1
|
Gupta S, Dutta B, Shelar SB, Gangwar A, Bhattacharyya K, Bairwa KK, Hassan PA, Barick KC. Polyphosphate-Mediated Crystallographic and Colloidal Stabilization of CuS Nanoparticles: Enhanced NIR-Responsive Chemo-Photothermal Efficacy. ACS APPLIED BIO MATERIALS 2024; 7:6641-6655. [PMID: 39257063 DOI: 10.1021/acsabm.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Photothermal therapy (PTT) is an emerging treatment modality for cancer management. However, the photothermal agents (PTAs) used in PTT should have sufficient biocompatibility, water dispersibility, and good photoresponsive. In this aspect, water-dispersible and biocompatible linear polyphosphate (LP)-functionalized CuS nanoparticles (LP-CuS NPs) were developed using sodium tripolyphosphate (LP molecule) as a surface passivating agent. The successful formation of the green covellite CuS phase was confirmed by X-ray diffraction and TEM analyses, and its surface functionalization with the LP ligand was evident from X-ray photoelectron spectroscopy, Fourier transform infrared, thermogravimetric analysis, and light scattering measurements. It has been found that the use of LP not only stabilizes the crystallographic covellite CuS phase by overcoming the requirement of a soft ligand but also provides long-term aqueous colloidal stability, which is essential for PTT applications. The aqueous suspension of LP-CuS NPs showed excellent heating efficacy under near infrared (NIR) light irradiation (980 nm) and has a strong binding affinity towards anticancer drug, doxorubicin hydrochloride (DOX). The drug-loaded systems (DOX@LP-CuS NPs) revealed a pH-dependent drug release behavior with higher concentrations in a mild acidic environment. The in vitro studies showed substantial cellular uptake of DOX-loaded systems in cancer cell lines and enhanced toxicity towards them upon irradiation of NIR light through apoptotic induction, suggesting their potential application in chemo-photothermal therapy.
Collapse
Affiliation(s)
- Sonali Gupta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Asnit Gangwar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - K Bhattacharyya
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K K Bairwa
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Sood K, Mathur P, Rath S, Yadav P, Kaur N, Sharma P, Mimansa, Chauhan DS, Vaidya S, Srivastava R, De A, Shanavas A. Plasmonic semi shells derived from simultaneous in situ gold growth and anisotropic acid etching of ZIF-8 for photothermal ablation of metastatic breast tumor. Commun Chem 2024; 7:231. [PMID: 39384608 PMCID: PMC11464763 DOI: 10.1038/s42004-024-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Open nanoshells such as nanobowls or nanocups collectively described as 'semi shells' have unique plasmonic properties due to their lack of symmetry. So far, their fabrication was based on multistep and laborious methods such as solid state sputter coating or selective deposition/etching using sacrificial templates. In this work, we report a rapid one step colloidal synthetic protocol for PEGylated semi-shell (SS) fabrication by simultaneous facet specific anisotropic chemical etching of rhombic dodecahedral ZIF-8 and heterogenous nucleation & growth of gold. The SS possesses a strong localized surface plasmon resonance in the near-infrared region, which is retained after surface passivation with polyethylene glycol and subsequent cryopreservation for extended shelf-life. Freshly reconstituted PEGylated SS was found to be safe & non-toxic in healthy C57BL/6 mice post intravenous administration. The PEGylated SS displayed significant photothermal efficiency of ~37% with 808 nm laser irradiation. Preclinical assessment of intra-tumoral photothermal efficacy indicated complete remission of primary breast tumor mass with insignificant metastasis to vital organs in 4T1 FL2 tumor bearing CD1 nude mice. Further, PEGylated SS mediated photothermal therapy also yielded morbidity free survivael of 75% for up to 90 days, indicating their potential to significantly improve outcomes in advanced breast tumors.
Collapse
Affiliation(s)
- Kritika Sood
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Purvi Mathur
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Sulagna Rath
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Sector 22, Navi Mumbai, 410210, Maharashtra, India
| | - Pranjali Yadav
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Navneet Kaur
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Mimansa
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Deepak Singh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
- Department of Microbiology and Immunology, Dalhousie University, Halifax, 6299, NS, Canada
| | - Sonalika Vaidya
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Abhijit De
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Sector 22, Navi Mumbai, 410210, Maharashtra, India.
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| |
Collapse
|
3
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
4
|
Yang LT, Wang WJ, Huang WT, Wang LC, Hsu MC, Kan CD, Huang CY, Wong TW, Li WP. Photo-Responsive Ascorbic Acid-Modified Ag 2S-ZnS Heteronanostructure Dropping pH to Trigger Synergistic Antibacterial and Bohr Effects for Accelerating Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12018-12032. [PMID: 38394675 PMCID: PMC10921379 DOI: 10.1021/acsami.3c17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Nonantibiotic approaches must be developed to kill pathogenic bacteria and ensure that clinicians have a means to treat wounds that are infected by multidrug-resistant bacteria. This study prepared matchstick-like Ag2S-ZnS heteronanostructures (HNSs). Their hydrophobic surfactants were then replaced with hydrophilic poly(ethylene glycol) (PEG) and thioglycolic acid (TGA) through the ligand exchange method, and this was followed by ascorbic acid (AA) conjugation with TGA through esterification, yielding well-dispersed PEGylated Ag2S-ZnS@TGA-AA HNSs. The ZnS component of the HNSs has innate semiconductivity, enabling the generation of electron-hole pairs upon irradiation with a light of wavelength 320 nm. These separate charges can react with oxygen and water around the HNSs to produce reactive oxygen species. Moreover, some holes can oxidize the surface-grafted AA to produce protons, decreasing the local pH and resulting in the corrosion of Ag2S, which releases silver ions. In evaluation tests, the PEGylated Ag2S-ZnS@TGA-AA had synergistic antibacterial ability and inhibited Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). Additionally, MRSA-infected wounds treated with a single dose of PEGylated Ag2S-ZnS@TGA-AA HNSs under light exposure healed significantly more quickly than those not treated, a result attributable to the HNSs' excellent antibacterial and Bohr effects.
