1
|
Li K, Guo Z, Bai L. Digitoxose as powerful glycosyls for building multifarious glycoconjugates of natural products and un-natural products. Synth Syst Biotechnol 2024; 9:701-712. [PMID: 38868608 PMCID: PMC11167396 DOI: 10.1016/j.synbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Digitoxose, a significant 2,6-dideoxyhexose found in nature, exists in many small-molecule natural products. These digitoxose-containing natural products can be divided into steroids, macrolides, macrolactams, anthracyclines, quinones, enediynes, acyclic polyene, indoles and oligosaccharides, that exhibit antibacterial, anti-viral, antiarrhythmic, and antitumor activities respectively. As most of digitoxose-containing natural products for clinical application or preclinical tests, this review also summarizes the biosynthesis of digitoxose, and application of compound diversification by introducing sugar plasmids. It may provide a practical approach to expanding the diversity of digitoxose-containing products.
Collapse
Affiliation(s)
- Kemeng Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengyan Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
2
|
Du Y, Xia Y, Wu L, Chen L, Rong J, Fan J, Chen Y, Wu X. Selective biosynthesis of a rhamnosyl nosiheptide by a novel bacterial rhamnosyltransferase. Microb Biotechnol 2024; 17:e14412. [PMID: 38265165 PMCID: PMC10832541 DOI: 10.1111/1751-7915.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
Nosiheptide (NOS) is a thiopeptide antibiotic produced by the bacterium Streptomyces actuosus. The hydroxyl group of 3-hydroxypyridine in NOS has been identified as a promising site for modification, which we therefore aimed to rhamnosylate. After screening, Streptomyces sp. 147326 was found to regioselectively attach a rhamnosyl unit to the 3-hydroxypyridine site in NOS, resulting in the formation of a derivative named NOS-R at a productivity of 24.6%. In comparison with NOS, NOS-R exhibited a 17.6-fold increase in aqueous solubility and a new protective effect against MRSA infection in mice, while maintaining a similar in vitro activity. Subsequently, SrGT822 was identified as the rhamnosyltransferase in Streptomyces sp. 147326 responsible for the biosynthesis of NOS-R using dTDP-L-rhamnose. SrGT822 demonstrated an optimal reaction pH of 10.0 and temperature of 55°C, which resulted in a NOS-R yield of 74.9%. Based on the catalytic properties and evolutionary analysis, SrGT822 is anticipated to be a potential rhamnosyltransferase for use in the modification of various complex scaffolds.
Collapse
Affiliation(s)
- Yali Du
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Yuan Xia
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Lingrui Wu
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Lu Chen
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Jiale Rong
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of PharmacyNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yijun Chen
- Laboratory of Chemical Biology, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| | - Xuri Wu
- Department of Biochemistry, College of Life Sciences and TechnologyChina Pharmaceutical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
3
|
Tirkkonen H, Brown KV, Niemczura M, Faudemer Z, Brown C, Ponomareva LV, Helmy YA, Thorson JS, Nybo SE, Metsä-Ketelä M, Shaaban KA. Engineering BioBricks for Deoxysugar Biosynthesis and Generation of New Tetracenomycins. ACS OMEGA 2023; 8:21237-21253. [PMID: 37332790 PMCID: PMC10269268 DOI: 10.1021/acsomega.3c02460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Tetracenomycins and elloramycins are polyketide natural products produced by several actinomycetes that exhibit antibacterial and anticancer activities. They inhibit ribosomal translation by binding in the polypeptide exit channel of the large ribosomal subunit. The tetracenomycins and elloramycins are typified by a shared oxidatively modified linear decaketide core, yet they are distinguished by the extent of O-methylation and the presence of a 2',3',4'-tri-O-methyl-α-l-rhamnose appended at the 8-position of elloramycin. The transfer of the TDP-l-rhamnose donor to the 8-demethyl-tetracenomycin C aglycone acceptor is catalyzed by the promiscuous glycosyltransferase ElmGT. ElmGT exhibits remarkable flexibility toward transfer of many TDP-deoxysugar substrates to 8-demethyltetracenomycin C, including TDP-2,6-dideoxysugars, TDP-2,3,6-trideoxysugars, and methyl-branched deoxysugars in both d- and l-configurations. Previously, we developed an improved host, Streptomyces coelicolor M1146::cos16F4iE, which is a stable integrant harboring the required genes for 8-demethyltetracenomycin C biosynthesis and expression of ElmGT. In this work, we developed BioBricks gene cassettes for the metabolic engineering of deoxysugar biosynthesis in Streptomyces spp. As a proof of concept, we used the BioBricks expression platform to engineer biosynthesis for d-configured TDP-deoxysugars, including known compounds 8-O-d-glucosyl-tetracenomycin C, 8-O-d-olivosyl-tetracenomycin C, 8-O-d-mycarosyl-tetracenomycin C, and 8-O-d-digitoxosyl-tetracenomycin C. In addition, we generated four new tetracenomycins including one modified with a ketosugar, 8-O-4'-keto-d-digitoxosyl-tetracenomycin C, and three modified with 6-deoxysugars, including 8-O-d-fucosyl-tetracenomycin C, 8-O-d-allosyl-tetracenomycin C, and 8-O-d-quinovosyl-tetracenomycin C. Our work demonstrates the feasibility of BioBricks cloning, with the ability to recycle intermediate constructs, for the rapid assembly of diverse carbohydrate pathways and glycodiversification of a variety of natural products.
