affecting the dissolution processes of mercaptopropionic acid (MPA) capped CdSe/ZnS QDs in aphotic conditions. QD suspensions were prepared in different water conditions, and release of Zn2+ and Cd2+ cations were monitored over time by size exclusion chromatography-inductively coupled plasma-mass spectrometry. In most conditions with dissolved O2 present, the ZnS shell degraded fairly rapidly over ~1 week, while some of the CdSe core remained up to 80 days. Additional MPA, Zn2+, and Cd2+ temporarily delayed dissolution, indicating a moderate role for capping agent detachment and mineral solubility. The presence of H2O2 and the ligand ethylenediaminetetraacetate accelerated dissolution, while NOM had no kinetic effect. No dissolution of CdSe core was observed when O2 was absent or when QDs formed aggregates at higher concentrations with O2 present. The shrinking particle model with product layer diffusion control best describes Zn2+ and Cd2+ dissolution kinetics. The longevity of QDs in their nanocrystal form appears to be partly controlled by environmental conditions, with anoxic, aphotic environments preserving the core mineral phase, and oxidants or complexing ligands promoting shell and core mineral dissolution.
Collapse
Affiliation(s)
- Pooya Paydary
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Philip Larese-Casanova
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically. SCOPE OF REVIEW This paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy. MAJOR CONCLUSIONS smFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| |
Collapse
|
6
|
Wang S, Li L, Jin S, Li W, Hang W, Yan X. Rapid and Quantitative Measurement of Single Quantum Dots in a Sheath Flow Cuvette. Anal Chem 2017; 89:9857-9863. [PMID: 28820244 DOI: 10.1021/acs.analchem.7b01885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semiconducting quantum dots (QDs) are finding a wide range of biomedical applications due to their intense fluorescence brightness and long-term photostability. Here, we report precise quantification of the fluorescence intensity of single QDs on a laboratory-built high-sensitivity flow cytometer (HSFCM). The nearly uniform illumination of the particles at the intense portions of the radiation field resulted in narrowly distributed signals with high signal-to-noise ratios. By analysis of thousands of QDs individually in as little time as 1 min, intrinsic polydispersity was quickly revealed in a statistically robust manner. Applications of this technique in QD quality assessment, study of metal ion influence, and evaluation of aggregation upon biomolecule coupling are presented. Moreover, an accurate measurement of the QD particle concentration was achieved via single-particle enumeration. HSFCM is believed to provide a powerful characterization tool for QD synthesis and application development.
Collapse
Affiliation(s)
- Shuo Wang
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Lihong Li
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Shenghao Jin
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Weifeng Li
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Wei Hang
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Xiaomei Yan
- Collaborative Innovation Center of Chemistry for Energy Material, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| |
Collapse
|
7
|
Gao F, Bajwa P, Nguyen A, Heyes CD. Shell-Dependent Photoluminescence Studies Provide Mechanistic Insights into the Off-Grey-On Transitions of Blinking Quantum Dots. ACS NANO 2017; 11:2905-2916. [PMID: 28221750 DOI: 10.1021/acsnano.6b08040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The majority of quantum dot (QD) blinking studies have used a model of switching between two distinct fluorescence intensity levels, "on" and "off". However, a distinct intermediate intensity level has been identified in some recent reports, a so-called "grey" or "dim" state, which has brought this binary model into question. While this grey state has been proposed to result from the formation of a trion, it is still unclear under which conditions it is present in a QD. By performing shell-dependent blinking studies on CdSe QDs, we report that the populations of the grey state and the on state are strongly dependent on both the shell material and its thickness. We found that adding a ZnS shell did not result in a significant population of the grey state. Using ZnSe as the shell material resulted in a slightly higher population of the grey state, although it was still poorly resolved. However, adding a CdS shell resulted in the population of a grey state, which depended strongly on its thickness up to 5 ML. Interestingly, while the frequency of transitions to and from the grey state showed a very strong dependence on CdS shell thickness, the brightness of and the dwell time in the grey state did not. Moreover, we found that the grey state acts as an on-pathway intermediate state between on and off states, with the thickness of the shell determining the transition probability between them. We also identified two types of blinking behavior in QDs, one that showed long-lived but lower intensity on states and another that showed short-lived but brighter on states that also depended on the shell thickness. Intensity-resolved single QD fluorescence lifetime analysis was used to identify the relationship between the various exciton decay pathways and the resulting intensity levels. We used this data to propose a model in which multiple on, grey, and off states exist whose equilibrium populations vary with time that give rise to the various intensity levels of single QDs and which depends on shell composition and thickness.
