1
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
2
|
Sloan PA, Rusimova KR. A self-consistent model to link surface electronic band structure to the voltage dependence of hot electron induced molecular nanoprobe experiments. NANOSCALE ADVANCES 2022; 4:4880-4885. [PMID: 36381505 PMCID: PMC9642357 DOI: 10.1039/d2na00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ultra-fast transport properties of hot charge carriers is of significant importance both fundamentally and technically in applications like solar cells and transistors. However, direct measurement of charge transport at the relevant nanometre length scales is challenging with only a few experimental methods demonstrated to date. Here we report on molecular nanoprobe experiments on the Si(111)-7 × 7 at room temperature where charge injected from the tip of a scanning tunnelling microscope (STM) travels laterally across a surface and induces single adsorbate toluene molecules to react over length scales of tens of nanometres. A simple model is developed for the fraction of the tunnelling current captured into each of the surface electronic bands with input from only high-resolution scanning tunnelling spectroscopy (STS) of the clean Si(111)-7 × 7 surface. This model is quantitatively linked to the voltage dependence of the molecular nanoprobe experiments through a single manipulation probability (i.e. fitting parameter) per state. This model fits the measured data and gives explanation to the measured voltage onsets, exponential increase in the measured manipulation probabilities and plateau at higher voltages. It also confirms an ultrafast relaxation to the bottom of a surface band for the injected charge after injection, but before the nonlocal spread across the surface.
Collapse
Affiliation(s)
- Peter A Sloan
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
| | - Kristina R Rusimova
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
- Centre for Photonics and Photonic Materials, University of Bath Bath BA2 7AY UK
| |
Collapse
|
3
|
Ou M, Wang X, Yu L, Liu C, Tao W, Ji X, Mei L. The Emergence and Evolution of Borophene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001801. [PMID: 34194924 PMCID: PMC8224432 DOI: 10.1002/advs.202001801] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Indexed: 05/14/2023]
Abstract
Neighboring carbon and sandwiched between non-metals and metals in the periodic table of the elements, boron is one of the most chemically and physically versatile elements, and can be manipulated to form dimensionally low planar structures (borophene) with intriguing properties. Herein, the theoretical research and experimental developments in the synthesis of borophene, as well as its excellent properties and application in many fields, are reviewed. The decade-long effort toward understanding the size-dependent structures of boron clusters and the theory-directed synthesis of borophene, including bottom-up approaches based on different foundations, as well as up-down approaches with different exfoliation modes, and the key factors influencing the synthetic effects, are comprehensively summarized. Owing to its excellent chemical, electronic, mechanical, and thermal properties, borophene has shown great promise in supercapacitor, battery, hydrogen-storage, and biomedical applications. Furthermore, borophene nanoplatforms used in various biomedical applications, such as bioimaging, drug delivery, and photonic therapy, are highlighted. Finally, research progress, challenges, and perspectives for the future development of borophene in large-scale production and other prospective applications are discussed.
Collapse
Affiliation(s)
- Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Chuang Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
4
|
Zhang Q, Huang Z, Hou Y, Yuan P, Xu Z, Yang H, Song X, Chen Y, Yang H, Zhang T, Liu L, Gao HJ, Wang Y. Tuning Molecular Superlattice by Charge-Density-Wave Patterns in Two-Dimensional Monolayer Crystals. J Phys Chem Lett 2021; 12:3545-3551. [PMID: 33818110 DOI: 10.1021/acs.jpclett.1c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charge density wave (CDW) in two-dimensional (2D) crystals plays a vital role in tuning the interface structures and properties. However, how the CDW tunes the self-assembled molecular superlattice still remains unclear. In this study, we investigated the self-assembled manganese phthalocyanine (MnPc) molecular superlattice on single-layered 1T- and 2H-NbSe2 crystals under regulation by distinct CDW patterns. We observe that, in low coverage, MnPc molecules preferentially adsorb on 2H-NbSe2 compared to 1T-NbSe2. With increasing coverage, MnPc can form a highly ordered superlattice on 2H-NbSe2; however, it is randomly distributed on 1T-NbSe2. We reveal a perfect geometric commensurability between the molecular superlattice and intrinsic CDW pattern in 2H-NbSe2 and a poor commensurability for that of 1T-NbSe2. We believe that the subtly different geometric commensurability dominates the different adsorption and arrangement of the molecular superlattices on 2D CDW patterns. Our study provides a pioneering approach for tuning the molecular superlattices using the CDW patterns.