Collapse
Affiliation(s)
- Heli Tirkkonen
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Katelyn V. Brown
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Magdalena Niemczura
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Zélie Faudemer
- Chemistry
and Chemical Engineering Department, SIGMA
Clermont, 63170 Aubière, France
| | - Courtney Brown
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation,
College
of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yosra A. Helmy
- Department
of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation,
College
of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - S. Eric Nybo
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation,
College
of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
4
|
Nguyen JT, Riebschleger KK, Brown KV, Gorgijevska NM, Nybo SE. A BioBricks toolbox for metabolic engineering of the tetracenomycin pathway. Biotechnol J 2022; 17:e2100371. [PMID: 34719127 PMCID: PMC8920762 DOI: 10.1002/biot.202100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/GOAL/AIM The tetracenomycins are aromatic anticancer polyketides that inhibit peptide translation via binding to the large ribosomal subunit. Here, we expressed the elloramycin biosynthetic gene cluster in the heterologous host Streptomyces coelicolor M1146 to facilitate the downstream production of tetracenomycin analogs. MAIN METHODS AND MAJOR RESULTS We developed a BioBricks genetic toolbox of genetic parts for substrate precursor engineering in S. coelicolor M1146::cos16F4iE. We cloned a series of integrating vectors based on the VWB, TG1, and SV1 integrase systems to interrogate gene expression in the chromosome. We genetically engineered three separate genetic constructs to modulate tetracenomycin biosynthesis: (1) the vhb hemoglobin from obligate aerobe Vitreoscilla stercoraria to improve oxygen utilization; (2) the accA2BE acetyl-CoA carboxylase to enhance condensation of malonyl-CoA; (3) lastly, the sco6196 acyltransferase, which is a "metabolic regulatory switch" responsible for mobilizing triacylglycerols to β-oxidation machinery for acetyl-CoA. In addition, we engineered the tcmO 8-O-methyltransferase and newly identified tcmD 12-O-methyltransferase from Amycolatopsis sp. A23 to generate tetracenomycins C and X. We also co-expressed the tcmO methyltransferase with oxygenase urdE to generate the analog 6-hydroxy-tetracenomycin C. CONCLUSIONS AND IMPLICATIONS Altogether, this system is compatible with the BioBricks [RFC 10] cloning standard for the co-expression of multiple gene sets for metabolic engineering of Streptomyces coelicolor M1146::cos16F4iE. This production platform improves access to potent analogs, such as tetracenomycin X, and sets the stage for the production of new tetracenomycins via combinatorial biosynthesis.
Collapse
Affiliation(s)
- Jennifer T. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Kennedy K. Riebschleger
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Katelyn V. Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Nina M. Gorgijevska
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - S. Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA,Correspondence should be addressed to Prof. Dr. S. Eric Nybo, Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, 220 Ferris Drive Room PHR 211, Big Rapids, MI 49307, USA,
| |
Collapse
|
5
|
Chen YJ, Xu HB, Liu H, Dong L. Highly-selective synthesis of functionalized spirobenzofuranones and diketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and atom-economical rhodium(iii)-catalyzed highly-selective hydroacylation for the synthesis of spirobenzofuranones and diketones has been successfully developed.
Collapse
Affiliation(s)
- Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Brown KV, Wandi BN, Metsä-Ketelä M, Nybo SE. Pathway Engineering of Anthracyclines: Blazing Trails in Natural Product Glycodiversification. J Org Chem 2020; 85:12012-12023. [PMID: 32938175 DOI: 10.1021/acs.joc.0c01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The anthracyclines are structurally diverse anticancer natural products that bind to DNA and poison the topoisomerase II-DNA complex in cancer cells. Rational modifications in the deoxysugar functionality are especially advantageous for synthesizing drugs with improved potency. Combinatorial biosynthesis of glycosyltransferases and deoxysugar synthesis enzymes is indispensable for the generation of glycodiversified anthracyclines. This Synopsis considers recent advances in glycosyltransferase structural biology and site-directed mutagenesis, pathway engineering, and deoxysugar combinatorial biosynthesis with a focus on the generation of "new-to-nature" anthracycline analogues.