Collapse
Affiliation(s)
- Li-Ting Yang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wen-Jyun Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Ting Huang
- Department
of Dermatology, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Liu-Chun Wang
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Chien Hsu
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chung-Dann Kan
- Division
of Cardiovascular Surgery, Department of Surgery, National Cheng Kung
University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chun-Yung Huang
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, Kaohsiung 807, Taiwan
| | - Tak-Wah Wong
- Department
of Dermatology, National Cheng Kung University Hospital, College of
Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Biochemistry & Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
| | - Wei-Peng Li
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
- Drug
Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Ibarra J, Encinas-Basurto D, Almada M, Juárez J, Valdez MA, Barbosa S, Taboada P. Gold Half-Shell-Coated Paclitaxel-Loaded PLGA Nanoparticles for the Targeted Chemo-Photothermal Treatment of Cancer. MICROMACHINES 2023; 14:1390. [PMID: 37512701 PMCID: PMC10384528 DOI: 10.3390/mi14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Conventional cancer therapies suffer from nonspecificity, drug resistance, and a poor bioavailability, which trigger severe side effects. To overcome these disadvantages, in this study, we designed and evaluated the in vitro potential of paclitaxel-loaded, PLGA-gold, half-shell nanoparticles (PTX-PLGA/Au-HS NPs) conjugated with cyclo(Arg-Gly-Asp-Phe-Lys) (cyRGDfk) as a targeted chemo-photothermal therapy system in HeLa and MDA-MB-231 cancer cells. A TEM analysis confirmed the successful gold half-shell structure formation. High-performance liquid chromatography showed an encapsulation efficiency of the paclitaxel inside nanoparticles of more than 90%. In the release study, an initial burst release of about 20% in the first 24 h was observed, followed by a sustained drug release for a period as long as 10 days, reaching values of about 92% and 49% for NPs with and without near infrared laser irradiation. In in vitro cell internalization studies, targeted nanoparticles showed a higher accumulation than nontargeted nanoparticles, possibly through a specific interaction of the cyRGDfk with their homologous receptors, the ανβ3 y ανβ5 integrins on the cell surface. Compared with chemotherapy or photothermal treatment alone, the combined treatment demonstrated a synergistic effect, reducing the cell viability to 23% for the HeLa cells and 31% for the MDA-MB-231 cells. Thus, our results indicate that these multifuncional nanoparticles can be considered to be a promising targeted chemo-photothermal therapy system against cancer.
Collapse
Affiliation(s)
- Jaime Ibarra
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - David Encinas-Basurto
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Sonora, Mexico
| | - Miguel Angel Valdez
- Departamento de Física, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Sonora, Mexico
| | - Silvia Barbosa
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Pablo Taboada
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
7
|
Khurana D, Kumar Shaw A, Tabassum M, Ahmed M, Shukla SK, Soni S. Gold Nanoblackbodies-based Multifunctional Nanocomposite for Multimodal Cancer Therapy. Int J Pharm 2023:123112. [PMID: 37302667 DOI: 10.1016/j.ijpharm.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Multifunctional nanocomposites are of potential use to achieve complete tumor elimination and, thus, to avoid tumor recurrence. Herein, polydopamine (PDA)-based gold nanoblackbodies (AuNBs) loaded with indocyanine green (ICG) and Doxorubicin (DOX) termed as A-P-I-D nanocomposite were investigated for multimodal plasmonic photothermal-photodynamic-chemotherapy. Upon near-infrared (NIR) irradiation, A-P-I-D nanocomposite showed enhanced photothermal conversion efficiency of 69.2% compared to bare AuNBs (62.9%) due to the presence of ICG, along with ROS (1O2) generation as well as enhanced DOX release. On assessment of therapeutic effects on breast cancer (MCF-7) and melanoma (B16F10) cell lines, A-P-I-D nanocomposite showed significantly lower cell viabilities of 45.5% and 24% compared to 79.3% and 76.8% for AuNBs. Fluorescence images of stained cells revealed characteristic signs of apoptotic mode of cell death, with almost complete damage on A-P-I-D nanocomposite+NIR treated cells. Further, on evaluation of photothermal performance through breast tumor-tissue mimicking phantoms, A-P-I-D nanocomposite provided required thermal ablation temperatures within the tumor along with the potential for the elimination of residual cancerous cells through photodynamic therapy and chemotherapy. Overall, this study demonstrates that A-P-I-D nanocomposite+NIR provides better therapeutic outcome on cell lines and enhanced photothermal performance on breast tumor-tissue mimicking phantoms to be a promising agent for multimodal cancer therapy.
Collapse
Affiliation(s)
- Divya Khurana
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amit Kumar Shaw
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Manzoor Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanket K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Liu F, Xiang Q, Luo Y, Luo Y, Luo W, Xie Q, Fan J, Ran H, Wang Z, Sun Y. A hybrid nanopharmaceutical for specific-amplifying oxidative stress to initiate a cascade of catalytic therapy for pancreatic cancer. J Nanobiotechnology 2023; 21:165. [PMID: 37221521 DOI: 10.1186/s12951-023-01932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) induced by an imbalance of oxidants and antioxidants is an important aspect in anticancer therapy, however, as an adaptive response, excessive glutathione (GSH) in the tumor microenvironment (TME) acts as an antioxidant against high reactive oxygen species (ROS) levels and prevents OS damage to maintain redox homoeostasis, suppressing the clinical efficacy of OS-induced anticancer therapies. RESULTS A naturally occurring ROS-activating drug, galangin (GAL), is introduced into a Fenton-like catalyst (SiO2@MnO2) to form a TME stimulus-responsive hybrid nanopharmaceutical (SiO2-GAL@MnO2, denoted SG@M) for enhancing oxidative stress. Once exposed to TME, as MnO2 responds and consumes GSH, the released Mn2+ converts endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (·OH), which together with the subsequent release of GAL from SiO2 increases ROS. The "overwhelming" ROS cause OS-mediated mitochondrial malfunction with a decrease in mitochondrial membrane potential (MMP), which releases cytochrome c from mitochondria, activates the Caspase 9/Caspase 3 apoptotic cascade pathway. Downregulation of JAK2 and STAT3 phosphorylation levels blocks the JAK2/STAT3 cell proliferation pathway, whereas downregulation of Cyclin B1 protein levels arrest the cell cycle in the G2/M phase. During 18 days of in vivo treatment observation, tumor growth inhibition was found to be 62.7%, inhibiting the progression of pancreatic cancer. Additionally, the O2 and Mn2+ released during this cascade catalytic effect improve ultrasound imaging (USI) and magnetic resonance imaging (MRI), respectively. CONCLUSION This hybrid nanopharmaceutical based on oxidative stress amplification provides a strategy for multifunctional integrated therapy of malignant tumors and image-visualized pharmaceutical delivery.
