1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Butowska K, Woziwodzka A, Borowik A, Piosik J. Polymeric Nanocarriers: A Transformation in Doxorubicin Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2135. [PMID: 33922291 PMCID: PMC8122860 DOI: 10.3390/ma14092135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin, a member of the anthracycline family, is a common anticancer agent often used as a first line treatment for the wide spectrum of cancers. Doxorubicin-based chemotherapy, although effective, is associated with serious side effects, such as irreversible cardiotoxicity or nephrotoxicity. Those often life-threatening adverse risks, responsible for the elongation of the patients' recuperation period and increasing medical expenses, have prompted the need for creating novel and safer drug delivery systems. Among many proposed concepts, polymeric nanocarriers are shown to be a promising approach, allowing for controlled and selective drug delivery, simultaneously enhancing its activity towards cancerous cells and reducing toxic effects on healthy tissues. This article is a chronological examination of the history of the work progress on polymeric nanostructures, designed as efficient doxorubicin nanocarriers, with the emphasis on the main achievements of 2010-2020. Numerous publications have been reviewed to provide an essential summation of the nanopolymer types and their essential properties, mechanisms towards efficient drug delivery, as well as active targeting stimuli-responsive strategies that are currently utilized in the doxorubicin transportation field.
Collapse
Affiliation(s)
- Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| | - Anna Woziwodzka
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, OK 73104, USA
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland; (K.B.); (A.W.); (A.B.)
| |
Collapse
|
3
|
Lee JF, Chang TY, Liu ZF, Lee NZ, Yeh YH, Chen YS, Chen TC, Chou HS, Li TK, Lee SB, Lin MH. RETRACTED: Design, synthesis, and biological evaluation of heterotetracyclic quinolinone derivatives as anticancer agents targeting topoisomerases. Eur J Med Chem 2020; 190:112074. [PMID: 32045788 DOI: 10.1016/j.ejmech.2020.112074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 01/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors. The authors regret to inform that they would like to withdraw this accepted article, due to serious errors in authorship, affiliations, material sources and supporting grant names/numbers. The authors sincerely apologize for these oversights and miscommunications the study caused.
Collapse
Affiliation(s)
- Jiann-Fong Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yu Chang
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zheng-Fang Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Nian-Zhe Lee
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsiu Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Song Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Tsai-Kun Li
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Bau Lee
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Di Micco S, Masullo M, Bandak AF, Berger JM, Riccio R, Piacente S, Bifulco G. Garcinol and Related Polyisoprenylated Benzophenones as Topoisomerase II Inhibitors: Biochemical and Molecular Modeling Studies. JOURNAL OF NATURAL PRODUCTS 2019; 82:2768-2779. [PMID: 31618025 DOI: 10.1021/acs.jnatprod.9b00382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Garcinol, a polyisoprenylated benzophenone isolated from Garcinia genus, has been reported to inhibit eukaryotic topoisomerase I and topoisomerase II at concentrations comparable to that of etoposide (∼25-100 μM). With the aim to clarify the underlying molecular mechanisms by which garcinol inhibits human topoisomerase IIα and topoisomerase IIβ, biochemical assays along with molecular docking and molecular dynamics studies were carried out on garcinol and six congeners. The biochemical results revealed that garcinol derivatives appear to act as catalytic inhibitors of topoisomerase II and to inhibit ATP hydrolysis by topoisomerase II via some form of mixed inhibition. The computational investigation identified the structural elements responsible for binding to the biological target and also provided information for the eventual design of more selective and potent analogues. Collectively, our data suggest that garcinol-type agents may bind to the DNA binding surface and/or ATP domain of type II topoisomerases to antagonize function.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS) , Via Salvatore De Renzi 50 , 84125 Salerno , Italy
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano (SA) , Italy
| | - Milena Masullo
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano (SA) , Italy
| | - Afif F Bandak
- Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , 725 N. Wolfe Street, WBSB 713 , Baltimore , Maryland 21205 , United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , 725 N. Wolfe Street, WBSB 713 , Baltimore , Maryland 21205 , United States
| | - Raffaele Riccio
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano (SA) , Italy
| | - Sonia Piacente
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano (SA) , Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano (SA) , Italy
| |
Collapse
|
5
|
Tikhomirov AS, Ivanov IV, Korolev AM, Shchekotikhin AE. β-Hydroxylation of anthraquinone derivatives with benzaldehyde oxime as a source of hydroxyl group. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Tikhomirov AS, Lin CY, Volodina YL, Dezhenkova LG, Tatarskiy VV, Schols D, Shtil AA, Kaur P, Chueh PJ, Shchekotikhin AE. New antitumor anthra[2,3-b]furan-3-carboxamides: Synthesis and structure-activity relationship. Eur J Med Chem 2018; 148:128-139. [DOI: 10.1016/j.ejmech.2018.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
|
9
|
Roy J, Mal T, Jana S, Mal D. Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins. Beilstein J Org Chem 2016; 12:531-6. [PMID: 27340445 PMCID: PMC4901998 DOI: 10.3762/bjoc.12.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/26/2016] [Indexed: 11/23/2022] Open
Abstract
Dibromobenzoisofuranone 12, synthesized in six steps, was regiospecifically annulated with 5-substituted cyclohexenones 13/36 in the presence of LiOt-Bu to give brominated anthraquinones 14/38 in good yields. Darzens condensation of 30 was shown to give chain-elongated anthraquinone 32. Alkaline hydrolysis of 38 furnished 39 representing desulfoproisocrinin F.
