1
|
Qin L, Zhou J. Finely tuned water structure and transport in functionalized carbon nanotube membranes during desalination. RSC Adv 2024; 14:10560-10573. [PMID: 38567322 PMCID: PMC10985590 DOI: 10.1039/d4ra01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Molecular dynamics simulations were performed to tune the transport of water molecules in nanostructured membrane in a desalination process. Four armchair-type (7,7), (8,8), (9,9) and (10,10) carbon nanotubes (CNTs) with pore diameters around 1 nm were chosen, their interior surfaces were modified with -OH, -CH3 and -F groups. Simulation results show that water transport in nanochannel depends on confined water structures which could be regulated by precisely controlled channel diameter and chemical functionalization. Increasing CNT diameter changes water structures from single-file-like to be square and hexagonal-like, then into a disordered pattern, resulting in a concave-shaped trend of water permeance. The -OH functional groups promote structural ordering of water molecules in (7,7) CNT, but disrupt water structures in (8,8) and (9,9) CNTs, and reduce the order degree of water molecules in (10,10) CNT, moreover, exert an attraction to enhance surface friction inside channel. The -CH3 groups induce more strictly single-file movement of water molecules in (7,7) CNT, turning water structures in (8,8) and (9,9) CNTs into two and triangular column arrangements, improving water transport, however, causing again square-like water structure in (10,10) CNT. Fluorinations of CNT make water structure more disordered in (7,7), (9,9) and (10,10) CNTs, while enhance the square water structure in (8,8) CNT with a lower water permeance. Through changing channel diameter and functionalization, the low tetrahedral order corresponds to a more single-file-like water structure, associated with rapid water diffusion and high permeability; an increase in tetrahedrality results in more ice-like water structures, lower water diffusion coefficients, and permeability. The results of this study demonstrate that water transport could be finely regulated via a functionalized CNT membrane.
Collapse
Affiliation(s)
- Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology Guangzhou 510640 P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
2
|
Farrokhbin M, Lohrasebi A. Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:93. [PMID: 37812291 DOI: 10.1140/epje/s10189-023-00357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Equilibrium molecular dynamics simulations were performed to explore the effects of external electric fields and confinement on water properties inside various carbon nanotubes (CNTs). Using different GHz electric field frequencies as well as various constant electric field strengths, the radial distribution function and density profile were investigated, by which the impact of the electric fields and confinement on the water structure are revealed. The results indicated water molecules inside the CNT form layered structures due to topological confinement applying external electric fields can disturb this ordered water molecules structure and increase the viscosity of confined water, particularly in the case of CNTs with a radius less than 13.5 Å. Conversely, for CNTs with a radius greater than13.5 Å, the viscosity decreases under the influence of external oscillating or constant electric fields. How dose the synergism of confinement and external electric fields affect the water properties inside the CNTs?
Collapse
Affiliation(s)
| | - Amir Lohrasebi
- Department of Physics, University of Isfahan, Isfahan, 8174673441, Iran.
| |
Collapse
|
3
|
Srivastava A, Hassan J, Homouz D. Hydrogen Bond Dynamics and Phase Transitions of Water inside Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:284. [PMID: 36678038 PMCID: PMC9866512 DOI: 10.3390/nano13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX 77030-5005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030-1402, USA
| |
Collapse
|
4
|
Fang F, Fu S, Lin J, Zhu J, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Unique Behavior of Water Molecules Confined in the Heterojunction between One- and Two-Dimensional Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7300-7311. [PMID: 35635722 DOI: 10.1021/acs.langmuir.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the increasing importance of nanoconfined water in various heterostructures, it is quite essential to clarify the influence of nanoconfinement on the unique properties of water molecules in the pivotal heterojunction. In this work, we reported a series of classical molecular dynamics (MD) simulations to explore nanoconfined water in the subnanometer-sized and nanometer-sized heterostructures by adjusting one-dimensional (1-D) carbon nanotubes with different diameters and two-dimensional (2-D) graphene sheets with different interlayer distances. Our simulation results demonstrated that water molecules in the 1-D/2-D heterojunction show an obvious structural rearrangement associated with the remarkable breaking and formation of hydrogen bonds (HBs), and such rearrangements in the subnanometer-sized systems are much more