Collapse
Affiliation(s)
- Fan Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yuanli Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ying Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wenpei Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qirong Xie
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jingdong Fan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Sun
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
9
|
Mohajer F, Mirhosseini-Eshkevari B, Ahmadi S, Ghasemzadeh MA, Mohammadi Ziarani G, Badiei A, Farshidfar N, Varma RS, Rabiee N, Iravani S. Advanced Nanosystems for Cancer Therapeutics: A Review. ACS APPLIED NANO MATERIALS 2023; 6:7123-7149. [DOI: 10.1021/acsanm.3c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | | | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | | | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), 1402/2, Liberec 1 461 17, Czech Republic
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
10
|
Yin B, Ho WKH, Xia X, Chan CKW, Zhang Q, Ng YM, Lam CYK, Cheung JCW, Wang J, Yang M, Wong SHD. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206762. [PMID: 36593512 DOI: 10.1002/smll.202206762] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD-pAS@AuNC) is reported that exhibits multiple "hot spots" for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX-pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX-pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm-2 ). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yip Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
11
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
12
|
Co-delivery of saxagliptin and dapagliflozin by electrosprayed trilayer poly (D, -lactide-co-glycolide) nanoparticles for controlled drug delivery. Int J Pharm 2022; 628:122279. [DOI: 10.1016/j.ijpharm.2022.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
|
13
|
Ali AA, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203706. [PMID: 36296896 PMCID: PMC9608376 DOI: 10.3390/nano12203706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
With the urgent need for bio-nanomaterials to improve the currently available cancer treatments, gold nanoparticle (GNP) hybrid nanostructures are rapidly rising as promising multimodal candidates for cancer therapy. Gold nanoparticles (GNPs) have been hybridized with several nanocarriers, including liposomes and polymers, to achieve chemotherapy, photothermal therapy, radiotherapy, and imaging using a single composite. The GNP nanohybrids used for targeted chemotherapy can be designed to respond to external stimuli such as heat or internal stimuli such as intratumoral pH. Despite their promise for multimodal cancer therapy, there are currently no reviews summarizing the current status of GNP nanohybrid use for cancer theragnostics. Therefore, this review fulfills this gap in the literature by providing a critical analysis of the data available on the use of GNP nanohybrids for cancer treatment with a specific focus on synergistic approaches (i.e., triggered drug release, photothermal therapy, and radiotherapy). It also highlights some of the challenges that hinder the clinical translation of GNP hybrid nanostructures from bench to bedside. Future studies that could expedite the clinical progress of GNPs, as well as the future possibility of improving GNP nanohybrids for cancer theragnostics, are also summarized.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
14
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
15
|
Rahman MM, Islam MR, Akash S, Harun-Or-Rashid M, Ray TK, Rahaman MS, Islam M, Anika F, Hosain MK, Aovi FI, Hemeg HA, Rauf A, Wilairatana P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed Pharmacother 2022; 153:113305. [PMID: 35717779 DOI: 10.1016/j.biopha.2022.113305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Nanoscale engineering is one of the innovative approaches to heal multitudes of ailments, such as varieties of malignancies, neurological problems, and infectious illnesses. Therapeutics for neurodegenerative diseases (NDs) may be modified in aspect because of their ability to stimulate physiological response while limiting negative consequences by interfacing and activating possible targets. Nanomaterials have been extensively studied and employed for cancerous therapeutic strategies since nanomaterials potentially play a significant role in medical transportation. When compared to conventional drug delivery, nanocarriers drug delivery offers various benefits, such as excellent reliability, bioactivity, improved penetration and retention impact, as well as precise targeting and administering. Upregulation of drug efflux transporters, dysfunctional apoptotic mechanisms, and a hypoxic atmosphere are all elements that lead to cancer treatment sensitivity in humans. It has been possible to target these pathways using nanoparticles and increase the effectiveness of multidrug resistance treatments. As innovative strategies of tumor chemoresistance are uncovered, nanomaterials are being developed to target specific pathways of tumor resilience. Scientists have recently begun investigating the function of nanoparticles in immunotherapy, a field that is becoming increasingly useful in the care of malignancies. Nanoscale therapeutics have been explored in this scientific literature and represent the most current approaches to neurodegenerative illnesses and cancer therapy. In addition, current findings and various biomedical nanomaterials' future promise for tissue regeneration, prospective medication design, and the synthesis of novel delivery approaches have been emphasized.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md Kawser Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
16
|
Abad M, Mendoza G, Usón L, Arruebo M, Piñol M, Sebastián V, Oriol L. Microfluidic Synthesis of Block Copolymer Micelles: Application as Drug nanocarriers and as Photothermal Transductors When Loading Pd Nanosheets. Macromol Biosci 2022; 22:e2100528. [PMID: 35258161 DOI: 10.1002/mabi.202100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Indexed: 11/12/2022]
Abstract
The synthesis of polymeric nanoparticles from a block copolymer based on poly(ethylene glycol) and a polymethacrylate containing the nucleobase analogue 2,6-diacylaminopyridine has been optimized by microfluidics to obtain homogeneous spherical micelles. Loading and delivery properties have been studied using naproxen as a model. The incorporation of a Pd precursor in the polymer organic solution fed into the micromixer allows the preparation of Pd(II) precursor-polymer hybrid systems, and the subsequent reduction with CO lead to the in-situ synthesis of Pd nanosheets inside of the hydrophobic core of the polymeric micelles. This methodology is highly efficient to yield all polymeric nanoparticles loaded with Pd nanosheets as detected by electron microscopy and energy-dispersive X-ray spectroscopy. The cell viability of these Pd nanosheets-containing polymeric nanoparticles has been evaluated using five cell lines, showing a high cytocompatibility at the tested concentrations without detrimental effects in cell membrane and nuclei. Furthermore, the use of these hybrid polymeric nanoparticles as photothermal transductors has been evaluated using NIR as irradiation source, as well as its application in photothermal therapy using different cell lines demonstrating a high efficiency in all cell cultures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miriam Abad
- M. Abad, M. Piñol, L. Oriol, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,M. Abad, M. Piñol, L. Oriol, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Gracia Mendoza
- G. Mendoza, Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain.,G. Mendoza, Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), Madrid, 28029, Spain.,G. Mendoza, Aragón Health Research Institute (ISS Aragón), Zaragoza, 50009, Spain
| | - Laura Usón
- L. Usón, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,L. Usón, Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain.,L. Usón, Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), Madrid, 28029, Spain
| | - Manuel Arruebo
- M. Arruebo, V. Sebastián, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,M. Arruebo, V. Sebastián, Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain.,M. Arruebo, V. Sebastián, Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), Madrid, 28029, Spain.,M. Arruebo, V. Sebastián, Aragón Health Research Institute (ISS Aragón), Zaragoza, 50009, Spain
| | - Milagros Piñol
- M. Abad, M. Piñol, L. Oriol, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,M. Abad, M. Piñol, L. Oriol, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Víctor Sebastián
- M. Arruebo, V. Sebastián, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,M. Arruebo, V. Sebastián, Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain.,M. Arruebo, V. Sebastián, Networking Research Centre on Bioengineering, Biomaterials and Nanobiomedicine (CIBER-BNN), Madrid, 28029, Spain.,M. Arruebo, V. Sebastián, Aragón Health Research Institute (ISS Aragón), Zaragoza, 50009, Spain
| | - Luis Oriol
- M. Abad, M. Piñol, L. Oriol, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain.,M. Abad, M. Piñol, L. Oriol, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| |
Collapse
|
17
|
Song H, Peng T, Wang X, Li B, Wang Y, Song D, Xu T, Liu X. Glutathione-Sensitive Mesoporous Organosilica-Coated Gold Nanorods as Drug Delivery System for Photothermal Therapy-Enhanced Precise Chemotherapy. Front Chem 2022; 10:842682. [PMID: 35281558 PMCID: PMC8914165 DOI: 10.3389/fchem.2022.842682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of photothermal therapy (PTT) and chemotherapy can remarkably improve the permeability of the cell membrane and reduce the concentration of chemotherapy agents that not only kill the tumor cells effectively but also have adverse effects on normal tissues. It is of great meaning to construct nanomaterials that could be simultaneously applied for tumor eradication with PTT and chemotherapy. In this work, we developed a novel gold nanorod coated with mesoporous organosilica nanoparticles (oMSN-GNR), which presented as an optimal photothermal contrast agent. Moreover, after doxorubicin loading (oMSN-GNR–DOX), the organosilica shell exhibited biodegradable properties under high glutathione in the tumor microenvironment, resulting in massively releasing doxorubicin to kill tumor cells. More importantly, the hyperthermia effect of GNR cores under near-infrared light provided promising opportunities for localized photothermal ablation in vivo. Therefore, the combination of precise chemotherapy and highly effective PTT successfully inhibited tumor growth in liver tumor-bearing mice. This versatile synergistic therapy with local heating and chemotherapeutics precise release opens up the potential clinical application of PTT and chemotherapy therapeutics for malignant tumor eradication.
