1
|
Wang J, Guo C, Liu Y, Ji Y, Jia H, Li H. Enantioselective Synthesis of the 1,3-Dienyl-5-Alkyl-6-Oxy Motif: Method Development and Total Synthesis. Angew Chem Int Ed Engl 2024; 63:e202400478. [PMID: 38270494 DOI: 10.1002/anie.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
The 1,3-dienyl-5-alkyl-6-oxy motif is widely found in various types of bioactive natural products. However, present synthesis is mainly non-asymmetric which relied upon different olefination or transition metal-catalyzed cross-coupling reactions using enantioenriched precursors. Herein, based upon a newly developed enantioselective α-alkylation of conjugated polyenoic acids, a variety of 1,3-dienyl-5-alkyl-6-oxy motif (with E-configured internal olefin) was generated as the corresponding α-adducts in a highly enantioselective and diastereoselective manner. Utilizing 1,3-dienyl-5-alkyl-6-oxy motif as key intermediates, we further demonstrated their synthetic potential by expedient total syntheses of three types of natural products (glutarimide antibiotics, α-pyrone polyketides and Lupin alkaloids) within 4-7 steps.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yaqian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
2
|
Two New 4-Hydroxy-2-pyridone Alkaloids with Antimicrobial and Cytotoxic Activities from Arthrinium sp. GZWMJZ-606 Endophytic with Houttuynia cordata Thunb. Molecules 2023; 28:molecules28052192. [PMID: 36903438 PMCID: PMC10005160 DOI: 10.3390/molecules28052192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Two new 4-hydroxy-2-pyridone alkaloids furanpydone A and B (1 and 2), along with two known compounds N-hydroxyapiosporamide (3) and apiosporamide (4) were isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606 in Houttuynia cordata Thunb. Furanpydone A and B had unusual 5-(7-oxabicyclo[2.2.1]heptane)-4-hydroxy-2-pyridone skeleton. Their structures including absolute configurations were determined on the basis of spectroscopic analysis, as well as the X-ray diffraction experiment. Compound 1 showed inhibitory activity against ten cancer cell lines (MKN-45, HCT116, K562, A549, DU145, SF126, A-375, 786O, 5637, and PATU8988T) with IC50 values from 4.35 to 9.72 µM. Compounds 1, 3 and 4 showed moderate inhibitory effects against four Gram-positive strains (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus Subtilis, Clostridium perfringens) and one Gram-negative strain (Ralstonia solanacarum) with MIC values from 1.56 to 25 µM. However, compounds 1-4 showed no obvious inhibitory activity against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two pathogenic fungi (Candida albicans and Candida glabrata) at 50 µM. These results show that compounds 1-4 are expected to be developed as lead compounds for antibacterial or anti-tumor drugs.
Collapse
|
3
|
Sangwan S, Yadav N, Kumar R, Chauhan S, Dhanda V, Walia P, Duhan A. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem 2022; 232:114199. [DOI: 10.1016/j.ejmech.2022.114199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
4
|
Yadav N, Sangwan S, Kumar R, Chauhan S, Duhan A, Singh A, Arya RK. Comprehensive Overview of Progress in Functionalization of 2‐Pyridone and 2, 4 ‐Dihydroxy Pyridine: Key Constituents of Vital Natural Products. ChemistrySelect 2021. [DOI: 10.1002/slct.202102941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Neelam Yadav
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Sarita Sangwan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Ravi Kumar
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
- MAP Section Department of Genetics and Plant Breeding Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Sonu Chauhan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Anil Duhan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Ajay Singh
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Rajesh K. Arya
- MAP Section Department of Genetics and Plant Breeding Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| |
Collapse
|
5
|
Nazari A, Heravi MM, Zadsirjan V. Oxazolidinones as chiral auxiliaries in asymmetric aldol reaction applied to natural products total synthesis. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact 2020; 335:109348. [PMID: 33278462 PMCID: PMC7710351 DOI: 10.1016/j.cbi.2020.109348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 Mpro. A search for natural, antimicrobial products with the 2-pyridone moiety was undertaken herein, and their calculated potency as inhibitors of SARS-CoV-2 Mpro was investigated. Thirty-three natural products containing the 2-pyridone scaffold were identified from the literature. An in silico methodology using AutoDock was employed to predict the binding energies and inhibition constants (Ki values) for each 2-pyridone-containing compound with SARS-CoV-2 Mpro. This consisted of molecular optimization of the 2-pyridone compound, docking of the compound with a crystal structure of SARS-CoV-2 Mpro, and evaluation of the predicted interactions and ligand-enzyme conformations. All compounds investigated bound to the active site of SARS-CoV-2 Mpro, close to the catalytic dyad (His-41 and Cys-145). Thirteen molecules had predicted Ki values <1 μM. Glu-166 formed a key hydrogen bond in the majority of the predicted complexes, while Met-165 had some involvement in the complex binding as a close contact to the ligand. Prominent 2-pyridone compounds were further evaluated for their ADMET properties. This work has identified 2-pyridone natural products with calculated potent inhibitory activity against SARS-CoV-2 Mpro and with desirable drug-like properties, which may lead to the rapid discovery of a treatment for COVID-19. 