pronounced than those in the nanometer-sized ones. When water molecules in the 1-D/2-D heterojunctions migrate from 2-D to 1-D confinements, the ordered multi-layer structure in the 2-D confinement are completely destroyed and then transform into different circular HB networks near the nanotube orifice for better connecting to the single-file or helical HB network in the 1-D nanotubes. Furthermore, water molecules in the 1-D/2-D heterojunctions can form stronger HBs with those water molecules further away from the 1-D confinement, leading to an asymmetrical orientational distribution near the orifice. More importantly, our comparison results revealed that the 1-D confinement plays a more important role than the 2-D confinement in determining both the structures and dynamics of water molecules in the 1-D/2-D heterojunction.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Shan Fu
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
5
|
Li L, Fang F, Li J, Zhou G, Yang Z. Mechanistic studies on the anomalous transport behaviors of water molecules in nanochannels of multilayer graphynes. Phys Chem Chem Phys 2022; 24:2534-2542. [PMID: 35023526 DOI: 10.1039/d1cp04378a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An in-depth understanding of directed transport behaviors of water molecules through nanoporous materials is essential for the design and development of next-generation filtration devices. In this work, we perform molecular dynamics (MD) simulations to explore transport properties of water molecules through nanochannels of multilayer graphyne with different pore sizes. Our simulation results reveal that the orientations of confined water molecules would periodically reverse between two opposite directions as they diffuse along the nanochannels, and such a transport mechanism shows similarities with water transport in aquaporin channels. Further, we observe that, for each orientation reversal, there is an obvious difference in the HB breaking frequency among the three graphyne systems, with an order of graphyne-4 > graphyne-5 > graphyne-3. Besides, the average HB number is found to display a periodic fluctuation with a pulse-like pattern along the diffusion direction, wherein the graphyne-4 system has the maximum fluctuation, while the graphyne-3 system has the minimum one. Such anomalous HB breaking frequency and average HB number fluctuation results finally lead to a nonmonotonic relationship between water diffusion rate and graphyne pore size, and the diffusion order follows graphyne-4 > graphyne-5 > graphyne-3. Herein, we provide a new insight into the transport mechanisms of water molecules through nanoporous materials and our findings open up opportunities for the design and development of high-performance graphyne-based membranes used for water purification and desalination.
Collapse
Affiliation(s)
- Li Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Jiajia Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| |
Collapse
|
6
|
Naseh MF, Ansari JR, Alam MS, Javed MN. Sustainable Nanotorus for Biosensing and Therapeutical Applications. HANDBOOK OF GREEN AND SUSTAINABLE NANOTECHNOLOGY 2022:1-21. [DOI: 10.1007/978-3-030-69023-6_47-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 09/22/2024]
|
7
|
Lynch ST, De Francesco A, Scaccia L, Cunsolo A. Controlling terahertz sound propagation: some preliminary Inelastic X-Ray Scattering result. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The control of sound propagation in materials via the design of their elastic properties is an exciting task at the forefront of Condensed Matter. It becomes especially compelling at terahertz frequencies, where phonons are the primary conveyors of heat flow. Despite the increasing focus on this goal, this field of research is still in its infancy; To achieve a few advances in this field, we performed several Inelastic X-Ray Scattering (IXS) measurements on elementary systems as dilute suspensions of nanoparticles (NPs) in liquids. We found that nanoparticles can effectively impact the sound propagation of the hosting liquid. We also explored the possibility of shaping terahertz sound propagation in a liquid upon confinement on quasi-unidimensional cavities. These results are here reviewed and discussed, and future research directions are finally outlined.
Collapse
|
8
|
Zarif M, Bowles RK. Mapping diffusivity of narrow channels into one dimension. Phys Rev E 2020; 101:012908. [PMID: 32069685 DOI: 10.1103/physreve.101.012908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The diffusion of particles trapped in long narrow channels occurs predominantly in one dimension. Here, a molecular-dynamics simulation is used to study the inertial dynamics of two-dimensional hard disks confined to long, narrow, structureless channels with hard walls in the no-passing regime. We show that the diffusion coefficient obtained from the mean-squared displacement can be mapped onto the exact results for the diffusion of the strictly-one-dimensional hard rod system through an effective occupied volume fraction obtained from either the equation of state or a geometric projection of the particle interaction diameters.