Collapse
Affiliation(s)
- Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tingwei Peng
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Pudong New Area, Shanghai, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Beibei Li
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Yufang Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Dianhai Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tianzhao Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| |
Collapse
|
18
|
Tian Q, Wang X, Song S, An L, Yang S, Huang G. Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer. J Adv Res 2022; 41:159-168. [PMID: 36328745 PMCID: PMC9637562 DOI: 10.1016/j.jare.2022.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Engineering of a endogenous hydrogen sulfide responsive combination of photothermal therapy and chemotherapy for colon cancer. HKUST-1 was loaded with curcumin as an endogenous hydrogen sulfide-triggered smart agent. Cur@HKUST-1@PVP allows selective colon cancer tumor imaging.
Introduction Photothermal therapy can be synergistically combined with chemotherapy to improve the therapeutic effect for colon cancer. However, conventional therapeutic agents have side effects in normal tissues, limiting their application. Objectives To reduce these side effects, a smart agent (Cur@HKUST-1@PVP) whose functionality is triggered by the high content of endogenous hydrogen sulfide in colon tumors was engineered for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon tumors. Methods After reacting with hydrogen sulfide, Cur@HKUST-1@PVP simultaneously generates CuS and releases curcumin. The generated CuS serves as an imaging agent for both photothermal therapy and photoacoustic imaging, while the released curcumin is used for chemotherapy. Results In vivo photoacoustic imaging experiments demonstrated that Cur@HKUST-1@PVP can be used for selectively imaging colon cancer tumors. In vivo experiments in mice for treatment suggested that the endogenous hydrogen sulfide-activated combination of photothermal therapy and chemotherapy has a better treatment effect that photothermal therapy or chemotherapy treatment alone. Conclusion The endogenous hydrogen sulfide-activated Cur@HKUST-1@PVP agent developed herein shows great potential for the accurate diagnosis and effective treatment of colon cancer.
Collapse
|
19
|
Krasteva N, Staneva D, Vasileva B, Miloshev G, Georgieva M. Bioactivity of PEGylated Graphene Oxide Nanoparticles Combined with Near-Infrared Laser Irradiation Studied in Colorectal Carcinoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3061. [PMID: 34835825 PMCID: PMC8619681 DOI: 10.3390/nano11113061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023]
Abstract
Central focus in modern anticancer nanosystems is given to certain types of nanomaterials such as graphene oxide (GO). Its functionalization with polyethylene glycol (PEG) demonstrates high delivery efficiency and controllable release of proteins, bioimaging agents, chemotherapeutics and anticancer drugs. GO-PEG has a good biological safety profile, exhibits high NIR absorbance and capacity in photothermal treatment. To investigate the bioactivity of PEGylated GO NPs in combination with NIR irradiation on colorectal cancer cells we conducted experiments that aim to reveal the molecular mechanisms of action of this nanocarrier, combined with near-infrared light (NIR) on the high invasive Colon26 and the low invasive HT29 colon cancer cell lines. During reaching cancer cells the phototoxicity of GO-PEG is modulated by NIR laser irradiation. We observed that PEGylation of GO nanoparticles has well-pronounced biocompatibility toward colorectal carcinoma cells, besides their different malignant potential and treatment times. This biocompatibility is potentiated when GO-PEG treatment is combined with NIR irradiation, especially for cells cultured and treated for 24 h. The tested bioactivity of GO-PEG in combination with NIR irradiation induced little to no damages in DNA and did not influence the mitochondrial activity. Our findings demonstrate the potential of GO-PEG-based photoactivity as a nanosystem for colorectal cancer treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Dessislava Staneva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - Bela Vasileva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - George Miloshev
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (D.S.); (B.V.); (G.M.)
| |
Collapse
|
20
|
Augustine R, Uthaman S, Kalva N, Eom KH, Huh KM, Pillarisetti S, Park IK, Kim I. Two-tailed tadpole-shaped synthetic polymer polypeptide bioconjugate nanomicelles for enhanced chemo-photothermal therapy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
22
|
A hybrid semiconducting organosilica-based O 2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun 2021; 12:523. [PMID: 33483518 PMCID: PMC7822893 DOI: 10.1038/s41467-020-20860-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O2 by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O2 nanoeconomizer pHPFON-NO/O2 to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O2 interacts with the acidic tumor microenvironment to release NO for endogenous O2 conservation; second, it releases O2 in response to mild photothermal effect to enable exogenous O2 infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O2 and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. Tumor hypoxia is a major limitation in radiotherapy, and strategies to address this often fail due to high oxygen consumption. Here, the authors report a nanomaterial assembly for the simultaneous reduction in mitochondrial respiration and to supply oxygen to potentiate radiotherapy.
Collapse
|
23
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Ali A, Ahmad Z, Ahmad U, Muazzam Khan M, Faheem Haider M, Akhtar J. Integrating Nanotherapeutic Platforms to Image Guided Approaches for Management of Cancer. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.94391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in 2015. The landscape of cancer therapeutics is rapidly advancing with development of new and sophisticated approaches to diagnostic testing. Treatment plan for early diagnosed patients include radiation therapy, tumor ablation, surgery, immunotherapy and chemotherapy. However the treatment can only be initiated when the cancer has been diagnosed thoroughly. Theranostics is a term that combines diagnostics with therapeutics. It embraces multiple techniques to arrive at comprehensive diagnosis, molecular images and an individualized treatment regimen. Recently, there is an effort to tangle the emerging approach with nanotechnologies, in an attempt to develop theranostic nanoplatforms and methodologies. Theranostic approach to management of cancer offers numerous advantages. They are designed to monitor cancer treatment in real time. A wide variety of theranostic nanoplatforms that are based on diverse nanostructures like magnetic nanoparticles, carbon nanotubes, gold nanomaterials, polymeric nanoparticles and silica nanoparticles showed great potential as cancer theranostics. Nano therapeutic platforms have been successful in integrating image guidance with targeted approach to treat cancer.