Collapse
Affiliation(s)
- Quanzhen Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Zeping Huang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Yanhui Hou
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Peiwen Yuan
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Ziqiang Xu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xuan Song
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyao Chen
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huixia Yang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Liwei Liu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeliang Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Liu J, Gao Y, Wang T, Xue Q, Hua M, Wang Y, Huang L, Lin N. Collective Spin Manipulation in Antiferroelastic Spin-Crossover Metallo-Supramolecular Chains. ACS NANO 2020; 14:11283-11293. [PMID: 32790285 DOI: 10.1021/acsnano.0c03163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coupled spin-crossover complexes in supramolecular systems feature rich spin phases that can exhibit collective behaviors. Here, we report on a molecular-level exploration of the spin phase and collective spin-crossover dynamics in metallo-supramolecular chains. Using scanning tunneling microscopy, spectroscopy, and density functional theory calculations, we identify an antiferroelastic phase in the metal-organic chains, where the Ni atoms coordinated by deprotonated tetrahydroxybenzene linkers on Au(111) are at a low-spin (S = 0) or a high-spin (S = 1) state alternately along the chains. We demonstrate that the spin phase is stabilized by the combined effects of intrachain interactions and substrate commensurability. The stability of the antiferroelastic structure drives the collective spin-state switching of multiple Ni atoms in the same chain in response to electron/hole tunneling to a Ni atom via a domino-like magnetostructural relaxation process. These results provide insights into the magnetostructural dynamics of the supramolecular structures, offering a route toward their spintronic manipulations.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
| | - Yifan Gao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Tong Wang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiang Xue
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 100871 Beijing, China
| | - Muqing Hua
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongfeng Wang
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 100871 Beijing, China
| | - Li Huang
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
6
|
Cobley RJ, Kaya D, Palmer RE. Absence of Nonlocal Manipulation of Oxygen Atoms Inserted below the Si(111)-7×7 Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8027-8031. [PMID: 32568544 DOI: 10.1021/acs.langmuir.0c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The injection of electrons from the scanning tunneling microscope tip can be used to perform nanoscale chemistry and study hot electron transport through surfaces. While nonlocal manipulation has been demonstrated primarily for aromatic adsorbates, here we confirm that oxygen atoms bonded to the Si(111) surface can also be nonlocally manipulated, and we fit the measured manipulation data to a single channel decay model. Unlike aromatic adsorption systems, oxygen atoms also insert below the surface of silicon. Although the inserted oxygen can be manipulated when the tip is directly over the relevant silicon adatom, it is not possible to induce nonlocal manipulation of inserted oxygen atoms at the same bias. We attribute this to the electrons injected at +4 eV initially relaxing to couple to the highest available surface state at +3.4 eV before laterally transporting through the surface. With a manipulation threshold of 3.8 eV for oxygen inserted into silicon, once carriers have undergone lateral transport, they do not possess enough energy to manipulate and remove oxygen atoms inserted beneath the surface of silicon. This result confirms that nonlocal nanoscale chemistry using the scanning tunneling microscope tip is dependent not only on the energy required for atomic manipulation, but also on the energy of the available surface states to carry the electrons to the manipulation site.