Collapse
Affiliation(s)
- Feng Gao
- Department of Chemistry and Biochemistry, University of Arkansas , 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Pooja Bajwa
- Department of Chemistry and Biochemistry, University of Arkansas , 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Anh Nguyen
- Department of Chemistry and Biochemistry, University of Arkansas , 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas , 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
8
|
Kennes K, Dedecker P, Hutchison JA, Fron E, Uji-i H, Hofkens J, Van der Auweraer M. Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency. ACS OMEGA 2016; 1:1383-1392. [PMID: 30023508 PMCID: PMC6044678 DOI: 10.1021/acsomega.6b00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/09/2016] [Indexed: 06/07/2023]
Abstract
The fluorescence intermittency or "blinking" of single molecules of ATTO647N (ATTO) in the conductive matrix polyvinylcarbazole (PVK) is described in the presence of an external applied electric field. It is shown that due to the energy distribution of the highest occupied molecular orbital (HOMO) level of PVK, which is energetically close to the HOMO of ATTO, sporadic electron transfer occurs. As a result, the on/off dynamics of blinking can be influenced by the electric field. This field will, depending on the respective position and orientation of the dye/polymer system with respect to those of the electrodes, either enhance or suppress electron transfer from PVK to ATTO as well as the back electron transfer from reduced ATTO to PVK. After the charge-transfer step, the applied field will pull the hole in PVK away from the dye, increasing the overall time the dye resides in a dark state.
Collapse
Affiliation(s)
- Koen Kennes
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Peter Dedecker
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - James A. Hutchison
- ISIS
& icFRC, University of Strasbourg and
CNRS UMR 7006, 8 allée
Gaspard Monge, Strasbourg 67000, France
- School
of Chemistry and Bio21 Institute, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eduard Fron
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Hiroshi Uji-i
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- RIES, Hokkaido
University, N20W10, Kita-Ward, Sapporo 001-0020, Japan
| | - Johan Hofkens
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- RIES, Hokkaido
University, N20W10, Kita-Ward, Sapporo 001-0020, Japan
| | - Mark Van der Auweraer
- Molecular
Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
9
|
Garcia I, Leitune V, Kist T, Takimi A, Samuel S, Collares F. Quantum Dots as Nonagglomerated Nanofillers for Adhesive Resins. J Dent Res 2016; 95:1401-1407. [DOI: 10.1177/0022034516656838] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nanoparticles used in adhesive resins are prone to agglomeration, turning the material susceptible to physical failure. Quantum dots are nonagglomerated inorganic nanoparticles (1 to 10 nm) when in equilibrium. The aim of the present study was to synthesize and characterize zinc oxide quantum dots (ZnOQDs) and to develop and evaluate an adhesive resin with the addition of ZnOQDs. ZnOQDs were formulated by self-organization in chemical reaction with isopropanol and added to 2-hydroxyethyl methacrylate (HEMA). HEMA containing ZnOQDs was used for the experimental group and neat HEMA for the control group. Mean ZnOQD diameter was evaluated in isopropanol and in HEMA by ultraviolet-visible spectroscopy. The adhesives were evaluated for degree of conversion ( n = 5), softening in solvent ( n = 5), ultimate tensile strength ( n = 5), microtensile bond strength ( n = 20) at 24 h and after 6 mo, SEM-EDS (scanning electron microscopy–energy-dispersive x-ray spectroscopy; n = 3), and superresolution confocal microscopy ( n = 3). Data of microtensile bond strength after 6 mo and Knoop hardness after solvent immersion were evaluated by paired t test with a 0.05 level of significance. The other data were evaluated by independent t test with a 0.05 level of significance. Ultraviolet-visible spectroscopy indicated that the mean ZnOQD diameter remained stable in isopropanol and in HEMA (1.19 to 1.24 nm). Fourier transform infrared spectroscopy analysis showed the peak corresponding to zinc and oxygen bond (440 cm-1). The experimental group achieved a higher degree of conversion as compared with the control group and presented dentin/adhesive interface stability after 6 mo without altering other properties tested. SEM-EDS indicated 1.54 ± 0.46 wt% of zinc, and the superresolution confocal microscopy indicated nonagglomerated nanoparticles with fluorescence blinking in the polymerized adhesive. The findings of this study showed a possible and reliable method to formulate composites with nonagglomerated nanoscale fillers, shedding light on the nanoparticle agglomeration concern.