Collapse
Affiliation(s)
- Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Iran
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| |
Collapse
|
9
|
Loche P, Ayaz C, Schlaich A, Uematsu Y, Netz RR. Giant Axial Dielectric Response in Water-Filled Nanotubes and Effective Electrostatic Ion-Ion Interactions from a Tensorial Dielectric Model. J Phys Chem B 2019; 123:10850-10857. [PMID: 31765168 DOI: 10.1021/acs.jpcb.9b09269] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular dynamics simulations in conjunction with effective medium theory are used to investigate dielectric effects in water-filled nanotubes. The resulting effective axial dielectric constant shows a divergent increase for small nanotube radii that depends on the nanotube length, while the effective radial dielectric constant decreases significantly for thin nanotubes. By solving Poisson's equation for an anisotropic dielectric medium in cylindrical geometry, we show that the axial ion-ion interaction depends for small separations primarily on the radial dielectric constant, not on the axial one. This means that electrostatic ion-ion interactions in thin water-filled nanotubes are on the linear dielectric level significantly enhanced due to water confinement effects at small separations, while at large separations the outside medium dominates. If the outside medium is metallic, then the ion-ion interaction decays exponentially for large ion separation.
Collapse
Affiliation(s)
- Philip Loche
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Cihan Ayaz
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | | | - Yuki Uematsu
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université , Université de Paris , F-75005 Paris , France.,Department of Physics , Kyushu University , 819-0395 Fukuoka , Japan
| | - Roland R Netz
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| |
Collapse
|
10
|
Zhao Y, Chen J, Huang D, Su J. The Role of Interface Ions in the Control of Water Transport through a Carbon Nanotube. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13442-13451. [PMID: 31539260 DOI: 10.1021/acs.langmuir.9b01750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the water transport toward a given direction is still challenging, particularly due to thermal fluctuations of water motion at the nanoscale. While most of the previous works focus on the symmetric hydrophobic membrane systems, the role of the membrane in affecting the water transport remains largely unexplored. In this work, by using extensive molecular dynamics simulations, we find an interesting electropumping phenomenon, that is, the flowing counterions on an asymmetric hydrophobic-hydrophilic membrane can significantly drive the single-file water transport through a carbon nanotube, suggesting a nanometer water pump in a highly controllable fashion. The ion-water coupling motion in electric fields on the charged surface provides an indirect driving force for this pumping phenomenon. The water dynamics and thermal dynamics demonstrate a unique behavior with the change in electric fields, surface charge density, and even charge species. Particularly, due to the ion flux bifurcation for the positive and negative surfaces, the water dynamics such as the water flow, flux, and translocation time also exhibit similar asymmetry. Surprisingly, the positive surface charge induces an abnormal three-peak dipole distribution for the confined water and subsequent high flipping frequency. This can be attributed to the competition between the surface charge and interface water orientation on it. Our results indicate a new strategy to pump water through a nanochannel, making use of the counterion flowing on an asymmetric charged membrane, which are promising for future studies.
Collapse
Affiliation(s)
- Yunzhen Zhao
- Department of Applied Physics , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| | - Jingyi Chen
- School of Material Science and Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Decai Huang
- Department of Applied Physics , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| | - Jiaye Su
- Department of Applied Physics , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| |
Collapse
|
11
|
Zhu H, Wang Y, Fan Y, Xu J, Yang C. Structure and Transport Properties of Water and Hydrated Ions in Nano‐Confined Channels. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huajian Zhu
- College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Yuying Wang
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yiqun Fan
- College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Junbo Xu
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Chao Yang