Collapse
Affiliation(s)
- Richard J Cobley
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Dogan Kaya
- Department of Electronics and Automation, Vocational School of Adana, Cukurova University, Adana, Cukurova 01160, Turkey
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Richard E Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
7
|
Etheridge HG, Rusimova KR, Sloan PA. The nanometre limits of ballistic and diffusive hot-hole mediated nonlocal molecular manipulation. NANOTECHNOLOGY 2019; 31:105401. [PMID: 31783381 DOI: 10.1088/1361-6528/ab5d7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report an experimental investigation into the surface-specific and experimental limits of the range of STM induced nonlocal molecular manipulation. We measure the spot-size of the nonlocal manipulation of bromobenzene molecules on the Si(111)-7 × 7 surface at room temperature at two voltages and for a wide range of charge-injection times (number of hot charge-carriers) from 1 s up to 500 s. The results conform to an initially ballistic, 6-10 nm, and then hot-hole diffusive, 10-30 nm, transport away from the localised injection site. This work gives further confirmation that nonlocal molecular manipulation by STM directly reveals the ultrafast transport properties of hot-charge carriers at surfaces.
Collapse
Affiliation(s)
- H G Etheridge
- Department of Physics, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | | |
Collapse
|
8
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
9
|
Wang YL, Sun K, Tu YB, Tao ML, Xie ZB, Yuan HK, Xiong ZH, Wang JZ. Chirality switching of the self-assembled CuPc domains induced by electric field. Phys Chem Chem Phys 2018; 20:7125-7131. [PMID: 29479594 DOI: 10.1039/c7cp08279g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral switching of the self-assembled domains of CuPc molecules on the Cd(0001) surface has been investigated by means of a low temperature scanning tunneling microscopy (STM). With the coverage increasing, the CuPc molecules show the structural evolutions from an initial gas-like state to a network phase, a square phase, and finally to a compact phase at full monolayer. In the network and square phases, the achiral CuPc molecules reveal both the point chirality and chiral domains. In particular, the chirality of network domain can be switched from one enantiomer to another driven by the electric filed from a STM tip, which can also lead to the lattice rotation of network phase. These results demonstrate that (i) there is strong interaction between the CuPc molecules and STM tip; (ii) the adsorbed CuPc molecules carry considerable net charge or polarizability due to the charge transfer; (iii) the network phase has a low barrier for the interconversion between right- and left-handed domains. Our findings are significant for the understanding and control of the domain's chirality in the self-assembled structures.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent Supramolecular Architectures at the Vacuum–Solid Interface. Chem Rev 2017; 117:1407-1444. [DOI: 10.1021/acs.chemrev.6b00389] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xavier Bouju
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | | | - Grégory Franc
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Adeline Pujol
- Université de Toulouse, UPS, CNRS, CEMES, 118 route de Narbonne, 31062 Toulouse, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
11
|
|
12
|
Rusimova KR, Bannister N, Harrison P, Lock D, Crampin S, Palmer RE, Sloan PA. Initiating and imaging the coherent surface dynamics of charge carriers in real space. Nat Commun 2016; 7:12839. [PMID: 27677938 PMCID: PMC5052722 DOI: 10.1038/ncomms12839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022] Open
Abstract
The tip of a scanning tunnelling microscope is an atomic-scale source of electrons and holes. As the injected charge spreads out, it can induce adsorbed molecules to react. By comparing large-scale 'before' and 'after' images of an adsorbate covered surface, the spatial extent of the nonlocal manipulation is revealed. Here, we measure the nonlocal manipulation of toluene molecules on the Si(111)-7 × 7 surface at room temperature. Both the range and probability of nonlocal manipulation have a voltage dependence. A region within 5-15 nm of the injection site shows a marked reduction in manipulation. We propose that this region marks the extent of the initial coherent (that is, ballistic) time-dependent evolution of the injected charge carrier. Using scanning tunnelling spectroscopy, we develop a model of this time-dependent expansion of the initially localized hole wavepacket within a particular surface state and deduce a quantum coherence (ballistic) lifetime of ∼10 fs.