Collapse
Affiliation(s)
- I.M. Garcia
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - V.C.B. Leitune
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - T.L. Kist
- Laboratory of Methods, Biophysics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - A. Takimi
- School of Metallurgic Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - S.M.W. Samuel
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - F.M. Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Bajwa P, Gao F, Nguyen A, Omogo B, Heyes CD. Influence of the Inner-Shell Architecture on Quantum Yield and Blinking Dynamics in Core/Multishell Quantum Dots. Chemphyschem 2016; 17:731-40. [PMID: 26693950 PMCID: PMC5086001 DOI: 10.1002/cphc.201500868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Choosing the composition of a shell for QDs is not trivial, as both the band-edge energy offset and interfacial lattice mismatch influence the final optical properties. One way to balance these competing effects is by forming multishells and/or gradient-alloy shells. However, this introduces multiple interfaces, and their relative effects on quantum yield and blinking are not yet fully understood. Here, we undertake a systematic, comparative study of the addition of inner shells of a single component versus gradient-alloy shells of cadmium/zinc chalogenides onto CdSe cores, and then capping with a thin ZnS outer shell to form various core/multishell configurations. We show that architecture of the inner shell between the CdSe core and the outer ZnS shell significantly influences both the quantum yield and blinking dynamics, but that these effects are not correlated-a high ensemble quantum yield doesn't necessarily equate to reduced blinking. Two mathematical models have been proposed to describe the blinking dynamics-the more common power-law model and a more recent multiexponential model. By binning the same data with 1 and 20 ms resolution, we show that the on times can be better described by the multiexponential model, whereas the off times can be better described by the power-law model. We discuss physical mechanisms that might explain this behavior and how it can be affected by the inner-shell architecture.
Collapse
Affiliation(s)
- Pooja Bajwa
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Feng Gao
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Anh Nguyen
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Benard Omogo
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| |
Collapse
|
11
|
Ellis MA, Grandinetti G, Fichter KM, Fichter KM. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications. J Vis Exp 2016:e53684. [PMID: 26891282 DOI: 10.3791/53684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.
Collapse
Affiliation(s)
| | - Giovanna Grandinetti
- Center for Molecular Microscopy, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research
| | | | | |
Collapse
|
12
|
Miller JB, Dandu N, Velizhanin KA, Anthony RJ, Kortshagen UR, Kroll DM, Kilina S, Hobbie EK. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates. ACS NANO 2015; 9:9772-9782. [PMID: 26348831 DOI: 10.1021/acsnano.5b02676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from "bright" nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.
Collapse
Affiliation(s)
- Joseph B Miller
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Naveen Dandu
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Kirill A Velizhanin
- Theoretical Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rebecca J Anthony
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Uwe R Kortshagen
- University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel M Kroll
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Svetlana Kilina
- North Dakota State University , Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
13
|
Debruyne D, Deschaume O, Coutiño-Gonzalez E, Locquet JP, Hofkens J, Van Bael MJ, Bartic C. The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings. NANOTECHNOLOGY 2015; 26:255703. [PMID: 26031426 DOI: 10.1088/0957-4484/26/25/255703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The photoluminescence (PL) of colloidal quantum dots (QDs) is known to be sensitive to the solution pH. In this work we investigate the role played by the organic coating in determining the pH-dependent PL. We compare two types of CdSe/ZnS QDs equipped with different organic coatings, namely dihydrolipoic acid (DHLA)-capped QDs and phospholipid micelle-encapsulated QDs. Both QD types have their PL intensity quenched at acidic pH values, but they differ in terms of the reversibility of the quenching process. For DHLA-capped QDs, the quenching is nearly irreversible, with a small reversible component visible only on short time scales. For phospholipid micelle-encapsulated QDs the quenching is notably almost fully reversible. We suggest that the surface passivation by the organic ligands is reversible for the micelle-encapsulated QDs. Additionally, both coatings display pH-dependent spectral shifts. These shifts can be explained by a combination of irreversible processes, such as photo-oxidation and acid etching, and reversible charging of the QD surface, leading to the quantum-confined Stark effect (QCSE), the extent of each effect being coating-dependent. At high ionic strengths, the aggregation of QDs also leads to a spectral (red) shift, which is attributable to the QCSE and/or electronic energy transfer.