Collapse
|
25
|
Gao D, Gao Y, Shen J, Wang Q. Modified nanoscale metal organic framework-based nanoplatforms in photodynamic therapy and further applications. Photodiagnosis Photodyn Ther 2020; 32:102026. [PMID: 32979544 DOI: 10.1016/j.pdpdt.2020.102026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a modality in cancer treatment because it is less invasive and highly selective compared with conventional chemotherapy and radiation therapy. Nanoscale metal organic frameworks (nMOFs) have exhibited great potential for use in constructing nanoplatforms for improved PDT because of their unique structural advantages such as large surface areas, high porosities, tunable compositions and various other modifications. The large majority of current nMOF-based systems employ specific modifying groups to overcome the deficiencies previously observed when using older nMOFs in PDT. In this review, we summarize modifications to these systems such as enhancing singlet oxygen generation by introducing photoactive agents, alleviating tumor hypoxia and engineering active targeting abilities. The applications of MOF-based nanoparticles in synergistic cancer therapies that include PDT, as well as in theranostics are also discussed. Finally, we discuss some of the challenges faced in this field and the future prospects for the use of nMOFs in PDT.
Collapse
Affiliation(s)
- Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, PR China.
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
26
|
The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer. J Nanobiotechnology 2020; 18:146. [PMID: 33076924 PMCID: PMC7574214 DOI: 10.1186/s12951-020-00697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDS Surgical resection and adjunct chemotherapy or radio-therapy has been applied for the therapy of superficial malignant tumor in clinics. Whereas, there are still some problems limit its clinical use, such as severe pains and side effect. Thus, it is urgent need to develop effective, minimally invasive and low toxicity therapy stagey for superficial malignant tumor. Topical drug administration such as microneedle patches shows the advantages of reduced systemic toxicity and nimble application and, as a result, a great potential to treat superficial tumors. METHODS In this study, microneedle (MN) patches were fabricated to deliver photosensitizer IR820 and chemotherapy agent cisplatin (CDDP) for synergistic chemo-photodynamic therapy against breast cancer. RESULTS The MN could be completely inserted into the skin and the compounds carrying tips could be embedded within the target issue for locoregional cancer treatment. The photodynamic therapeutic effects can be precisely controlled and switched on and off on demand simply by adjusting laser. The used base material vinylpyrrolidone-vinyl acetate copolymer (PVPVA) is soluble in both ethanol and water, facilitating the load of both water-soluble and water-insoluble drugs. CONCLUSIONS Thus, the developed MN patch offers an effective, user-friendly, controllable and low-toxicity option for patients requiring long-term and repeated cancer treatments.
Collapse
|
27
|
Pham PTT, Le XT, Kim H, Kim HK, Lee ES, Oh KT, Choi HG, Youn YS. Indocyanine Green and Curcumin Co-Loaded Nano-Fireball-Like Albumin Nanoparticles Based on Near-Infrared-Induced Hyperthermia for Tumor Ablation. Int J Nanomedicine 2020; 15:6469-6484. [PMID: 32943865 PMCID: PMC7478379 DOI: 10.2147/ijn.s262690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Indocyanine green (ICG) has received considerable interest as a biocompatible organic photothermal agent, and curcumin (Cur) is considered an attractive natural chemopreventive and chemotherapeutic compound. However, the in vivo applicability of ICG and Cur is significantly restricted by their poor ability to target tumors and their extremely low solubility. Materials and Methods To address these problems, ICG/Cur-loaded albumin nanoparticles (ICG-BSA-Cur-NPs) based on the nabTM (nanoparticle albumin-bound) technology were applied to neuroblastomas in vivo. Results The fabricated ICG-BSA-Cur-NPs were found to be spherical, ~150 nm in size and highly dispersible and stable in aqueous solution. Approximately 80% of the incorporated ICG and Cur were gradually released from the NPs over 48 h. All formulations of ICG-BSA-Cur-NPs (5~20 µg/mL) showed efficient hyperthermia profiles (up to 50–60°C within 5 min) in response to 808-nm NIR laser irradiation in vitro and in vivo. Notably, ICG-BSA-Cur-NPs illuminated with 808-nm laser irradiation (1.5 W/cm2) showed excellent cytotoxicity toward N2a cells in vitro and undisputable antitumor efficacy in N2a-xenografted mice in vivo, compared to other tested sample groups (tumor volumes for PBS, BSA-Cur-NPs, free ICG, and ICG-BSA-Cur-NPs groups were 1408.6 ± 551.9, 1190.6 ± 343.6, 888.6 ± 566.2, and 103.0 ± 111.3 mm3, respectively). Conclusion We demonstrate that these hyperthermal chemotherapeutic ICG-BSA-Cur-NPs have potential as a future brain tumor treatment.
Collapse
Affiliation(s)
- Phuong Thi Thu Pham
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hanju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hwang Kyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
28
|
Zhi D, Yang T, O'Hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020; 325:52-71. [DOI: 10.1016/j.jconrel.2020.06.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
|
29
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 460] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Xu N, Ma N, Yang X, Ling G, Yu J, Zhang P. Preparation of intelligent DNA hydrogel and its applications in biosensing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Cai Z, Zhang Y, He Z, Jiang LP, Zhu JJ. NIR-Triggered Chemo-Photothermal Therapy by Thermosensitive Gold Nanostar@Mesoporous Silica@Liposome-Composited Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 3:5322-5330. [DOI: 10.1021/acsabm.0c00651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yingwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
33
|
Ha YJ, Lee SM, Mun CH, Kim HJ, Bae Y, Lim JH, Park KH, Lee SK, Yoo KH, Park YB. Methotrexate-loaded multifunctional nanoparticles with near-infrared irradiation for the treatment of rheumatoid arthritis. Arthritis Res Ther 2020; 22:146. [PMID: 32552859 PMCID: PMC7302395 DOI: 10.1186/s13075-020-02230-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Backgrounds Despite the advances of rheumatoid arthritis (RA) therapeutics, several patients do not receive adequate treatment due to the toxicity and/or insufficient response of drugs. The aim of this study is to design photothermally controlled drug release from multifunctional nanoparticles (MNPs) at a near-infrared (NIR) irradiated site to improve therapeutic efficacy for RA and reduce side effects. Methods Au film was deposited onto methotrexate (MTX)-loaded poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles, resulting in MTX-loaded MNPs. The synergistic effects of MTX-loaded MNPs with NIR irradiation were investigated using RA fibroblast-like synoviocytes (FLSs) and collagen-induced arthritis (CIA) mice. Results Upon NIR irradiation, NIR resonance of the Au half-shell generated heat locally, accelerating MTX release from PLGA nanoparticles. In vivo NIR images of MTX-loaded MNPs indicated effective delivery of the MNPs to the inflamed joints. Moreover, in collagen-induced arthritis mice, MTX-loaded MNPs containing 1/1400 of MTX solution (repeated-dose administration) had therapeutic effects comparable to conventional treatment with MTX solution. In vitro experiments showed higher therapeutic efficacy of MTX-loaded MNPs with NIR irradiation than that of chemotherapy alone. Conclusions A combination therapy of MTX-loaded MNP and NIR irradiation showed durable and good treatment efficacy for the suppression of arthritis in a single administration of small dose of MTX. Our results demonstrate that the treatment modality using drug-loaded MNP with NIR irradiation may be a promising therapeutic strategy for the treatment of RA and allow in vivo NIR optical imaging.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun-Mi Lee