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Han S. Anionic effects on the structure and dynamics of water in superconcentrated aqueous electrolytes. RSC Adv 2019; 9:609-619. [PMID: 35517604 PMCID: PMC9059539 DOI: 10.1039/c8ra09589b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Dissolved ions in aqueous solutions are ubiquitous in a variety of systems and the addition of ions to water gives rise to dramatic effects on the properties of water. Due to a significant role of ions in the structure and dynamics of water, the ionic conditions, such as the ion type and concentration, have been considered as critical factors. Here we study the effects of anions on the structure and dynamics of water in aqueous electrolytes for various lithium salt concentrations via extensive molecular dynamics simulations. Our results demonstrate that a certain amount of salt is needed to show the different properties of water caused by the presence of different types of anion. Below the cutoff concentration, most features of water show the same characteristics in spite of the presence of different anions. In the superconcentrated limit, we find that full disruption of the hydrogen bond network between water molecules occurs for most anions investigated, indicating that the effect of the water–water interaction becomes negligible. However, a certain type of anion could enhance an ion-pairing of cations and anions and the water–water interaction remains considerable even in the superconcentrated limit. We further investigate the cationic and anionic hydration shell structures and dynamics, revealing their dependence on the anion type and the salt concentration. Finally, we observe that the anionic effects on water extend to the dynamics of water molecules, such as an anionic dependence of the onset of subdiffusive translation and anisotropic rotation. The effects of anions on the properties of water are examined for various salt concentrations.![]()
Collapse
Affiliation(s)
- Sungho Han
- CAE Group
- Platform Technology Lab
- Samsung Advanced Institute of Technology
- Suwon
- Korea
| |
Collapse
|
13
|
Kowsar M, Sabzyan H. Nano-sized local magnetic field induced by circular motion of ions and molecules in a nanotorus under gigahertz rotating electric fields. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maryam Kowsar
- Department of Chemistry, Shahid Beheshti University, Tehran, I. R. Iran
| | - Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan, I. R. Iran
| |
Collapse
|
14
|
Shmakov SN, Weiss PS. Announcing the 2018 ACS Nano Award Lecture Laureates. ACS NANO 2018; 12:5067-5068. [PMID: 29911860 DOI: 10.1021/acsnano.8b04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
15
|
Dynamic features of water molecules in superconcentrated aqueous electrolytes. Sci Rep 2018; 8:9347. [PMID: 29921880 PMCID: PMC6008419 DOI: 10.1038/s41598-018-27706-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
An existence of ions dissolved in water has significant effects on bulk properties of water. Superconcentrated conditions have been recently proposed to provide a new concept of lithium ion batteries in order to overcome limitations for practical applications. In those conditions, water would undergo significant changes in structure and dynamics compared to its bulk properties. However, little is known about water in superconcentrated aqueous electrolytes. Here we study the properties of water in aqueous electrolytes with various salt concentrations via molecular dynamics simulations. We find that new dynamic features of water arise in the limit of an extremely high salt concentration. In particular, we observe a decoupled temporal character of water molecules exhibiting a subdiffusive translation and a diffusive rotation in the superconcentrated condition. Furthermore, we find that the rotational dynamics for each principal axis of a water molecule differently responds to the salt concentration, resulting in an occurrence of anisotropy in the rotation as the salt concentration increases. The superconcentrated environments also invoke new features in the hydrogen-bonding characteristics of water such as an emergence of two time scales in the hydrogen bond dynamics of water with respect to the salt concentration.
Collapse
|
16
|
Wang GJ, Hadjiconstantinou NG. Layered Fluid Structure and Anomalous Diffusion under Nanoconfinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6976-6982. [PMID: 29775320 DOI: 10.1021/acs.langmuir.8b01540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular diffusion under nanoconfinement can differ significantly from diffusion in bulk fluids. Using molecular dynamics simulations and molecular mechanics arguments, we elucidate the effect of layering at the confining boundaries on the self-diffusion of a simple, single-phase, confined fluid. In particular, we show that anomalous diffusion due to layering is controlled by the degree of layering as quantified by the recently proposed Wall number ( Wa), which compares the strength of the wall-fluid interaction to the thermal energy. For low Wall numbers, layering is not sufficiently pronounced so as to have a significant effect, whereas for Wa ≳ 1, layering is sufficiently important to have a significant effect on diffusion dynamics. In the latter regime, we find that fluid in the fluid-solid interfacial region tends to exhibit restricted dynamics and may only leave this region via a thermally activated hopping process. We also identify conditions under which diffusivity under confinement can be estimated, to a good approximation level, as a weighted average of the bulk and first-layer region diffusivities, leading to direct expressions quantifying the deviation from bulk behavior in terms of the confinement length scale.