Collapse
Affiliation(s)
- David Debruyne
- Laboratory of Solid State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Effect of Electrochemical Charge Injection on the Photoluminescence Properties of CdSe Quantum Dot Monolayers Anchored to Oxide Substrates. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. APPLIED SPECTROSCOPY 2013; 67:215-52. [PMID: 23452487 DOI: 10.1366/12-06948] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | |
Collapse
|
17
|
Omogo B, Aldana JF, Heyes CD. Radiative and Non-Radiative Lifetime Engineering of Quantum Dots in Multiple Solvents by Surface Atom Stoichiometry and Ligands. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:2317-2327. [PMID: 23543893 PMCID: PMC3610600 DOI: 10.1021/jp309368q] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
CdTe quantum dots have unique characteristics that are promising for applications in photoluminescence, photovoltaics or optoelectronics. However, wide variations of the reported quantum yields exist and the influence of ligand-surface interactions that are expected to control the excited state relaxation processes remains unknown. It is important to thoroughly understand the fundamental principles underlying these relaxation processes to tailor the QDs properties to their application. Here, we systematically investigate the roles of the surface atoms, ligand functional groups and solvent on the radiative and non-radiative relaxation rates. Combining a systematic synthetic approach with X-ray photoelectron, quantitative FT-IR and time-resolved visible spectroscopies, we find that CdTe QDs can be engineered with average radiative lifetimes ranging from nanoseconds up to microseconds. The non-radiative lifetimes are anticorrelated to the radiative lifetimes, although they show much less variation. The density, nature and orientation of the ligand functional groups and the dielectric constant of the solvent play major roles in determining charge carrier trapping and excitonic relaxation pathways. These results are used to propose a coupled dependence between hole-trapping on Te atoms and strong ligand coupling, primarily via Cd atoms, that can be used to engineer both the radiative and non-radiative lifetimes.
Collapse
|
18
|
Rasmussen TE, Jauffred L, Brewer J, Vogel S, Torbensen ER, Lagerholm BC, Oddershede L, Arnspang EC. Single Molecule Applications of Quantum Dots. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jmp.2013.411a2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Opperwall SR, Divakaran A, Porter EG, Christians JA, Denhartigh AJ, Benson DE. Wide dynamic range sensing with single quantum dot biosensors. ACS NANO 2012; 6:8078-8086. [PMID: 22924857 DOI: 10.1021/nn303347k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-particle analysis of biosensors that use charge transfer as the means for analyte-dependent signaling with semiconductor nanoparticles, or quantum dots, was examined. Single-particle analysis of biosensors that use energy transfer show analyte-dependent switching of nanoparticle emission from off to on. The charge-transfer-based biosensors reported here show constant emission, where the analyte (maltose) increases the emission intensity. By monitoring the same nanoparticles under various conditions, a single charge-transfer-based biosensor construct (one maltose binding protein, one protein attachment position for the reductant, one type of nanoparticle) showed a dynamic range for analyte (maltose) detection spanning from 100 pM to 10 μM while the emission intensities increase from 25 to 175% at the single-particle level. Since these biosensors were immobilized, the correlation between the detected maltose concentration and the maltose-dependent emission intensity increase could be examined. Minimal correlation between maltose detection limits and emission increases was observed, suggesting a variety of reductant-nanoparticle surface interactions that control maltose-dependent emission intensity responses. Despite the heterogeneous responses, monitoring biosensor emission intensity over 5 min provided a quantifiable method to monitor maltose concentration. Immobilizing and tracking these biosensors with heterogeneous responses, however, expanded the analyte-dependent emission intensity and the analyte dynamic range obtained from a single construct. Given the wide dynamic range and constant emission of charge-transfer-based biosensors, applying these single molecule techniques could provide ultrasensitive, real-time detection of small molecules in living cells.
Collapse
Affiliation(s)
- Stacey R Opperwall
- Department of Chemistry & Biochemisty, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, Michigan 49546, United States
| | | | | | | | | | | |
Collapse
|
20
|
Arnspang Christensen E, Kulatunga P, Lagerholm BC. A single molecule investigation of the photostability of quantum dots. PLoS One 2012; 7:e44355. [PMID: 22952963 PMCID: PMC3432116 DOI: 10.1371/journal.pone.0044355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/06/2012] [Indexed: 11/21/2022] Open
Abstract
Quantum dots (QDs) are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1) by increasing the frequency of time that a QD is in its fluorescent state, and 2) by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM) of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.