Collapse
Affiliation(s)
- Katelyn V Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Benjamin Nji Wandi
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| |
Collapse
|
7
|
Forget SM, Shepard SB, Soleimani E, Jakeman DL. On the Catalytic Activity of a GT1 Family Glycosyltransferase from Streptomyces venezuelae ISP5230. J Org Chem 2019; 84:11482-11492. [PMID: 31429289 DOI: 10.1021/acs.joc.9b01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GT1 family glycosyltansferase, Sv0189, from Streptomyces venezuelae ISP5230 (ATCC 10721) was characterized. The recombinantly produced protein Sv0189 possessed UDP-glycosyltransferase activity. Screening, using an assay employing unnatural nitrophenyl glycosides as activated donors, resulted in the discovery of a broad substrate scope with respect to both acceptor molecules and donor sugars. In addition to polyphenols, including anthraquinones, simple aromatics containing primary or secondary alcohols, a variety of complex natural products and synthetic drugs were glucosylated or xylosylated by Sv0189. Regioselectivity was established through the isolation and characterization of glucosylated products. Sv0189 and homologous proteins are widely distributed among Streptomyces species, and their apparent substrate promiscuity reveals potential for their development as biocatalysts for glycodiversification.
Collapse
Affiliation(s)
| | | | - Ebrahim Soleimani
- Department of Chemistry , Razi University , Kermanshah 67149-67346 , Iran
| | | |
Collapse
|
8
|
Wang RJ, Zhang SY, Ye YH, Yu Z, Qi H, Zhang H, Xue ZL, Wang JD, Wu M. Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Mar Drugs 2019; 17:md17050294. [PMID: 31108876 PMCID: PMC6562861 DOI: 10.3390/md17050294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
The mangrove ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science. Besides the genus Streptomyces, Micromonospora is also a source of new bioactive agents. We screened Micromonospora from the rhizosphere soil of mangrove plants in Fujian province, China, and 51 strains were obtained. Among them, the extracts of 12 isolates inhibited the growth of human lung carcinoma A549 cells. Strain 110B exhibited better cytotoxic activity, and its bioactive constituents were investigated. Consequently, three new isoflavonoid glycosides, daidzein-4'-(2-deoxy-α-l-fucopyranoside) (1), daidzein-7-(2-deoxy-α-l-fucopyranoside) (2), and daidzein-4',7-di-(2-deoxy-α-l-fucopyranoside) (3) were isolated from the fermentation broth of strain 110B. The structures of the new compounds were determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The result of medium-changing experiments implicated that these new compounds were microbial biotransformation products of strain M. aurantiaca 110B. The three compounds displayed moderate cytotoxic activity to the human lung carcinoma cell line A549, hepatocellular liver carcinoma cell line HepG2, and the human colon tumor cell line HCT116, whereas none of them showed antifungal or antibacterial activities.
Collapse
Affiliation(s)
- Rui-Jun Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Shao-Yong Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Yang-Hui Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Zhen Yu
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Huan Qi
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Zheng-Lian Xue
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Ji-Dong Wang
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Min Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
9
|
Abstract
The jadomycin family of natural products was discovered from Streptomyces venezuelae ISP5230 in the 1990s. Subsequent identification of the biosynthetic gene cluster along with synthetic efforts established that incorporation of an amino acid into the polyaromatic angucycline core occurs non-enzymatically. Over two decades, the precursor-directed biosynthetic potential of the jadomycins has been heavily exploited, generating a library exceeding 70 compounds. This review compiles the jadomycins that have been isolated and characterized to date; these include jadomycins incorporating proteinogenic and non-proteinogenic amino acids, semi-synthetic derivatives, biosynthetic shunt products, compounds isolated in structural gene deletion studies, and deoxysugar sugar variant jadomycins produced by deletion or heterologous expression of sugar biosynthetic genes.
Collapse
Affiliation(s)
- Jeanna M. MacLeod
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
| | | | - David L. Jakeman
- College of Pharmacy, Dalhousie University, Halifax, NS, B3H 1X7, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
10
|
Forget SM, Na J, McCormick NE, Jakeman DL. Biosynthetic 4,6-dehydratase gene deletion: isolation of a glucosylated jadomycin natural product provides insight into the substrate specificity of glycosyltransferase JadS. Org Biomol Chem 2017; 15:2725-2729. [DOI: 10.1039/c7ob00259a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2,6-dideoxy-l-sugar glycosyltransferase is able to transfer d-glucose in a deletion mutant strain.