Collapse
Affiliation(s)
- K R Rusimova
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK.,Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - N Bannister
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK
| | - P Harrison
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK
| | - D Lock
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK
| | - S Crampin
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK
| | - R E Palmer
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - P A Sloan
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
13
|
Godlewski S, Kawai H, Engelund M, Kolmer M, Zuzak R, Garcia-Lekue A, Novell-Leruth G, Echavarren AM, Sanchez-Portal D, Joachim C, Saeys M. Diels-Alder attachment of a planar organic molecule to a dangling bond dimer on a hydrogenated semiconductor surface. Phys Chem Chem Phys 2016; 18:16757-65. [PMID: 27271337 DOI: 10.1039/c6cp02346k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.
Collapse
Affiliation(s)
- Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland.
| | - Hiroyo Kawai
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Mads Engelund
- Centro de Fisica de Materiales CSIC-UPV/EHU, Paseo Manual de Lardizabal 5, E-20018, Donostia-San Sebastian, Spain
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland.
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland.
| | - Aran Garcia-Lekue
- Donostia International Physics Center, Paseo Manual de Lardizabal 4, 20018, Donostia-San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Gerard Novell-Leruth
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052 Ghent, Belgium
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Sanchez-Portal
- Centro de Fisica de Materiales CSIC-UPV/EHU, Paseo Manual de Lardizabal 5, E-20018, Donostia-San Sebastian, Spain and Donostia International Physics Center, Paseo Manual de Lardizabal 4, 20018, Donostia-San Sebastian, Spain
| | - Christian Joachim
- Nanosciences Group & MANA Satellite, CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mark Saeys
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Schendel V, Borca B, Pentegov I, Michnowicz T, Kraft U, Klauk H, Wahl P, Schlickum U, Kern K. Remotely Controlled Isomer Selective Molecular Switching. NANO LETTERS 2016; 16:93-97. [PMID: 26619213 DOI: 10.1021/acs.nanolett.5b02974] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nonlocal addressing-the "remote control"-of molecular switches promises more efficient processing for information technology, where fast speed of switching is essential. The surface state of the (111) facets of noble metals, a confined two-dimensional electron gas, provides a medium that enables transport of signals over large distances and hence can be used to address an entire ensemble of molecules simultaneously with a single stimulus. In this study we employ this characteristic to trigger a conformational switch in anthradithiophene (ADT) molecules by injection of hot carriers from a scanning tunneling microscope (STM) tip into the surface state of Cu(111). The carriers propagate laterally and trigger the switch in molecules at distances as far as 100 nm from the tip location. The switching process is shown to be long-ranged, fully reversible, and isomer selective, discriminating between cis and trans diastereomers, enabling maximum control.
Collapse
Affiliation(s)
- Verena Schendel
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Bogdana Borca
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Ivan Pentegov
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Ulrike Kraft
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Peter Wahl
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews , St. Andrews, Scotland, United Kingdom
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Lock D, Rusimova KR, Pan TL, Palmer RE, Sloan PA. Atomically resolved real-space imaging of hot electron dynamics. Nat Commun 2015; 6:8365. [PMID: 26387703 PMCID: PMC4595757 DOI: 10.1038/ncomms9365] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.
Collapse
Affiliation(s)
- D. Lock
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - K. R. Rusimova
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - T. L. Pan
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - R. E. Palmer
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - P. A. Sloan
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
16
|
Ladenthin JN, Grill L, Gawinkowski S, Liu S, Waluk J, Kumagai T. Hot Carrier-Induced Tautomerization within a Single Porphycene Molecule on Cu(111). ACS NANO 2015; 9:7287-7295. [PMID: 26057840 DOI: 10.1021/acsnano.5b02147] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here, we report the study of tautomerization within a single porphycene molecule adsorbed on a Cu(111) surface using low-temperature scanning tunneling microscopy (STM) at 5 K. While molecules are adsorbed on the surface exclusively in the thermodynamically stable trans tautomer after deposition, a voltage pulse from the STM can induce the unidirectional trans → cis and reversible cis ↔ cis tautomerization. From the voltage and current dependence of the tautomerization yield (rate), it is revealed that the process is induced by vibrational excitation via inelastic electron tunneling. However, the metastable cis molecules are thermally switched back to the trans tautomer by heating the surface up to 30 K. Furthermore, we have found that the unidirectional tautomerization can be remotely controlled at a distance from the STM tip. By analyzing the nonlocal process in dependence on various experimental parameters, a hot carrier-mediated mechanism is identified, in which hot electrons (holes) generated by the STM travel along the surface and induce the tautomerization through inelastic scattering with a molecule. The bias voltage and coverage dependent rate of the nonlocal tautomerization clearly show a significant contribution of the Cu(111) surface state to the hot carrier-induced process.