Collapse
Affiliation(s)
- Eva Arnspang Christensen
- Department of Physics and Chemistry and MEMPHYS – Center for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Pasad Kulatunga
- Department of Physics, Hobart and William Smith Colleges, Geneva, New York, United States of America
| | - B. Christoffer Lagerholm
- Department of Physics and Chemistry and MEMPHYS – Center for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| |
Collapse
|
21
|
Bixby TJ, Cordones AA, Leone SR. CdSe/ZnS quantum dot intermittency in N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD). Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Durisic N, Godin AG, Walters D, Grütter P, Wiseman PW, Heyes CD. Probing the "dark" fraction of core-shell quantum dots by ensemble and single particle pH-dependent spectroscopy. ACS NANO 2011; 5:9062-73. [PMID: 22023370 PMCID: PMC3259027 DOI: 10.1021/nn203272p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The optical properties of core-shell CdSe-ZnS quantum dots (QDs) are characterized by complex photophysics leading to difficulties in interpreting quantitative measurements based on QD emission. By comparing the pH dependence of fluorescence of single QDs to that of an ensemble, we have been able to propose a molecular scale model of how QD surface chemical and physical processes are affected by protons and oxygen. We show that the connection between the ensemble fluorescence intensity and the single QD fluorescence properties such as dark fraction, blinking, particle brightness, and a multiexponential fluorescence lifetime decay is not trivial. The ensemble fluorescence intensity is more weakly dependent on pH than the single particle fluorescence which, together with fluorescence lifetime analysis, provided evidence that the dark fraction of QDs emits photons with low quantum efficiency and long lifetime. We uncovered two surface-dependent mechanisms that affected the fluorescence emission: an immediate physical effect of charges surrounding the QD and an irreversible chemical effect from reaction of the H(+) and O(2) with the QD shell surface. These results will have important implications for those using QD-based fluorescence lifetime imaging as well as for proper implementation of these probes for quantitative cellular imaging applications.
Collapse
Affiliation(s)
- Nela Durisic
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, Canada, H3A 2T8
| | - Antoine G. Godin
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, Canada, H3A 2T8
| | - Derrel Walters
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701
| | - Peter Grütter
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, Canada, H3A 2T8
| | - Paul W. Wiseman
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, Canada, H3A 2T8
- Department of Chemistry, McGill University, 800 Rue Sherbrooke Ouest, Montreal, Quebec, Canada, H3A 2K6
| | - Colin D. Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701
| |
Collapse
|
23
|
Summers HD, Holton MD, Rees P, Williams PM, Thornton CA. Analysis of quantum dot fluorescence stability in primary blood mononuclear cells. Cytometry A 2011; 77:933-9. [PMID: 21290467 DOI: 10.1002/cyto.a.20932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A quantitative assessment of fluorescence signal generation and persistence in blood cells, measured at multiple points over a time course, is presented. Quantum dots (QDs) are inorganic fluorophores that are photostable and nonmetabolized and so can provide quantitative measures of cell biology over multiple cell generations. However, if the potential of these nanoparticles for long-term reporting is to be realized, an understanding of the stability of their fluorescence in living cells is essential. CdTe/ZnS and CdSe/ZnS core/shell dots with peak emission wavelengths of 705 nm and 585 nm, respectively, were loaded, via endocytosis into mononuclear cells extracted from primary blood and flow cytometry used to measure the average fluorescence intensity per cell within populations >10⁴. Time-based study showed a saturation-limited uptake of QDs with a characteristic time of 20 min and a maximum fluorescence signal that is linearly proportional to dot solution concentration. The fluorescence signal decreases after attachment and internalization within cells and is accurately described by a biexponential decay with a rapid initial decay followed by a much slower signal loss with characteristic times of 435 and 7,000 min respectively. Comparison with control samples indicates that interaction with the culture media is a major contributory factor to the initial signal decay. These results provide phenomenological descriptions of the evolving QD fluorescence within live cells with associated analytical equations that allow quantitative assessment of QD-based assays.