2-pyridone-scaffold is an inhibitory pharmacophore for SARS-CoV-2 Mpro. Thirty-three natural, antimicrobial products identified with 2-pyridone moiety. All 2-pyridone natural products bind to active site of SARS-CoV-2 Mproin silico. Thirteen molecules found to have potent inhibitory activity against SARS-CoV-2 Mpro. Inhibition of SARS-CoV-2 by natural 2-pyridones may lead to treatment of COVID-19.
Collapse
Affiliation(s)
- Katrina L Forrestall
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Darcy E Burley
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Meghan K Cash
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian R Pottie
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Chemistry, Faculty of Science, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Medicine (Neurology), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
7
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019; 7:E604. [PMID: 31766735 PMCID: PMC6955906 DOI: 10.3390/microorganisms7120604] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
The public's demand for natural, eco-friendly, and safe pigments is significantly increasing in the current era. Natural pigments, especially fungal pigments, are receiving more attention and seem to be in high demand worldwide. The immense advantages of fungal pigments over other natural or synthetic pigments have opened new avenues in the market for a wide range of applications in different industries. In addition to coloring properties, other beneficial attributes of fungal pigments, such as antimicrobial, anticancer, antioxidant, and cytotoxic activity, have expanded their use in different sectors. This review deals with the study of fungal pigments and their applications and sheds light on future prospects and challenges in the field of fungal pigments. Furthermore, the possible application of fungal pigments in the textile industry is also addressed.
Collapse
Affiliation(s)
- Ajay C. Lagashetti
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX, France
| | - Sanjay K. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Paras N. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| |
Collapse
|
9
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
10
|
Bruckner S, Weise M, Schobert R. Synthesis of the Entomopathogenic Fungus Metabolites Militarinone C and Fumosorinone A. J Org Chem 2018; 83:10805-10812. [DOI: 10.1021/acs.joc.8b01530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sebastian Bruckner
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Marie Weise
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Department of Chemistry, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Abstract
An overview of the highlights in total synthesis of natural products using iridium as a catalyst is given.
Collapse
Affiliation(s)
- Changchun Yuan
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- PR China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
12
|
Risks of Mycotoxins from Mycoinsecticides to Humans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3194321. [PMID: 27144161 PMCID: PMC4842051 DOI: 10.1155/2016/3194321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022]
Abstract
There are more than thirty mycotoxins produced by fungal entomopathogens. Totally, they belong to two classes, NRP and PK mycotoxins. Most of mycotoxins have not been paid sufficient attention yet. Generally, mycotoxins do not exist in mycoinsecticide and might not be released to environments unless entomogenous fungus proliferates and produces mycotoxins in host insects or probably in plants. Some mycotoxins, destruxins as an example, are decomposed in host insects before they, with the insect's cadavers together, are released to environments. Many species of fungal entomopathogens have the endophytic characteristics. But we do not know if fungal entomopathogens produce mycotoxins in plants and release them to environments. On the contrary, the same mycotoxins produced by phytopathogens such as Fusarium spp. and Aspergillus spp. have been paid enough concerns. In conclusion, mycotoxins from mycoinsecticides have limited ways to enter environments. The risks of mycotoxins from mycoinsecticides contaminating foods are controllable.