Collapse
Affiliation(s)
- Gerald J Wang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nicolas G Hadjiconstantinou
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Zhou M, Hu Y, Liu JC, Cheng K, Jia GZ. Hydrogen bonding and transportation properties of water confined in the single-walled carbon nanotube in the pulse-field. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chakraborty S, Kumar H, Dasgupta C, Maiti PK. Confined Water: Structure, Dynamics, and Thermodynamics. Acc Chem Res 2017; 50:2139-2146. [PMID: 28809537 DOI: 10.1021/acs.accounts.6b00617] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the properties of strongly confined water is important for a variety of applications such as fast flow and desalination devices, voltage generation, flow sensing, and nanofluidics. Confined water also plays an important role in many biological processes such as flow through ion channels. Water in the bulk exhibits many unusual properties that arise primarily from the presence of a network of hydrogen bonds. Strong confinement in structures such as carbon nanotubes (CNTs) substantially modifies the structural, thermodynamic, and dynamic (both translational and orientational) properties of water by changing the structure of the hydrogen bond network. In this Account, we provide an overview of the behavior of water molecules confined inside CNTs and slit pores between graphene and graphene oxide (GO) sheets. Water molecules confined in narrow CNTs are arranged in a single file and exhibit solidlike ordering at room temperature due to strong hydrogen bonding between nearest-neighbor molecules. Although molecules constrained to move along a line are expected to exhibit single-file diffusion in contrast to normal Fickian diffusion, we show, from a combination of molecular dynamics simulations and analytic calculations, that water molecules confined in short and narrow CNTs with open ends exhibit Fickian diffusion because of their collective motion as a single unit due to strong hydrogen bonding. Confinement leads to strong anisotropy in the orientational relaxation of water molecules. The time scale of relaxation of the dipolar correlations of water molecules arranged in a single file becomes ultraslow, of the order of several nanoseconds, compared with the value of 2.5 ps for bulk water. In contrast, the relaxation of the vector that joins the two hydrogens in a water molecule is much faster, with a time scale of about 150 fs, which is about 10 times shorter than the corresponding time scale for bulk water. This is a rare example of confinement leading to a speedup of orientational dynamics. The orientational relaxation of confined water molecules proceeds by angular jumps between two locally stable states, making the relaxation qualitatively different from that expected in the diffusive limit. The spontaneous entry of water inside the hydrophobic cavity of CNTs is primarily driven by an increase in the rotational entropy of water molecules inside the cavity, arising from a reduction in the average number of hydrogen bonds attached to a water molecule. From simulations using a variety of water models, we demonstrate that the relatively simple SPC/E water model yields results in close agreement with those obtained from polarizable water models. Finally, we provide an account of the structure and thermodynamics of water confined in the slit pore between two GO sheets with both oxidized and reduced parts. We show that the potential of mean force for the oxidized part of GO sheets in the presence of water exhibits two local minima, one corresponding to a dry cavity and the other corresponding to a fully hydrated cavity. The coexistence of these two regimes provides permeation pathways for water in GO membranes.
Collapse
Affiliation(s)
- Sudip Chakraborty
- Centre
for Computational Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, India
| | - Hemant Kumar
- Centre
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Chandan Dasgupta
- Centre
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Prabal K. Maiti
- Centre
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
19
|
Sabzyan H, Kowsar M. Molecular dynamics simulation of the cyclotron motion of ions in a carbon nanotorus induced by gigahertz rotating electric field. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1366656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Maryam Kowsar
- Department of Chemistry, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| |
Collapse
|
20
|
Allahyarov E, Löwen H, Taylor PL. Simulation Study of Ion Diffusion in Charged Nanopores with Anchored Terminal Groups. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ahmadi S, Bowles RK. Diffusion in quasi-one-dimensional channels: A small system n, p, T, transition state theory for hopping times. J Chem Phys 2017; 146:154505. [PMID: 28433039 DOI: 10.1063/1.4981010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Particles confined to a single file, in a narrow quasi-one-dimensional channel, exhibit a dynamic crossover from single file diffusion to Fickian diffusion as the channel radius increases and the particles begin to pass each other. The long time diffusion coefficient for a system in the crossover regime can be described in terms of a hopping time, which measures the time it takes for a particle to escape the cage formed by its neighbours. In this paper, we develop a transition state theory approach to the calculation of the hopping time, using the small system isobaric-isothermal ensemble to rigorously account for the volume fluctuations associated with the size of the cage. We also describe a Monte Carlo simulation scheme that can be used to calculate the free energy barrier for particle hopping. The theory and simulation method correctly predict the hopping times for a two-dimensional confined ideal gas system and a system of confined hard discs over a range of channel radii, but the method breaks down for wide channels in the hard discs' case, underestimating the height of the hopping barrier due to the neglect of interactions between the small system and its surroundings.