Collapse
Affiliation(s)
- S. M. Forget
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | - Jungwook Na
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | | - D. L. Jakeman
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
- College of Pharmacy
| |
Collapse
|
11
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Dunn ZD, Wever WJ, Economou NJ, Bowers AA, Li B. Enzymatic basis of "hybridity" in thiomarinol biosynthesis. Angew Chem Int Ed Engl 2015; 54:5137-41. [PMID: 25726835 DOI: 10.1002/anie.201411667] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/07/2022]
Abstract
Thiomarinol is a naturally occurring double-headed antibiotic that is highly potent against methicillin-resistant Staphylococcus aureus. Its structure comprises two antimicrobial subcomponents, pseudomonic acid analogue and holothin, linked by an amide bond. TmlU was thought to be the sole enzyme responsible for this amide-bond formation. In contrast to this idea, we show that TmlU acts as a CoA ligase that activates pseudomonic acid as a thioester that is processed by the acetyltransferase HolE to catalyze the amidation. TmlU prefers complex acyl acids as substrates, whereas HolE is relatively promiscuous, accepting a range of acyl-CoA and amine substrates. Our results provide detailed biochemical information on thiomarinol biosynthesis, and evolutionary insight regarding how the pseudomonic acid and holothin pathways converge to generate this potent hybrid antibiotic. This work also demonstrates the potential of TmlU/HolE enzymes as engineering tools to generate new "hybrid" molecules.
Collapse
Affiliation(s)
- Zachary D Dunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Carolina Center for Genome Sciences, Chapel Hill, NC, 27599 (USA)
| | | | | | | | | |
Collapse
|
13
|
Dunn ZD, Wever WJ, Economou NJ, Bowers AA, Li B. Enzymatic Basis of “Hybridity” in Thiomarinol Biosynthesis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Song MC, Kim E, Ban YH, Yoo YJ, Kim EJ, Park SR, Pandey RP, Sohng JK, Yoon YJ. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl Microbiol Biotechnol 2013; 97:5691-704. [DOI: 10.1007/s00253-013-4978-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
15
|
Ketoolivosyl-tetracenomycin C: a new ketosugar bearing tetracenomycin reveals new insight into the substrate flexibility of glycosyltransferase ElmGT. Bioorg Med Chem Lett 2012; 22:2247-50. [PMID: 22361136 DOI: 10.1016/j.bmcl.2012.01.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
Abstract
A new tetracenomycin analog, 8-demethyl-8-(4'-keto)-α-L-olivosyl-tetracenomycin C, was generated through combinatorial biosynthesis. Streptomyces lividans TK 24 (cos16F4) was used as a host for expression of a 'sugar plasmid' (pKOL) directing the biosynthesis of NDP-4-keto-L-olivose. This strain harbors all of the genes necessary for production of 8-demethyl-tetracenomycin C and the sugar flexible glycosyltransferase ElmGT. To the best of our knowledge, this report represents the first characterization of a tetracenomycin derivative decorated with a ketosugar moiety. Also, as far as we know, 4-keto-L-olivose has only been described as an intermediate of oleandomycin biosynthesis, but has not been described before as an appendage for a polyketide compound. Furthermore, this report gives further insight into the substrate flexibility of ElmGT to include an NDP-ketosugar, which is unusual and is rarely observed among glycosyltransferases from antibiotic biosynthetic pathways.
Collapse
|
16
|
Engineered biosynthesis of glycosylated derivatives of narbomycin and evaluation of their antibacterial activities. Appl Microbiol Biotechnol 2011; 93:1147-56. [DOI: 10.1007/s00253-011-3592-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/24/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
|
17
|
Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl Environ Microbiol 2011; 77:4912-23. [PMID: 21602397 DOI: 10.1128/aem.02527-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Doxorubicin, one of the most widely used anticancer drugs, is composed of a tetracyclic polyketide aglycone and l-daunosamine as a deoxysugar moiety, which acts as an important determinant of its biological activity. This is exemplified by the fewer side effects of semisynthetic epirubicin (4'-epi-doxorubicin). An efficient combinatorial biosynthetic system that can convert the exogenous aglycone ε-rhodomycinone into diverse glycosylated derivatives of doxorubicin or its biosynthetic intermediates, rhodomycin D and daunorubicin, was developed through the use of Streptomyces venezuelae mutants carrying plasmids that direct the biosynthesis of different nucleotide deoxysugars and their transfer onto aglycone, as well as the postglycosylation modifications. This system improved epirubicin production from ε-rhodomycinone by selecting a substrate flexible glycosyltransferase, AknS, which was able to transfer the unnatural sugar donors and a TDP-4-ketohexose reductase, AvrE, which efficiently supported the biosynthesis of TDP-4-epi-l-daunosamine. Furthermore, a range of doxorubicin analogs containing diverse deoxysugar moieties, seven of which are novel rhodomycin D derivatives, were generated. This provides new insights into the functions of deoxysugar biosynthetic enzymes and demonstrates the potential of the S. venezuelae-based combinatorial biosynthetic system as a simple biological tool for modifying structurally complex sugar moieties attached to anthracyclines as an alternative to chemical syntheses for improving anticancer agents.