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung Joon Kim
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea
| | - Yonghee Bae
- Department of Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hee Lim
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyu-Hyung Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soo-Kon Lee
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung-Hwa Yoo
- Nanomedical Graduate Program, Yonsei University, Seoul, Republic of Korea. .,Department of Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunologic Diseases, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
34
|
Dong Q, Wan C, Yang H, Zheng D, Xu L, Zhou Z, Xie S, Du J, Li F. Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near-infrared triggered synergistic therapy of Her2-positve breast cancer. J Biomater Appl 2020; 35:430-445. [PMID: 32515640 DOI: 10.1177/0885328220929616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A multifunctional targeted nanoplatform combining photothermal therapy and chemotherapy has emerged as a promising strategy for comprehensive therapies of breast cancer. In this study, we constructed human epidermal growth factor receptor 2 (Her2)-targeted gold nanoshelled poly(lactic- co-glycolic acid) hybrid nanocapsules encapsulating perfluorooctyl bromide, superparamagnetic iron oxide nanoparticles, and doxorubicin (Her2-GPDH nanocapsules) as theranostic agent for bimodal ultrasound/magnetic resonance imaging and synergistic photothermal-chemotherapy of Her2-postive breast cancer cells. Her2–GPDH nanocomposites possessed well-defined spherical morphology, and the average diameter was about 296 nm with good dispersion. Targeting assays demonstrated that Her2–GPDH nanocapsules exhibited higher targeting binding to Her2-positive SKBR3 cells than Her2-negative MDA-MB-231cells. The encapsulation efficiency and the loading content of doxorubicin in Her2–GPDH nanocapsules were 39 ± 1.45% and 3.8 ± 0.52%, respectively, and the agent exhibited pH-responsive and near-infrared light-triggered stepwise release behavior of doxorubicin. In vitro, the agent had potential to serve as feasible candidate for ultrasound imaging and T2-weighted magnetic resonance imaging with a relatively high relaxivity. Cell experiments confirmed that the agent had significant photothermal cytotoxicity on SKBR3 cells, and the combined photothermal–chemotherapy could significantly enhance the anti-tumor effect. In summary, the present Her2–GPDH nanocapsules, a novel multifunctional nanoplatform, will offer a new way for early bimodal molecular-level diagnosis and synergistic treatment of Her2-positve breast cancer.
Collapse
Affiliation(s)
- Qi Dong
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Dongdong Zheng
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Shaowei Xie
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Lucherelli MA, Yu Y, Reina G, Abellán G, Miyako E, Bianco A. Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Yue Yu
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
- Current address: Biomedical Research Institute National Institute of Advanced Industrial Science & Technology (AIST) Ikeda 563-8577 Japan
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
36
|
Lucherelli MA, Yu Y, Reina G, Abellán G, Miyako E, Bianco A. Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angew Chem Int Ed Engl 2020; 59:14034-14039. [DOI: 10.1002/anie.201916112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/23/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Yue Yu
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
- Current address: Biomedical Research Institute National Institute of Advanced Industrial Science & Technology (AIST) Ikeda 563-8577 Japan
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
37
|
Gao W, Li L, Zhang X, Luo L, He Y, Cong C, Gao D. Nanomagnetic liposome-encapsulated parthenolide and indocyanine green for targeting and chemo-photothermal antitumor therapy. Nanomedicine (Lond) 2020; 15:871-890. [PMID: 32223505 DOI: 10.2217/nnm-2019-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To synthesize a drug-delivery system with chemo-photothermal function and magnetic targeting, to validate its antitumor effect. Materials & methods: Parthenolide (PTL), employing chemotherapy and indocyanine green (ICG) providing phototherapy, were encased separately in the lipid and aqueous phases of liposomes (Lips). The Fe3O4 nanoparticles (MNPs), endowing magnetic targeting, were modified on the surface of Lips. The antitumor effects were investigated in vitro and in vivo. Results: ICG-PTL-Lips@MNPs showed outstanding synergistic antitumor efficacy in vitro and in vivo. Especially, after 14-day treatment, the tumor volumes decreased significantly and the biotoxicity was very low. Conclusion: The designed ICG-PTL-Lips@MNPs possess synergistic effects of chemotherapy, photothermal and targeting therapy, which are expected to provide an alternative way to further improve antitumor efficacy.
Collapse
Affiliation(s)
- Wenbin Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Lei Li
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Xuwu Zhang
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Liyao Luo
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Yuchu He
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Cong Cong
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| | - Dawei Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| |
Collapse
|
38
|
Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer. J Cancer Res Clin Oncol 2020; 146:1415-1426. [DOI: 10.1007/s00432-020-03160-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
|
39
|
A triple-combination nanotechnology platform based on multifunctional RNA hydrogel for lung cancer therapy. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9673-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Guha A, Shaharyar MA, Ali KA, Roy SK, Kuotsu K. Smart and Intelligent Stimuli Responsive Materials: An Innovative Step in Drug Delivery System. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212711906666190723142057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background:
In the field of drug delivery, smart and intelligent approaches have gained
significant attention among researchers in order to improve the efficacy of conventional dosage forms.
Material science has played a key role in developing these intelligent systems that can deliver therapeutic
cargo on-demand. Stimuli responsive material based drug delivery systems have emerged as
one of the most promising innovative tools for site-specific delivery. Several endogenous and exogenous
stimuli have been exploited to devise “stimuli-responsive” materials for targeted drug delivery.
Methods:
For better understanding, these novel systems have been broadly classified into two categories:
Internally Regulated Systems (pH, ionic strength, glucose, enzymes, and endogenous receptors)
and Externally Regulated Systems (Light, magnetic field, electric field, ultrasound, and temperature).
This review has followed a systematic approach through separately describing the design, development,
and applications of each stimuli-responsive system in a constructive manner.
Results:
The development includes synthesis and characterization of each system, which has been discussed
in a structured manner. From advantages to drawbacks, a detailed description has been included
for each smart stimuli responsive material. For a complete review in this niche area of drug delivery,
a wide range of therapeutic applications including recent advancement of these smart materials
have been incorporated.
Conclusion:
From the current scenario to future development, a precise overview of each type of system
has been discussed in this article. In summary, it is expected that researchers working in this novel
area will be highly benefited from this scientific review.