Collapse
Affiliation(s)
- Sheida Ahmadi
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
22
|
Sabzyan H, Kowsar M. Molecular dynamics simulations of electric field induced water flow inside a carbon nanotorus: a molecular cyclotron. Phys Chem Chem Phys 2017; 19:12384-12393. [DOI: 10.1039/c7cp01270e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A nano-flow is induced by applying gigahertz rotating electric fields (EFs) of different strengths and frequencies on a carbon nanotorus filled with water molecules, using molecular dynamics simulations.
Collapse
Affiliation(s)
- Hassan Sabzyan
- Department of Chemistry
- University of Isfahan
- Isfahan
- Islamic Republic of Iran
| | - Maryam Kowsar
- Department of Chemistry
- Shahid Beheshti University
- Tehran 19839-63113
- Islamic Republic of Iran
| |
Collapse
|
23
|
Shahbabaei M, Kim D. Molecular dynamics simulation of transport characteristics of water molecules through high aspect ratio hourglass-shaped pore. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
|
25
|
Strong SE, Eaves JD. Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene. J Phys Chem Lett 2016; 7:1907-1912. [PMID: 27139634 DOI: 10.1021/acs.jpclett.6b00748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane but is instead governed by a crossover between two competing molecular transport mechanisms.
Collapse
Affiliation(s)
- Steven E Strong
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel D Eaves
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Abstract
Combined GCMC and MD simulations have been used to investigate the adsorption and diffusion of Xe gases in carbon nanotubes (CNTs) at different conditions.
Collapse
Affiliation(s)
- Wanling Shen
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Xin Li
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
27
|
Kayal A, Chandra A. Wetting and dewetting of narrow hydrophobic channels by orthogonal electric fields: Structure, free energy, and dynamics for different water models. J Chem Phys 2015; 143:224708. [DOI: 10.1063/1.4936939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Abhijit Kayal
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
28
|
Raghav N, Chakraborty S, Maiti PK. Molecular mechanism of water permeation in a helium impermeable graphene and graphene oxide membrane. Phys Chem Chem Phys 2015. [PMID: 26198311 DOI: 10.1039/c5cp02410b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Layers of graphene oxide (GO) are found to be good for the permeation of water but not for helium (Science, 2012, 335(6067), 442-444) suggesting that the GO layers are dynamic in the formation of a permeation route depending on the environment they are in (i.e., water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (with oxidized and reduced parts), with the inter-planar distance as a reaction coordinate in helium and water. Our PMF calculation shows that the equilibrium interlayer distance between the oxidized part of the GO sheets in helium is at 4.8 Å leaving no space for helium permeation. In contrast, the PMF of the oxidized part of the GO in water shows two minima, one at 4.8 Å and another at 6.8 Å, corresponding to no water and a water filled region, thus giving rise to a permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet open up and pushes water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacings, we also show the thermodynamics of filling.
Collapse
Affiliation(s)
- Nallani Raghav
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
29
|
Yu Y, Fan J, Yan X, Xu J, Zhang M. Tilt Behavior of an Octa-Peptide Nanotube in POPE and Affects on the Transport Characteristics of Channel Water. J Phys Chem A 2015; 119:4723-34. [DOI: 10.1021/acs.jpca.5b01380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Yu
- College
of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jianfen Fan
- College
of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiliang Yan
- College
of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jian Xu
- College
of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Mingming Zhang
- College
of Chemistry, Chemical
Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
30
|
Feng JW, Ding HM, Ma YQ. Controlling water flow inside carbon nanotube with lipid membranes. J Chem Phys 2014; 141:094901. [DOI: 10.1063/1.4893964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Chaban VV, Prezhdo OV. Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid. ACS NANO 2014; 8:8190-8197. [PMID: 25110230 DOI: 10.1021/nn502475j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to encapsulate molecules is one of the outstanding features of nanotubes. The encapsulation alters physical and chemical properties of both nanotubes and guest species. The latter normally form a separate phase, exhibiting drastically different behavior compared to the bulk. Ionic liquids (ILs) and apolar carbon nanotubes (CNTs) are disparate objects; nevertheless, their interaction leads to spontaneous CNT filling with ILs. Moreover, ionic diffusion of highly viscous ILs can increase 5-fold inside CNTs, approaching that of molecular liquids, even though the confined IL phase still contains exclusively ions. We exemplify these unusual effects by computer simulation on a highly hydrophilic, electrostatically structured, and immobile 1-ethyl-3-methylimidazolium chloride, [C2C1IM][Cl]. Self-diffusion constants and energetic properties provide microscopic interpretation of the observed phenomena. Governed by internal energy and entropy rather than external work, the kinetics of CNT filling is characterized in detail. The significant growth of the IL mobility induced by nanoscale carbon promises important advances in electricity storage devices.