Collapse
|
18
|
Williams GJ, Yang J, Zhang C, Thorson JS. Recombinant E. coli prototype strains for in vivo glycorandomization. ACS Chem Biol 2011; 6:95-100. [PMID: 20886903 DOI: 10.1021/cb100267k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro glycorandomization is a powerful strategy to alter the glycosylation patterns of natural products and small molecule therapeutics. Yet, such in vitro methods are often difficult to scale and can be costly given the requirement to provide various nucleotides and cofactors. Here, we report the construction of several recombinant E. coli prototype strains that allow the facile production of a range of small molecule glycosides. This strategy relies on the engineered promiscuity of three key enzymes, an anomeric kinase, a sugar-1-phosphate nucleotidyltransferase, and a glycosyltransferase, as well as the ability of diverse small molecules to freely enter E. coli. Subsequently, this work is the first demonstration of "in vivo glycorandomization" and offers vast combinatorial potential by simple fermentation.
Collapse
Affiliation(s)
- Gavin J. Williams
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research and UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jie Yang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research and UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Changsheng Zhang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research and UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, Wisconsin Center for Natural Products Research and UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
19
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Olano C, Méndez C, Salas JA. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotechnol 2010; 4:144-64. [PMID: 21342461 PMCID: PMC3818856 DOI: 10.1111/j.1751-7915.2010.00231.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
21
|
|
22
|
Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:105-48. [DOI: 10.1007/128_2010_78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA. Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives. ACTA ACUST UNITED AC 2009; 16:1031-44. [DOI: 10.1016/j.chembiol.2009.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
25
|
Abstract
Many bioactive compounds contain as part of their molecules one or more deoxysugar units. Their presence in the final compound is generally necessary for biological activity. These sugars derive from common monosaccharides, like d-glucose, which have lost one or more hydroxyl groups (monodeoxysugars, dideoxysugars, trideoxysugars) during their biosynthesis. These deoxysugars are transferred to the final molecule by the action of a glycosyltransferase. Here, we first summarize the different biosynthetic steps required for the generation of the different families of deoxysugars, including those containing extra methyl or amino groups, or tailoring modifications of the glycosylated compounds. We then give examples of several strategies for modification of the glycosylation pattern of a given bioactive compound: inactivation of genes involved in the biosynthesis of deoxysugars; heterologous expression of genes for the biosynthesis or transfer of a specific deoxysugar; and combinatorial biosynthesis (including the use of gene cassette plasmids). Finally, we report techniques for the isolation and detection of the new glycosylated derivatives generated using these strategies.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
26
|
Härle J, Bechthold A. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Methods Enzymol 2009; 458:309-33. [PMID: 19374988 DOI: 10.1016/s0076-6879(09)04812-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Glycosyltransferases (GTs), which catalyze the attachment of a sugar moiety to an aglycone are key enzymes for the biosynthesis of many valuable natural products. Their use in pharmaceutical biotechnology is becoming more and more visible. The promiscuity of GTs has prompted efforts to modify sugar structures and alter the glycosylation patterns of natural products. Here, we present the state of the art in this field. After describing the importance of GTs in determining the functions of natural products, a general survey of glycosyltransferase-catalyzed reactions is documented. This is followed by an overview of crystallized GT-B superfamily members and a discussion of the amino acids of these GTs involved in substrate binding. The main chapter is concerned with emphasizing the application of GTs in metabolic pathway engineering leading to novel unnatural bioactive compounds. A strategy to explore new GTs is presented as well as strategies to generate artificial GTs either randomly or in a rational design.