Collapse
Affiliation(s)
- Arijit Guha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Md. Adil Shaharyar
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Kazi Asraf Ali
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Sanjit Kr. Roy
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
41
|
Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020; 163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Hyperthermia has shown tremendous therapeutic efficiency in the treatment of cancer due to its controllability, minimal invasiveness and limited side effects compared to the conventional treatment techniques like surgery, radiotherapy and chemotherapy. To improve the precision of hyperthermia specifically to a tumor location, near infra-red (NIR) light activatable inorganic metal nanoparticles have served as effective photothermal therapy materials, but toxicity and non-biodegradability have limited their clinical applications. Conjugated polymer nanoparticles have overcome these limitations and are emerging as superior photothermal materials owing to their excellent light harvesting nature, biocompatibility and tunable absorption properties. In this review we focus on the development of organic conjugated polymers (polyaniline, polypyrrole, polydopamine etc.) and their nanoparticles, which have broad NIR absorption. Such materials elicit photothermal effects upon NIR stimulation and may also serve as carriers for delivery of therapeutic and contrast agents for combined therapy. Subsequently, the emergence of donor-acceptor based semiconducting polymer nanoparticles with strong absorbance that is tunable across the NIR have been shown to eradicate tumors by either hyperthermia alone or combined with other therapies. The design of multifunctional polymer nanoparticles that absorb near- or mid- infrared light for heat generation, as well as their diagnostic abilities for precise biomedical applications are highlighted.
Collapse
|
42
|
Cai Q, Wang X, Wang S, Jin L, Ding J, Zhou D, Ma F. Gallbladder Cancer Progression Is Reversed by Nanomaterial-Induced Photothermal Therapy in Combination with Chemotherapy and Autophagy Inhibition. Int J Nanomedicine 2020; 15:253-262. [PMID: 32021178 PMCID: PMC6970248 DOI: 10.2147/ijn.s231289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Gallbladder cancer (GBC) is the most common malignancy in biliary tract with extremely poor prognosis. Photothermal therapy (PTT) shows great promises for tumor therapy, which causes tumor cell death via selectively directed heating released by nanoparticles under the near-infrared irradiation. Through degrading damaged organelles and misfolded proteins in autophagosomes, autophagy plays a vital role in maintaining the intracellular homeostasis. The present study attempted to combine chemotherapy and autophagy blocking with PTT. Materials and Methods We purchased multi-walled carbon nanotubes from Nanostructured and Amorphous Materials and performed PTT using an 808-nm diode laser. The cytotoxic effects of PTT and chemotherapy in vitro were assessed by cell viability analysis. The effects of PTT and chemotherapy on autophagy in vitro were assessed by GFP-LC3 and Western blot. And these results were confirmed by in vivo experiment. Results Both PTT and chemotherapy could trigger cytoprotective autophagy to tolerate the cellular stresses and prolong the survival of GBC cell; therefore, the blocking of autophagy could enhance the efficacy of PTT and chemotherapy in GBC treatment in vitro and in vivo. Conclusion Chemotherapeutic drug doxorubicin and autophagy inhibitor chloroquine could enhance the efficacy of nanoparticle-mediated hyperthermia in GBC.
Collapse
Affiliation(s)
- Qiang Cai
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China.,Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xinjing Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Longyang Jin
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jun Ding
- Department of Biliary and Pancreatic Surgery, Shanghai Shuguang Hospital Affiliated with Shanghai University of T.C.M., Shanghai 201203, People's Republic of China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, People's Republic of China
| |
Collapse
|
43
|
Tian J, Xiao C, Huang B, Wang C, Zhang W. Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomater 2020; 101:495-506. [PMID: 31726248 DOI: 10.1016/j.actbio.2019.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
The aggregation-caused quenching (ACQ) effect of photosensitizers and multidrug resistance are the major obstacles in photodynamic therapy (PDT) and chemotherapy, respectively. Synergistic photo-chemotherapy is a promising cancer treatment to overcome the short boards of each single therapy. However, the fabrication of nanocarriers acting as both photosensitizers in PDT and the vehicle of drug release is a key challenge. Herein, we constructed a well-defined porphyrin-containing Janus macromolecular brush and used it as both a photosensitizer and a pH-responsive vehicle for DOX release. The Janus macromolecular brush with pH-responsive side chains and porphyrin units linked covalently in each repeat unit was synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The high grafting content of porphyrin units in the macromolecular brush improved the DOX loading capability by π-π stacking and therefore reduced the total treatment dose of DOX-loaded macromolecular brush nanoparticles (NPs). The pH-responsive side chains played triple roles in synergistic cascade-amplified PDT and enhanced chemotherapy including an executor of controlled drug release, a ligand with a mitochondria-targeting feature, and a barrier to reduce the ACQ effect of porphyrin units. In vitro and in vivo studies confirmed that the DOX-loaded macromolecular brush NPs exhibited high phototoxicity and significant tumor inhibition efficacy. STATEMENT OF SIGNIFICANCE: Synergistic photodynamic therapy (PDT) and chemotherapy has emerged as a promising cancer treatment to overcome the challenges of a single modality. Herein, we constructed new pH-responsive vesicles using porphyrin-containing Janus macromolecular brushes as theranostic nanocarriers to encapsulate high-loading doxorubicin (DOX) for synergistic cascade-amplified PDT and enhanced chemotherapy. The high grafting content of porphyrin units in Janus macromolecular brushes improved DOX loading capability by π-π stacking for enhanced chemotherapy. Moreover, pH-responsive side chains subsequently enhanced the suppression of the aggregation-caused quenching (ACQ) effect of porphyrins for cascade-amplified PDT. In vitro and in vivo studies confirmed that DOX-loaded macromolecular brush nanoparticles exhibited high phototoxicity and significant tumor inhibition efficacy.
Collapse
|
44
|
Mioc A, Mioc M, Ghiulai R, Voicu M, Racoviceanu R, Trandafirescu C, Dehelean C, Coricovac D, Soica C. Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy. Curr Med Chem 2019; 26:6493-6513. [PMID: 31057102 DOI: 10.2174/0929867326666190506123721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Cancer is still a leading cause of death worldwide, while most chemotherapies induce nonselective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing many roles, such as targeted delivery systems (anticancer agents, nucleic acids, biological proteins, vaccines), theranostics and agents in photothermal therapy. They have also been outlined to bring great contributions in the bioimaging field such as radiotherapy, magnetic resonance angiography and photoacoustic imaging. Nevertheless, gold nanoparticles are therapeutic agents demonstrating its in vitro anti-angiogenic, anti-proliferative and pro-apoptotic effects on various cell lines, such as human cervix, human breast, human lung, human prostate and murine melanoma cancer cells. In vivo studies have pointed out data regarding the bioaccumulation and cytotoxicity of gold nanoparticles, but it has been emphasized that size, dose, surface charge, sex and especially administration routes are very important variables.