Collapse
Affiliation(s)
- Vitaly V Chaban
- MEMPHYS, Center for Biomembrane Physics, Syddansk Universitet , Odense M., 5230, Kingdom of Denmark
| | | |
Collapse
|
32
|
Chen Q, Wang Q, Liu YC, Wu T. The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes. J Chem Phys 2014; 140:214507. [DOI: 10.1063/1.4879796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Wanasundara SN, Spiteri RJ, Bowles RK. A transition state theory for calculating hopping times and diffusion in highly confined fluids. J Chem Phys 2014; 140:024505. [PMID: 24437894 DOI: 10.1063/1.4861051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Surajith N Wanasundara
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Raymond J Spiteri
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Richard K Bowles
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
34
|
Zhou X, Wu F, Kou J, Nie X, Liu Y, Lu H. Vibrating-Charge-Driven Water Pump Controlled by the Deformation of the Carbon Nanotube. J Phys Chem B 2013; 117:11681-6. [DOI: 10.1021/jp405036c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyan Zhou
- Department
of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
- Department
of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Department
of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
- Department
of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Jianlong Kou
- Department
of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Xuanchuan Nie
- Department
of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Liu
- Department
of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong
| | - Hangjun Lu
- Department
of Physics, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
35
|
Lu D. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation. Phys Chem Chem Phys 2013; 15:14447-57. [PMID: 23884179 DOI: 10.1039/c3cp51855h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The properties of a nanotube, such as the hydrophobicity and charge of the surface, can significantly affect water transport behavior. However, our knowledge of the effects of charge density, dipole orientation, frequency of flipping, and movement behavior on water flow through carbon nanotubes (CNTs) is far from adequate. This study is aimed at gaining insight into the transport of single-file water molecules in a charged carbon nanotube. It was shown that the water chains inside the charged nanotube exhibit bipolar properties. The water dipoles are parallel to the z-axis, and point toward (D-defect) and away from (L-defect) the center of the nanotube for a negatively charged nanotube and a positively charged one, respectively. Compared with a pristine single-wall carbon nanotube (SWCNT), the charged nanotubes, including both positively charged and negatively charged, favor the water-filling process due to electrostatic interactions. According to the dipole distribution in the nanotube, the water dipole only flips in the middle region because of the bipolar nature of water chains. Additionally, flipping of the entire water chain is inhibited, which allows for the enhanced water flux. A negatively charged single-walled carbon nanotube (N-SWCNT) accelerated water transport by tuning the single-file flow from a "hopping" to a "continuous" mode, thus decreasing the energy barrier. The hydrogen bonds between water molecules inside the nanotube are also strengthened in the negatively charged nanotube, favoring water transport. Any distortion of uniformity will lead to additional energy barriers to water flux. Our results provide a comprehensive view of molecular events underpinning the water transport inside a SWCNT, which may be of assistance in creating innovative designs for water nanochannels.