Collapse
Affiliation(s)
- Johannes Härle
- Institut für Pharmazeutische Wissenschaften, Lehrstuhl für Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | |
Collapse
|
27
|
Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 2009; 26:628-60. [PMID: 19387499 DOI: 10.1039/b822528a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to October 2008. Antitumor compounds produced by actinomycetes and novel derivatives generated by combinatorial biosynthesis are reviewed (with 318 references cited.) The different structural groups for which the relevant gene clusters have been isolated and characterized are reviewed, with a description of the strategies used for the generation of the novel derivatives and the activities of these compounds against tumor cell lines.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
28
|
Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis. J Bacteriol 2009; 191:2871-5. [PMID: 19233921 DOI: 10.1128/jb.01747-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycosyltransferase ElmGT from Streptomyces olivaceus is involved in the biosynthesis of the antitumor drug elloramycin, and it has been shown to possess a broad deoxysugar recognition pattern, being able to transfer different l- and d-deoxysugars to 8-demethyl-tetracenomycin C, the elloramycin aglycone. Site-directed mutagenesis in residues L309 and N312, located in the alpha/beta/alpha motif within the nucleoside diphosphate-sugar binding region, can be used to modulate the substrate flexibility of ElmGT, making it more precise for transfer of specific deoxysugars.
Collapse
|
29
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Olano C, Abdelfattah MS, Gullón S, Braña AF, Rohr J, Méndez C, Salas JA. Glycosylated Derivatives of Steffimycin: Insights into the Role of the Sugar Moieties for the Biological Activity. Chembiochem 2008; 9:624-33. [DOI: 10.1002/cbic.200700610] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Baig I, Perez M, Braña AF, Gomathinayagam R, Damodaran C, Salas JA, Méndez C, Rohr J. Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity. JOURNAL OF NATURAL PRODUCTS 2008; 71:199-207. [PMID: 18197601 PMCID: PMC2442402 DOI: 10.1021/np0705763] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plasmid pLNBIV was used to overexpress the biosynthetic pathway of nucleoside-diphosphate (NDP)-activated l-digitoxose in the mithramycin producer Streptomyces argillaceus. This led to a "flooding" of the biosynthetic pathway of the antitumor drug mithramycin (MTM) with NDP-activated deoxysugars, which do not normally occur in the pathway, and consequently to the production of the four new mithramycin derivatives 1- 4 with altered saccharide patterns. Their structures reflect that NDP sugars produced by pLNBIV, namely, l-digitoxose and its biosynthetic intermediates, influenced the glycosyl transfer to positions B, D, and E, while positions A and C remained unaffected. All four new structures have unique, previously not found sugar decoration patterns, which arise from either overcoming the substrate specificity or inhibition of certain glycosyltransferases (GTs) of the MTM pathway with the foreign NDP sugars expressed by pLNBIV. An apoptosis TUNEL (=terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay revealed that compounds 1 (demycarosyl-3D-beta- d-digitoxosyl-MTM) and 3 (deoliosyl-3C-beta- d-mycarosyl-MTM) show improved activity (64.8 +/- 2% and 50.3 +/- 2.5% induction of apoptosis, respectively) against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 compared with the parent drug MTM (37.8 +/- 2.5% induction of apoptosis). In addition, compounds 1 and 4 (3A-deolivosyl-MTM) show significant effects on the ER-negative human breast cancer cell line MDA-231 (63.6 +/- 2% and 12.6 +/- 2.5% induction of apoptosis, respectively), which is not inhibited by the parent drug MTM itself (2.6 +/- 1.5% induction of apoptosis), but for which chemotherapeutic agents are urgently needed.
Collapse
Affiliation(s)
- Irfan Baig
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
33
|
Thibodeaux CJ, Melançon CE, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007; 446:1008-16. [PMID: 17460661 DOI: 10.1038/nature05814] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzymes involved in the biosynthesis of carbohydrates and the attachment of sugar units to biological acceptor molecules catalyse an array of chemical transformations and coupling reactions. In prokaryotes, both common sugar precursors and their enzymatically modified derivatives often become substituents of biologically active natural products through the action of glycosyltransferases. Recently, researchers have begun to harness the power of these biological catalysts to alter the sugar structures and glycosylation patterns of natural products both in vivo and in vitro. Biochemical and structural studies of sugar biosynthetic enzymes and glycosyltransferases, coupled with advances in bioengineering methodology, have ushered in a new era of drug development.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- Institute for Cellular and Molecular Biology, 1 University Station A4810, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
34
|
|
35
|
Pérez M, Lombó F, Baig I, Braña AF, Rohr J, Salas JA, Méndez C. Combinatorial biosynthesis of antitumor deoxysugar pathways in Streptomyces griseus: Reconstitution of "unnatural natural gene clusters" for the biosynthesis of four 2,6-D-dideoxyhexoses. Appl Environ Microbiol 2006; 72:6644-52. [PMID: 17021216 PMCID: PMC1610316 DOI: 10.1128/aem.01266-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combinatorial biosynthesis was applied to Streptomyces deoxysugar biosynthesis genes in order to reconstitute "unnatural natural gene clusters" for the biosynthesis of four D-deoxysugars (D-olivose, D-oliose, D-digitoxose, and D-boivinose). Expression of these gene clusters in Streptomyces albus 16F4 was used to prove the functionality of the designed clusters through the generation of glycosylated tetracenomycins. Three glycosylated tetracenomycins were generated and characterized, two of which (D-digitoxosyl-tetracenomycin C and D-boivinosyl-tetracenocmycin C) were novel compounds. The constructed gene clusters may be used to increase the capabilities of microorganisms to synthesize new deoxysugars and therefore to produce new glycosylated bioactive compounds.