Collapse
Affiliation(s)
- Janina N Ladenthin
- †Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Leonhard Grill
- †Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- ‡Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sylwester Gawinkowski
- §Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Shuyi Liu
- †Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jacek Waluk
- §Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Takashi Kumagai
- †Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Mazur U, Hipps KW. Kinetic and thermodynamic processes of organic species at the solution-solid interface: the view through an STM. Chem Commun (Camb) 2015; 51:4737-49. [PMID: 25634141 DOI: 10.1039/c4cc09840d] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A focused review is presented on the evolution of our understanding of the kinetic and thermodynamic factors that play a critical role in the formation of well ordered organic adlayers at the solution-solid interface. While the current state of knowledge is in the very early stages, it is now clear that assumptions of kinetic or thermodynamic control are dangerous and require careful confirmation. Equilibrium processes at the solution-solid interface are being described by evolving thermodynamic models that utilize concepts from the thermodynamics of micelles. A surface adsorption version of the Born-Haber cycle is helping to extract the thermodynamic functions of state associated with equilibrium structures, but only a very few systems have been so analyzed. The kinetics of surface phase transformation, especially for polymorphic phases is in an early qualitative stage. Adsorption and desorption kinetics are just starting to be measured. The study of kinetics and thermodynamics for organic self-assembly at the solution-solid interface is experiencing very exciting and rapid growth.
Collapse
Affiliation(s)
- Ursula Mazur
- Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
| | | |
Collapse
|
18
|
Li M, Xie P, Deng K, Yang YL, Lei SB, Wei ZQ, Zeng QD, Wang C. A dynamic study of the structural change in the binary network in response to guest inclusion. Phys Chem Chem Phys 2015; 16:8778-82. [PMID: 24691352 DOI: 10.1039/c3cp55355h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work flexible binary networks of 1,3,5-benzenetricarboxylic acid (TMA) with 4,4'-bipyridine (Bpy) or 1,3,5-tris(4-pyridyl)-2,4,6-triazine(TPTZ) molecules at the liquid-solid interface were constructed. When coronene (COR) molecules are introduced into these systems, the binary networks collapse and at the same time, new COR/TMA host-guest structures are formed. Both experiments and calculations unambiguously indicate that the COR/TMA host-guest complex structure has stronger adsorption energy, resulting in the deconstruction-reconstruction phenomenon.
Collapse
Affiliation(s)
- Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen W. Towards single molecule switches. Chem Soc Rev 2015; 44:2998-3022. [DOI: 10.1039/c4cs00377b] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scanning tunneling microscope (STM) controlled reversible switching of a single-dipole molecule imbedded in hydrogen-bonded binary molecular networks on graphite.