Collapse
Affiliation(s)
- Alexandra Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara 300041, Romania
| |
Collapse
|
45
|
A simple strategy for chemo-photothermal ablation of breast cancer cells by novel smart gold nanoparticles. Photodiagnosis Photodyn Ther 2019; 28:25-37. [DOI: 10.1016/j.pdpdt.2019.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022]
|
46
|
Xu L, Wang SB, Xu C, Han D, Ren XH, Zhang XZ, Cheng SX. Multifunctional Albumin-Based Delivery System Generated by Programmed Assembly for Tumor-Targeted Multimodal Therapy and Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38385-38394. [PMID: 31556589 DOI: 10.1021/acsami.9b11263] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To enhance the treatment efficiency in tumor therapy, we developed a tumor-targeting protein-based delivery system, DOX&ICG@BSA-KALA/Apt, to efficiently integrate multimodal therapy with tumor imaging and realize synchronous photodynamic therapy/photothermal therapy/chemotherapy. In the delivery system, a chemotherapeutic drug (doxorubicin, DOX) and an optotheranostic agent (indocyanine green, ICG) were co-loaded in bovine serum albumin (BSA) via a hydrophobic-interaction-induced self-assembly to form stable DOX&ICG@BSA nanoparticles. After the decoration of a surface layer composed of a tumor-targeting aptamer (AS1411) and a cell-penetrating peptide (KALA), the obtained DOX&ICG@BSA-KALA/Apt nanoparticles exhibit a significantly improved multimodal cancer therapeutic efficiency due to the enhanced cancer cellular uptake mediated by AS1411 and KALA. In vitro and in vivo studies show that the multimodal theranostic system can efficiently inhibit tumor growth. In addition, the near-infrared fluorescent/photothermal dual-mode imaging enables accurate visualization of the therapeutic action in tumor sites. This study provides a facile strategy to construct self-assembled multimodal theranostic systems, and the functional protein-based theranostic system prepared holds great promise in multimodal cancer therapeutics.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
47
|
Li Z, Chen Y, Yang Y, Yu Y, Zhang Y, Zhu D, Yu X, Ouyang X, Xie Z, Zhao Y, Li L. Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019; 7:293. [PMID: 31696114 PMCID: PMC6817476 DOI: 10.3389/fbioe.2019.00293] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Conventional chemotherapy for cancer treatment is usually compromised by shortcomings such as insufficient therapeutic outcome and undesired side effects. The past decade has witnessed the rapid development of combination therapy by integrating chemotherapy with hyperthermia for enhanced therapeutic efficacy. Near-infrared (NIR) light-mediated photothermal therapy, which has advantages such as great capacity of heat ablation and minimally invasive manner, has emerged as a powerful approach for cancer treatment. A variety of nanomaterials absorbing NIR light to generate heat have been developed to simultaneously act as carriers for chemotherapeutic drugs, contributing as heat trigger for drug release and/or inducing hyperthermia for synergistic effects. This review aims to summarize the recent development of advanced nanomaterials in chemo-photothermal combination therapy, including metal-, carbon-based nanomaterials and particularly organic nanomaterials. The potential challenges and perspectives for the future development of nanomaterials-based chemo-photothermal therapy were also discussed.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangjun Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Sun S, Sun S, Sun Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. Theranostics 2019; 9:8138-8154. [PMID: 31754386 PMCID: PMC6857040 DOI: 10.7150/thno.36762] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes have demonstrated great potential for tumor-specific chemotherapy. Near infrared (NIR) dyes loaded liposomes have also shown improved photothermal effect in cancer theranostics. However, the instability of liposomes often causes premature release of drugs or dyes, impeding their antitumor efficacy. Herein, we fabricated a highly stable thermo-responsive bubble-generating liposomal nanohybrid cerasome with a silicate framework, combined with a NIR dye to achieve NIR light stimulated, tumor-specific, chemo-photothermal synergistic therapy. Methods: In this system, NIR dye of 1,1'-Dioctadecyl-3,3,3',3'- Tetramethylindotricarbocyanine iodide (DiR) with long carbon chains was self-assembled with a cerasome-forming lipid (CFL) to encapsulate ammonium bicarbonate (ABC), which was further used for actively loading doxorubicin (DOX), affording a thermosensitive and photosensitive DOX-DiR@cerasome (ABC). Results: The resulting cerasome could disperse well in different media. Upon NIR light mediated thermal effect, ABC was decomposed to generate CO2 bubbles, resulting in a permeable channel in the cerasome bilayer that significantly enhanced DOX release. After intravenous injection into tumor-bearing mice, DOX-DiR@cerasome (ABC) could be efficiently accumulated at the tumor tissue, as monitored by DiR fluorescence, lasting for more than 5 days. NIR light irradiation was then performed at 36h to locally heat the tumors, resulting in immediate CO2 bubble generation, which could be clearly detected by ultrasound imaging, facilitating the monitoring process of controlled release of the drug. Significant antitumor efficacy could be obtained for the DOX-DiR@cerasome (ABC) + laser group, which was further confirmed by tumor tissue histological analysis.
Collapse
Affiliation(s)
- Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Yan Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Jianlun Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Wenjing Du
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
- Ordos Center Hospital, Ordos 017000, Inner Mongolia, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| |
Collapse
|
49
|
Bilici K, Muti A, Sennaroğlu A, Yagci Acar H. Indocyanine green loaded APTMS coated SPIONs for dual phototherapy of cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111648. [PMID: 31710924 DOI: 10.1016/j.jphotobiol.2019.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 10/07/2019] [Indexed: 02/01/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been recently recognized as highly efficient photothermal therapy (PTT) agents. Here, we demonstrate, for the first time to our knowledge, dose and laser intensity dependent PTT potential of small, spherical, 3-aminopropyltrimethoxysilane coated cationic superparamagnetic iron oxide nanoparticles (APTMS@SPIONs) in aqueous solutions upon irradiation at 795 nm. Indocyanine green (ICG) which has been recently used for photodynamic therapy (PDT), was loaded to APTMS@SPIONs to improve the stability of ICG and to achieve an effective mild PTT and PDT (dual therapy) combination for synergistic therapeutic effect on cancer cells via a single laser treatment in the near infrared (NIR). Neither APTMS@SPIONs nor ICG-APTMS@SPIONs showed dark toxicity on MCF7 breast and HT29 colon cancer cell lines. A safe laser procedure was determined as 10 min irradiation at 795 nm with 1.8 W/cm2 of laser intensity, at which APTMS@SPION did not cause a significant cell death. However, free ICG reduced cell viability at and above 10 μg/ml under these conditions along with generation of reactive oxygen species (ROS), more effectively in MCF7. ICG-APTMS@SPION treated cells showed 2-fold increase in ROS generation and near complete cell death at and below 5 μg/ml ICG dose, even in less sensitive HT29 cells after a single laser treatment at NIR, which would be safe for the healthy tissue and provide a longer penetration depth. Besides, both components can be utilized for diagnosis and the overall composition may be used for optical-image guided phototherapy in the NIR region.
Collapse
Affiliation(s)
- Kubra Bilici
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Abdullah Muti
- Department of Physics and Electrical-Electronics Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey
| | - Alphan Sennaroğlu
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; Department of Physics and Electrical-Electronics Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| | - Havva Yagci Acar
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey; KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey; Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul 34450, Turkey.
| |
Collapse
|
50
|
Theune LE, Buchmann J, Wedepohl S, Molina M, Laufer J, Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. J Control Release 2019; 311-312:147-161. [DOI: 10.1016/j.jconrel.2019.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|