Collapse
Affiliation(s)
- María Pérez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Salas AP, Zhu L, Sánchez C, Braña AF, Rohr J, Méndez C, Salas JA. Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 2006; 58:17-27. [PMID: 16164546 PMCID: PMC2881644 DOI: 10.1111/j.1365-2958.2005.04777.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indolocarbazole staurosporine is a potent inhibitor of a variety of protein kinases. It contains a sugar moiety attached through C-N linkages to both indole nitrogen atoms of the indolocarbazole core. Staurosporine biosynthesis was reconstituted in vivo in a heterologous host Streptomyces albus by using two different plasmids: the 'aglycone vector' expressing a set of genes involved in indolocarbazole biosynthesis together with staG (encoding a glycosyltransferase) and/or staN (coding for a P450 oxygenase), and the 'sugar vector' expressing a set of genes responsible for the biosynthesis of the sugar moiety. Attachment of the sugar to the two indole nitrogens of the indolocarbazole core was dependent on the combined action of StaG and StaN. When StaN was absent, the sugar was attached only to one of the nitrogen atoms, through an N-glycosidic linkage, as in the indolocarbazole rebeccamycin. The StaG glycosyltransferase showed flexibility with respect to the sugar donor. When the 'sugar vector' was substituted by constructs directing the biosynthesis of l-rhamnose, L-digitoxose, L-olivose and D-olivose, respectively, StaG and StaN were able to transfer and attach all of these sugars to the indolocarbazole aglycone.
Collapse
Affiliation(s)
- Aaroa P. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Lili Zhu
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - César Sánchez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alfredo F. Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jürgen Rohr
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006 Oviedo, Spain
- For correspondence. ; Tel. (+34) 985 103 562; Fax (+34) 985 103 562
| |
Collapse
|
37
|
Wilkinson B, Bachmann BO. Biocatalysis in pharmaceutical preparation and alteration. Curr Opin Chem Biol 2006; 10:169-76. [PMID: 16500136 DOI: 10.1016/j.cbpa.2006.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/10/2006] [Indexed: 10/25/2022]
Abstract
The term 'synthetic biology' is being used with increasing frequency to describe the biocatalytic generation of small molecules, either via stepwise biotransformation or engineered biosynthetic pathways. The flexibility of this newly coined term encompasses the historically separate fields of natural product biosynthesis and metabolic engineering. This review discusses the state of the art of these two disciplines in the context of the discovery and development of bioactive precursors and products.
Collapse
Affiliation(s)
- Barrie Wilkinson
- Biotica technology Ltd, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK.
| | | |
Collapse
|
38
|
Sánchez C, Méndez C, Salas JA. Engineering biosynthetic pathways to generate antitumor indolocarbazole derivatives. J Ind Microbiol Biotechnol 2006; 33:560-8. [PMID: 16491358 DOI: 10.1007/s10295-006-0092-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/30/2006] [Indexed: 11/24/2022]
Abstract
The indolocarbazole family of natural products is a source of lead compounds with potential therapeutic applications in the treatment of cancer and neurodegenerative disorders. Rebeccamycin and staurosporine are two members of this family, which are produced by different actinomycete strains. Although both compounds display antitumor activity, their distinct structural features determine different modes of action: rebeccamycin targets DNA topoisomerase I, while staurosporine is a protein kinase inhibitor. Here we examine the biosyntheses of rebeccamycin and staurosporine while we summarize our recent work concerning (a) identification and characterization of genes involved in the biosynthesis of indolocarbazoles in actinomycetes, and (b) generation of novel indolocarbazole derivatives in microorganisms by combinatorial biosynthesis.