Collapse
Affiliation(s)
- Huw D Summers
- Multidisciplinary Nanotechnology Center, School of Engineering, Swansea University, Swansea SA28PP, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Celiz MD, Colón LA, Watson DF, Aga DS. Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2917-2924. [PMID: 21381674 DOI: 10.1021/es1031097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The increasing production and use of quantum dot (QD) nanoparticles have caused concerns on the possibility of contaminating the aquatic and terrestrial ecosystems with wastes that may contain QDs. Therefore, studies on the behavior of QDs upon interaction with components of the natural environment have become of interest. This study investigated the fluorescence and electrophoretic mobility of carboxylic or amine polyethylene glycol (PEG)-functionalized CdSe/ZnS QDs in the presence of two aquatic humic substances (HS), Suwannee River humic and fulvic acids, using capillary electrophoresis with laser-induced fluorescence detection. Results showed initial enhancement in fluorescence of QDs at the onset of the interaction with HS, followed by fluorescence quenching at longer exposure with HS (>30 min). It was also observed that the electrophoretic mobility of QDs increases with increasing concentration of HS, suggesting an increase in the ratio in charge to hydrodynamic size of the nanoparticles. To determine if the QDs degraded upon interaction with HS, the QD-HS mixtures were dialyzed to separate free Cd2+ from intact QDs, followed by analysis of the solutions using inductively coupled plasma-mass spectrometry. Results suggested that degradation of QDs in the presence of HS did not occur within the period of incubation.
Collapse
Affiliation(s)
- Mary Dawn Celiz
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | | | | | | |
Collapse
|
25
|
Krüger TPJ, Ilioaia C, van Grondelle R. Fluorescence Intermittency from the Main Plant Light-Harvesting Complex: Resolving Shifts between Intensity Levels. J Phys Chem B 2011; 115:5071-82. [DOI: 10.1021/jp201609c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tjaart P. J. Krüger
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Cristian Ilioaia
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Krüger TPJ, Ilioaia C, Valkunas L, van Grondelle R. Fluorescence Intermittency from the Main Plant Light-Harvesting Complex: Sensitivity to the Local Environment. J Phys Chem B 2011; 115:5083-95. [DOI: 10.1021/jp109833x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tjaart P. J. Krüger
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Cristian Ilioaia
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Leonas Valkunas
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania and Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9, LT-10222 Vilnius, Lithuania
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
27
|
Stewart DT, Celiz MD, Vicente G, Colón LA, Aga DS. Potential use of capillary zone electrophoresis in size characterization of quantum dots for environmental studies. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Veilleux V, Lachance-Quirion D, Doré K, Landry DB, Charette PG, Allen CN. Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics. NANOTECHNOLOGY 2010; 21:134024. [PMID: 20208106 DOI: 10.1088/0957-4484/21/13/134024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A series of samples of CdSe/Cd(x)Zn(1-x)S core/shell quantum dots have been synthesized in order to measure the influence of lattice-mismatch-induced strain on the photoluminescence (PL) and blinking behaviour. The PL spectra show a significant variation of the fluorescence wavelength even though the colloidal quantum dots (cQDs) are similar in size. The PL excitation spectra show a gradual splitting of the first exciton level as the proportion of Zn is increased in the shell and as the shell grows. On the other hand, blinking studies clearly demonstrate a significant dependence on the amount of Zn present in the shell. Distributions of on and off times go from the usual power-law distributions to power-law distributions with exponential cut-offs. These cut-offs become increasingly pronounced as the proportion of Zn increases. We interpret these results in the framework of diffusion-controlled electron transfer. Exciton relaxation lifetime measurements strongly suggest that lattice mismatch is responsible for a greater number of defects in core/shell cQDs. Therefore, strain and lattice mismatch are shown to be parameters of significant importance for the electronic structure of nanocrystals, influencing the photoluminescence, exciton relaxation lifetime and blinking behaviour.
Collapse
Affiliation(s)
- V Veilleux
- Centre d'optique, photonique et laser (COPL), Université Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Jin S, Song N, Lian T. Suppressed blinking dynamics of single QDs on ITO. ACS NANO 2010; 4:1545-1552. [PMID: 20170100 DOI: 10.1021/nn901808f] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The exciton quenching dynamics of single CdSe/CdS(3ML)ZnCdS(2ML)ZnS(2ML) core/multishell QDs adsorbed on glass, In2O3, and ITO have been compared. Single QDs on In2O3 show shorter fluorescence lifetimes and higher blinking frequencies than those on glass because of interfacial electron transfer from QDs to In2O3. Compared to glass and In2O3, single QDs on ITO show suppressed blinking activity as well as reduced fluorescence lifetimes. For QDs in contact with the n-doped ITO, the equilibration of their Fermi levels leads to the formation of negatively charged QDs. In these negatively charged QDs, the off states are suppressed because of the effective removal of the valence band holes, and their fluorescence lifetimes are shortened because of exciton Auger recombination and hole transfer processes involving the additional electrons. This study shows that the blinking of single QDs can be effectively suppressed on the surface of ITO. This phenomenon may also be observable for other QDs and on different n-doped semiconductors.
Collapse
Affiliation(s)
- Shengye Jin
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|