Collapse
|
13
|
Bruckner S, Bilitewski U, Schobert R. Synthesis and Antibacterial Activity of Four Stereoisomers of the Spider-Pathogenic Fungus Metabolite Torrubiellone D. Org Lett 2016; 18:1136-9. [PMID: 26871963 DOI: 10.1021/acs.orglett.6b00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Bruckner
- Organic
Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Ursula Bilitewski
- Helmholtz Centre
for Infection Research, Inhoffenstrasse
7, 38124 Braunschweig, Germany
| | - Rainer Schobert
- Organic
Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
14
|
Crane EA, Gademann K. Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201505863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Erika A. Crane
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
| | - Karl Gademann
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
- Institut für Chemie; Universität Zürich; Winterthurerstrasse 190 CH-8057 Zürich Schweiz
| |
Collapse
|
15
|
Crane EA, Gademann K. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angew Chem Int Ed Engl 2016; 55:3882-902. [PMID: 26833854 PMCID: PMC4797711 DOI: 10.1002/anie.201505863] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.
Collapse
Affiliation(s)
- Erika A Crane
- Department of Chemistry, University of Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, Switzerland. .,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
16
|
Ding F, Leow ML, Ma J, William R, Liao H, Liu XW. Collective Synthesis of 4-Hydroxy-2-pyridone Alkaloids and Their Antiproliferation Activities. Chem Asian J 2014; 9:2548-54. [DOI: 10.1002/asia.201402466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 12/18/2022]
|
17
|
Hofferberth ML, Brückner R. α‐ and β‐Lipomycin: Total Syntheses by Sequential Stille Couplings and Assignment of the Absolute Configuration of All Stereogenic Centers. Angew Chem Int Ed Engl 2014; 53:7328-34. [DOI: 10.1002/anie.201402255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Max L. Hofferberth
- Institut für Organische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstrasse 21, 79104 Freiburg (Germany) http://www.brueckner.uni‐freiburg.de
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstrasse 21, 79104 Freiburg (Germany) http://www.brueckner.uni‐freiburg.de
| |
Collapse
|
18
|
Hofferberth ML, Brückner R. α‐ und β‐Lipomycin: Totalsynthesen auf der Grundlage sequentieller Stille‐Kupplungen und Zuordnung der absoluten Konfiguration aller stereogenen Zentren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Max L. Hofferberth
- Institut für Organische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstraße 21, 79104 Freiburg (Deutschland) http://www.brueckner.uni‐freiburg.de
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstraße 21, 79104 Freiburg (Deutschland) http://www.brueckner.uni‐freiburg.de
| |
Collapse
|
19
|
Isaka M, Haritakun R, Intereya K, Thanakitpipattana D, Hywel-Jones NL. Torrubiellone E, an Antimalarial N-Hydroxypyridone Alkaloid from the Spider Pathogenic Fungus Torrubiella longissima BCC 2022. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Torrubiellone E (1), a new N-hydroxypyridone alkaloid, was isolated from the spider pathogenic fungus Torrubiella longissima BCC 2022, together with the known compounds, torrubiellones A (2) and B (3), and JBIR-130 (4). Compound 1 exhibited antimalarial activity against Plasmodium falciparum K1 with an IC50 value of 3.2 μg/mL, while it also showed weak cytotoxic activities.