Collapse
Affiliation(s)
- César Sánchez
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
39
|
Liu Y, Hu Y, Yu S, Fu G, Huang X, Fan L. Steroidal glycosides from Cynanchum forrestii Schlechter. Steroids 2006; 71:67-76. [PMID: 16256157 DOI: 10.1016/j.steroids.2005.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/27/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Nine new steroidal glycosides, cynaforrosides B, C, D, E, and F, based on a 13, 14: 14, 15-disecopregnane-type skeleton, cynaforrosides G, H, and I with a new aglycone named cynaforrogenin A, and cynaforroside J together with three known C21 steroidal glycosides cynatratoside A, hancoside and komaroside C were isolated from the ethanol extract of the roots of Cynanchum forrestii Schlechter. The structures of new compounds were determined on the basis of spectral and chemical evidence. Steroidal glycosides with three kinds of skeletons were isolated from this plant simultaneously. The sugar units of cynaforrosides B-I contained two moieties of glucoses and especially cynaforrosides E-I contained two glucoses with the mode of 1-->6 linkage, which were rare among steroidal glycosides of the genus Cynanchum.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Bioactive Substances, Ministry of Education, Peking Union Medical College, Beijing 100050, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Langenhan JM, Griffith BR, Thorson JS. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification. JOURNAL OF NATURAL PRODUCTS 2005; 68:1696-711. [PMID: 16309329 DOI: 10.1021/np0502084] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In an effort to explore the contribution of the sugar constituents of pharmaceutically relevant glycosylated natural products, chemists have developed glycosylation methods that are amenable to the generation of libraries of analogues with a broad array of glycosidic attachments. Recently, two complementary glycorandomization strategies have been described, namely, neoglycorandomization, a chemical approach based on a one-step sugar ligation reaction that does not require any prior sugar protection or activation, and chemoenzymatic glycorandomization, a biocatalytic approach that relies on the substrate promiscuity of enzymes to activate and attach sugars to natural products. Since both methods require reducing sugars, this review first highlights recent advances in monosaccharide generation and then follows with an overview of recent progress in the development of neoglycorandomization and chemoenzymatic glycorandomization.
Collapse
Affiliation(s)
- Joseph M Langenhan
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
41
|
Luzhetskyy A, Vente A, Bechthold A. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. MOLECULAR BIOSYSTEMS 2005; 1:117-26. [PMID: 16880973 DOI: 10.1039/b503215f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique characteristic of carbohydrates is their structural diversity which is greater than that of many other classes of biological compounds. Carbohydrate-containing natural products show many different biological activities and some of them have been developed as drugs for medical use. The biosynthesis of carbohydrate-containing natural products is catalysed by glycosyltransferases. In this review we will present information on the function of glycosyltransferases involved in the biosynthesis of oligosaccharide antibiotics focusing especially on urdamycins and landomycins, two angucycline antibiotics with interesting antitumor activities. We will also discuss the use of glycosyltransferases in combinatorial biosynthesis to generate new "hybrid" antibiotics.
Collapse
Affiliation(s)
- Andriy Luzhetskyy
- Pharmazeutische Biologie und Biotechnologie, Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg im Breisgau, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | | | | |
Collapse
|
42
|
Méndez C, Salas JA. Engineering glycosylation in bioactive compounds by combinatorial biosynthesis. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:127-46. [PMID: 15645719 DOI: 10.1007/3-540-27055-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- C Méndez
- Departamento de Biologia Funcional e Instituto Universitario de Oncologia (I.U.O.P.A.), Universidad de Oviedo, Spain
| | | |
Collapse
|
43
|
Lombó F, Gibson M, Greenwell L, Braña AF, Rohr J, Salas JA, Méndez C. Engineering Biosynthetic Pathways for Deoxysugars: Branched-Chain Sugar Pathways and Derivatives from the Antitumor Tetracenomycin. ACTA ACUST UNITED AC 2004; 11:1709-18. [PMID: 15610855 DOI: 10.1016/j.chembiol.2004.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
Sugar biosynthesis cassette genes have been used to construct plasmids directing the biosynthesis of branched-chain deoxysugars: pFL942 (NDP-L-mycarose), pFL947 (NDP-4-deacetyl-L-chromose B), and pFL946/pFL954 (NDP-2,3,4-tridemethyl-L-nogalose). Expression of pFL942 and pFL947 in S. lividans 16F4, which harbors genes for elloramycinone biosynthesis and the flexible ElmGT glycosyltransferase of the elloramycin biosynthetic pathway, led to the formation of two compounds: 8-alpha-L-mycarosyl-elloramycinone and 8-demethyl-8-(4-deacetyl)-alpha-L-chromosyl-tetracenomycin C, respectively. Expression of pFL946 or pFL954 failed to produce detectable amounts of a novel glycosylated tetracenomycin derivative. Formation of these two compounds represents examples of the sugar cosubstrate flexibility of the ElmGT glycosyltransferase. The use of these cassette plasmids also provided insights into the substrate flexibility of deoxysugar biosynthesis enzymes as the C-methyltransferases EryBIII and MtmC, the epimerases OleL and EryBVII, and the 4-ketoreductases EryBIV and OleU.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional and Instituto Universitario de Oncología, del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.
Collapse
|