Collapse
Affiliation(s)
- Jia Lin Zhang
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jian Qiang Zhong
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jia Dan Lin
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Wen Ping Hu
- School of Science
- Tianjin University
- Tian Jin
- China
| | - Kai Wu
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Guo Qin Xu
- Department of Chemistry
- National University of Singapore
- Singapore
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
| | | | - Wei Chen
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| |
Collapse
|
20
|
Li M, den Boer D, Iavicoli P, Adisoejoso J, Uji-i H, Van der Auweraer M, Amabilino DB, Elemans JAAW, De Feyter S. Tip-Induced Chemical Manipulation of Metal Porphyrins at a Liquid/Solid Interface. J Am Chem Soc 2014; 136:17418-21. [DOI: 10.1021/ja510930z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Li
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Duncan den Boer
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
- Institute
for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Patrizia Iavicoli
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Universitat Autónoma de Barcelona, Campus Universitari, 08193 Bellaterra, Catalonia, Spain
| | - Jinne Adisoejoso
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
| | - Hiroshi Uji-i
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
| | - Mark Van der Auweraer
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
| | - David B. Amabilino
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Universitat Autónoma de Barcelona, Campus Universitari, 08193 Bellaterra, Catalonia, Spain
| | - Johannes A. A. W. Elemans
- Institute
for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Steven De Feyter
- Division
of Molecular Imaging and Photonics, KU Leuven−University of Leuven, Celestijnenlaan
200-F, 3001 Leuven, Belgium
| |
Collapse
|
21
|
Pan TL, Sloan PA, Palmer RE. Concerted Thermal-Plus-Electronic Nonlocal Desorption of Chlorobenzene from Si(111)-7 × 7 in the STM. J Phys Chem Lett 2014; 5:3551-3554. [PMID: 26278608 DOI: 10.1021/jz501819n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The rate of desorption of chemisorbed chlorobenzene molecules from the Si(111)-7 × 7 surface, induced by nonlocal charge injection from an STM tip, depends on the surface temperature. Between 260 and 313 K, we find an Arrhenius thermal activation energy of 450 ± 170 meV, consistent with the binding energy of physisorbed chlorobenzene on the same surface. Injected electrons excite the chlorobenzene molecule from the chemisorption state to an intermediate physisorption state, followed by thermal desorption. We find a second thermal activation energy of 21 ± 4 meV in the lower temperature region between 77 and 260 K, assigned to surface phonon excitation.
Collapse
Affiliation(s)
- Tian Luo Pan
- †Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Peter A Sloan
- †Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
- ‡Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Richard E Palmer
- †Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Pan T, Sloan PA, Palmer RE. Non-local atomic manipulation on semiconductor surfaces in the STM: the case of chlorobenzene on Si(111)-7×7. CHEM REC 2014; 14:841-7. [PMID: 25130501 DOI: 10.1002/tcr.201402021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Indexed: 01/05/2023]
Abstract
Control over individual atoms with the scanning tunnelling microscope (STM) holds the tantalising prospect of atomic-scale construction, but is limited by its "one atom at a time" serial nature. "Remote control" through non-local STM manipulation-as we have demonstrated in the case of chlorobenzene on Si(111)-7×7-offers a new avenue for future "bottom-up" nanofabrication, since hundreds of chemical reactions may be carried out in parallel. Thus a good understanding of the non-local manipulation process, as provided by recent experiments, is important. Comparison of scanning tunnelling spectroscopy (STS) measurements of the bare Si(111)-7×7 surface and chemisorbed chlorobenzene molecules with the voltage dependence of the non-local STM-induced desorption of chlorobenzene proves particularly instructive. For example, the chlorobenzene LUMO appears at +0.9 V with respect to the Fermi level, whereas non-local manipulation thresholds are found at +2.1 V and +2.7 V. This difference supports a picture in which the voltage thresholds for non-local electron-induced desorption depend principally on the energies of the electronic states of the surface. Furthermore, the demonstration that the non-local process is largely insensitive to surface steps up to five layers in height suggests that either the electron transport in this process is subsurface in character or surface charge transport is responsible but is in some way unaffected by the steps.
Collapse
Affiliation(s)
- Tianluo Pan
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
23
|
Hahn JR, Jang SH, Kim KW, Son SB. Hot carrier-selective chemical reactions on Ag(110). J Chem Phys 2013; 139:074707. [PMID: 23968107 DOI: 10.1063/1.4817947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Here, we show that the pathways, products, and efficiencies of reactions occurring on a metal surface can be spatially modulated by varying the type and energy of hot carriers produced by injecting tunneling electrons or holes from a scanning tunneling microscope tip into the metal surface. Control over the metal surface reactions was demonstrated for the large-scale dissociation reaction of O2 molecules on a Ag(110) surface. Hot electrons (or holes) transported through the metal surface to chemisorbed O2 selectively dissociated the molecule into two oxygen atoms separated along the [110] (or [001]) lattice direction. The reaction selectivity was enhanced compared to the selectivity of a direct reaction involving tunneling carriers.