Collapse
Affiliation(s)
- Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
36
|
Wanasundara SN, Spiteri RJ, Bowles RK. Single file and normal dual mode diffusion in highly confined hard sphere mixtures under flow. J Chem Phys 2012; 137:104501. [DOI: 10.1063/1.4750413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Su J, Guo H. Effect of nanochannel dimension on the transport of water molecules. J Phys Chem B 2012; 116:5925-32. [PMID: 22448756 DOI: 10.1021/jp211650s] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From the perspectives of biological applications and material sciences, it is essential to understand the transport properties of water molecules through nanochannels. Although considerable effort and progress has been made in recent years, a systematic understanding of the effect of nanochannel dimension is still lacking. In this paper, we use molecular dynamics (MD) simulations to study the transport of water molecules through carbon nanotubes (CNTs) with various dimensions under pressure differences. We find an exponential decay describing the relation of the water flow and CNT lengths (L) for different pressures. The average translocation time of individual water molecules yields to a power law relation with L. We also exploit these results by comparing with the single-file transport, where some interesting relations were figured. Meanwhile, for a given CNT length, the water flow vs CNT diameters (R) can be depicted by a power law, which is found to be relevant to the water occupancy inside the nanochannel. In addition, we compare our MD results with predictions from the no-slip Hagen-Poisseuille (HP) relation. The dependence of the enhancement of the simulated water flux over the HP prediction on the CNT length and diameter supports previous MD and experimental studies. Actually, the effect of nanotube dimension is not only originated from the motion of water molecules inside the CNT but also related to thermal fluctuations in the bulk water outside the CNT. These results enrich our knowledge about the channel size effect on the water transportation, which should have deep implications for the design of nanofluidic devices.
Collapse
Affiliation(s)
- Jiaye Su
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
38
|
Mondal C, Sengupta S. Single-file diffusion and kinetics of template-assisted assembly of colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:020402. [PMID: 22463142 DOI: 10.1103/physreve.85.020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We report computer simulation studies of the kinetics of ordering of a two-dimensional system of particles on a template with a one-dimensional periodic pattern. In equilibrium, one obtains a reentrant liquid-solid-liquid phase transition as the strength of the substrate potential is varied. We show that domains of crystalline order grow as ~t(1/z), with z~4, with a possible crossover to z~2 at late times. We argue that the t(1/4) law originates from single-file motion and annihilation of defect pairs of opposite topological charge along channels created by the template.
Collapse
Affiliation(s)
- Chandana Mondal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mallik Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | | |
Collapse
|
39
|
Xiu P, Tu Y, Tian X, Fang H, Zhou R. Molecular wire of urea in carbon nanotube: a molecular dynamics study. NANOSCALE 2012; 4:652-658. [PMID: 22159294 DOI: 10.1039/c1nr10793c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We perform molecular dynamics simulations of narrow single-walled carbon nanotubes (SWNTs) in aqueous urea to investigate the structure and dynamical behavior of urea molecules inside the SWNT. Even at low urea concentrations (e.g., 0.5 M), we have observed spontaneous and continuous filling of SWNT with a one-dimensional urea wire (leaving very few water molecules inside the SWNT). The urea wire is structurally ordered, both translationally and orientationally, with a contiguous hydrogen-bonded network and concerted urea's dipole orientations. Interestingly, despite the symmetric nature of the whole system, the potential energy profile of urea along the SWNT is asymmetric, arising from the ordering of asymmetric urea partial charge distribution (or dipole moment) in confined environment. Furthermore, we study the kinetics of confined urea and find that the permeation of urea molecules through the SWNT decreases significantly (by a factor of ∼20) compared to that of water molecules, due to the stronger dispersion interaction of urea with SWNT than water, and a maximum in urea permeation happens around a concentration of 5 M. These findings might shed some light on the better understanding of unique properties of molecular wires (particularly the wires formed by polar organic small molecules) confined within both artificial and biological nanochannels, and are expected to have practical applications such as the electronic devices for signal transduction and multiplication at the nanoscale.
Collapse
Affiliation(s)
- Peng Xiu
- Bio-X Lab, Department of Physics, and Soft Matter Research Center, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
40
|
Zheng YG, Ye HF, Zhang ZQ, Zhang HW. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Phys Chem Chem Phys 2012; 14:964-71. [DOI: 10.1039/c1cp22622c] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Chaban VV, Prezhdo OV. Water boiling inside carbon nanotubes: toward efficient drug release. ACS NANO 2011; 5:5647-55. [PMID: 21648482 DOI: 10.1021/nn201277a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.
Collapse
Affiliation(s)
- Vitaly V Chaban
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
42
|
Su J, Guo H. Effect of nanotube-length on the transport properties of single-file water molecules: Transition from bidirectional to unidirectional. J Chem Phys 2011; 134:244513. [DOI: 10.1063/1.3604531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
43
|
Chan Y, Hill JM. A mechanical model for single-file transport of water through carbon nanotube membranes. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Su J, Guo H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS NANO 2011; 5:351-359. [PMID: 21162530 DOI: 10.1021/nn1014616] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.
Collapse
Affiliation(s)
- Jiaye Su
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|