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Rachada Haritakun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Kamolphan Intereya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Donnaya Thanakitpipattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Nigel L. Hywel-Jones
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
20
|
Kuephadungphan W, Phongpaichit S, Luangsa-ard JJ, Rukachaisirikul V. Antimicrobial activity of invertebrate-pathogenic fungi in the genera Akanthomyces and Gibellula. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Mo X, Li Q, Ju J. Naturally occurring tetramic acid products: isolation, structure elucidation and biological activity. RSC Adv 2014. [DOI: 10.1039/c4ra09047k] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural products containing the tetramic acid core scaffold have been isolated from an assortment of terrestrial and marine species and often display wide ranging and potent biological activities including antibacterial, antiviral and antitumoral activities.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology
- School of Life Sciences
- Qingdao Agricultural University
- Qingdao, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
22
|
Ding F, William R, Leow ML, Chai H, Fong JZM, Liu XW. Directed Orthometalation and the Asymmetric Total Synthesis of N-Deoxymilitarinone A and Torrubiellone B. Org Lett 2013; 16:26-9. [DOI: 10.1021/ol402820d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Feiqing Ding
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ronny William
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Min Li Leow
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Hua Chai
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Jacqueline Zi Mei Fong
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Xue-Wei Liu
- Division
of Chemistry and Biological Chemistry, School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
23
|
Teles APC, Takahashi JA. Paecilomide, a new acetylcholinesterase inhibitor from Paecilomyces lilacinus. Microbiol Res 2013; 168:204-10. [DOI: 10.1016/j.micres.2012.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 11/29/2022]
|
24
|
Hosoya T, Takagi M, Shin-ya K. New pyridone alkaloids JBIR-130, JBIR-131 and JBIR-132 from Isaria sp. NBRC 104353. J Antibiot (Tokyo) 2012; 66:235-8. [DOI: 10.1038/ja.2012.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Isaka M, Palasarn S, Tobwor P, Boonruangprapa T, Tasanathai K. Bioactive anthraquinone dimers from the leafhopper pathogenic fungus Torrubiella sp. BCC 28517. J Antibiot (Tokyo) 2012; 65:571-4. [DOI: 10.1038/ja.2012.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Li Y, Xu X, Xia C, Pan L, Liu Q. Dithiolane-Directed Tandem Oxidation/1,2-Benzyl Migration of Tetramic Acids under Ambient Conditions. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Krasnoff SB, Englich U, Miller PG, Shuler ML, Glahn RP, Donzelli BGG, Gibson DM. Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum. JOURNAL OF NATURAL PRODUCTS 2012; 75:175-80. [PMID: 22292922 PMCID: PMC3293398 DOI: 10.1021/np2007044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A and B, which consist of a Phe unit condensed with a nonaketide. Planar structures were elucidated by a combination of mass spectrometric and NMR techniques. Following hydrolysis of 1, chiral amino acid analysis assigned the L-configuration to the Phe unit. A crystal structure established the absolute configuration of the eight remaining stereogenic centers in 1. Metacridamide A showed cytotoxicity to three cancer lines with IC₅₀'s of 6.2, 11.0, and 10.8 μM against Caco-2 (epithelial colorectal adenocarcinoma), MCF-7 (breast cancer), and HepG2/C3A (hepatoma) cell lines, respectively. In addition, metacridamide B had an IC₅₀ of 18.2 μM against HepG2/C3A, although it was inactive at 100 μM against Caco-2 and MCF-7. Neither analogue showed antimicrobial, phytotoxic, or insecticidal activity.
Collapse
|
28
|
Jessen HJ, Schumacher A, Schmid F, Pfaltz A, Gademann K. Catalytic Enantioselective Total Synthesis of (+)-Torrubiellone C. Org Lett 2011; 13:4368-70. [DOI: 10.1021/ol201692h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henning J. Jessen
- University of Basel, Department of Chemistry, 4056 Basel, Switzerland
| | | | - Fabian Schmid
- University of Basel, Department of Chemistry, 4056 Basel, Switzerland
| | - Andreas Pfaltz
- University of Basel, Department of Chemistry, 4056 Basel, Switzerland
| | - Karl Gademann
- University of Basel, Department of Chemistry, 4056 Basel, Switzerland
| |
Collapse
|