Collapse
Affiliation(s)
- Jae Ryang Hahn
- Department of Chemistry and Bioactive Materials Science and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea.
| | | | | | | |
Collapse
|
24
|
Toader M, Shukrynau P, Knupfer M, Zahn DRT, Hietschold M. Site-dependent donation/backdonation charge transfer at the CoPc/Ag(111) interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13325-30. [PMID: 22931485 DOI: 10.1021/la302792z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The organic/metal interface formed upon adsorption of cobalt(II) phthalocyanine (CoPc) molecules on a flat Ag(111) single crystal was investigated using a combination of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES). A flat-lying molecular adsorption with the π conjugated phthalocyanine ligand parallel to the substrate was found to lead to an effective molecule-substrate coupling which governs a template-guided molecular growth. A voltage polarity dependence at the cobalt ion site was emphasized and correlated with the Co 2p core level spectra evolution which sustains an interface-confined reduction effect of the cobalt oxidation state. The formation of interface dipoles was observed via monitoring the changes in the work function (WF) upon deposition. The observations are discussed on the basis of a site-dependent donation/backdonation charge transfer at the molecule-substrate interface.
Collapse
Affiliation(s)
- Marius Toader
- Chemnitz University of Technology, Institute of Physics, Solid Surfaces Analysis Group, D-09107 Chemnitz, Germany.
| | | | | | | | | |
Collapse
|
25
|
Huang YL, Lu Y, Niu TC, Huang H, Kera S, Ueno N, Wee ATS, Chen W. Reversible single-molecule switching in an ordered monolayer molecular dipole array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1423-8. [PMID: 22378634 DOI: 10.1002/smll.201101967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/11/2011] [Indexed: 05/04/2023]
Abstract
Making electronic devices using a single molecule has been the ultimate goal of molecular electronics. For binary data storage in particular, the challenge has been the ability to switch a single molecule in between bistable states in a simple and repeatable manner. The reversible switching of single molecules of chloroaluminum phthalocyanine (ClAlPc) dipolar molecules within a close-packed monolayer is demonstrated. By pulsing an scanning tunneling microscopy tip, read-write operations of single-molecular binary bits at ~40 Tb/cm(2) (~250 Tb/in(2)) are demonstrated.
Collapse
Affiliation(s)
- Yu Li Huang
- Department of Physics, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Bellec A, Riedel D, Dujardin G, Boudrioua O, Chaput L, Stauffer L, Sonnet P. Nonlocal activation of a bistable atom through a surface state charge-transfer process on Si(100)-(2×1):H. PHYSICAL REVIEW LETTERS 2010; 105:048302. [PMID: 20867890 DOI: 10.1103/physrevlett.105.048302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Indexed: 05/29/2023]
Abstract
The reversible hopping of a bistable atom on the Si(100)-(2×1):H surface is activated nonlocally by hole injection into Si-Si bond surface states with a low temperature (5 K) scanning tunneling microscope. In the contact region, at short distances (<1.5 nm) between the hole injection site and the bistable atom, the hopping yield of the bistable atom exhibits remarkable variations as a function of the hole injection site. It is explained by the density of state distribution along the silicon bond network that shows charge-transfer pathways between the injection sites and the bistable atom.
Collapse
Affiliation(s)
- A Bellec
- Institut des Sciences Moléculaires d'Orsay, CNRS, Bâtiment 210, Université Paris Sud, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
28
|
MacLeod JM, Lipton-Duffin J, Fu C, Rosei F. Inducing nonlocal reactions with a local probe. ACS NANO 2009; 3:3347-3351. [PMID: 19928932 DOI: 10.1021/nn901504m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule-substrate interface states and the controlled patterning of molecular overlayers.
Collapse
Affiliation(s)
- Jennifer M MacLeod
- Dipartimento di Fisicà, Universita degli Studi di Trieste, via Valerio 2, Trieste, TS, Italy
| | | | | | | |
Collapse
|