Collapse
Affiliation(s)
- Joyeeta Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur- 721302, India
| | - Tanushree Mal
- Department of Chemistry, Indian Institute of Technology, Kharagpur- 721302, India
| | - Supriti Jana
- Department of Chemistry, Indian Institute of Technology, Kharagpur- 721302, India
| | - Dipakranjan Mal
- Department of Chemistry, Indian Institute of Technology, Kharagpur- 721302, India
| |
Collapse
|
10
|
Topoisomerase I Inhibitors Derived from Natural Products: Structure–Activity Relationships and Antitumor Potency. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-63603-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Kashiwa N, Ebizuka Y, Fujii I. Identification and Heterologous Expression of the Topopyrone Nonaketide Synthase Gene from <i>Phoma</i> sp. Chem Pharm Bull (Tokyo) 2016; 64:947-51. [DOI: 10.1248/cpb.c16-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuyuki Kashiwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yutaka Ebizuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University
| |
Collapse
|
12
|
Tikhomirov AS, Shchekotikhin AE, Lee YH, Chen YA, Yeh CA, Tatarskiy VV, Dezhenkova LG, Glazunova VA, Balzarini J, Shtil AA, Preobrazhenskaya MN, Chueh PJ. Synthesis and Characterization of 4,11-Diaminoanthra[2,3-b]furan-5,10-diones: Tumor Cell Apoptosis through tNOX-Modulated NAD(+)/NADH Ratio and SIRT1. J Med Chem 2015; 58:9522-34. [PMID: 26633734 DOI: 10.1021/acs.jmedchem.5b00859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of new 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives with different side chains were synthesized. Selected 2-unsubstituted derivatives 11-14 showed high antiproliferative potency on a panel of mammalian tumor cell lines including multidrug resistance variants. Compounds 11-14 utilized multiple mechanisms of cytotoxicity including inhibition of Top1/Top2-mediated DNA relaxation, reduced NAD(+)/NADH ratio through tNOX inhibition, suppression of a NAD(+)-dependent sirtuin 1 (SIRT1) deacetylase activity, and activation of caspase-mediated apoptosis. Here, for the first time, we report that tumor-associated NADH oxidase (tNOX) and SIRT1 are important cellular targets of antitumor anthracene-9,10-diones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia.,Mendeleyev University of Chemical Technology , 9 Miusskaya Square, Moscow 125190, Russia
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia.,Mendeleyev University of Chemical Technology , 9 Miusskaya Square, Moscow 125190, Russia
| | - Yi-Hui Lee
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Yi-Ann Chen
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Chia-An Yeh
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | | | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics , 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | | | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , 3000 Leuven, Belgium
| | - Alexander A Shtil
- Blokhin Cancer Center , 24 Kashirskoye Shosse, Moscow 115478, Russia.,National University of Science and Technology "MISIS", 4 Leninsky Avenue, Moscow 119991, Russia
| | | | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan.,Graduate Institute of Basic Medicine, China Medical University , Taichung 40402, Taiwan.,Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan.,Department of Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|
13
|
Hartung J, Wright BJD, Danishefsky SJ. Studies toward the total synthesis of pluraflavin A. Chemistry 2014; 20:8731-6. [PMID: 24919792 PMCID: PMC4795151 DOI: 10.1002/chem.201402254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 11/05/2022]
Abstract
A synthetic strategy towards the potent cytostatic agent pluraflavin A has been developed. Formation of the enantioenriched anthrapyran core bearing a halogen atom enabled the introduction of the α C-aryl glycoside by Stille cross-coupling and subsequent hydrogenation of the aryl glycal. Chemo- and stereoselective O-glycosylations of α oliose and β 3-epi vancosamine residues afforded a fully glycosylated aromatic core. Attempts to install the dimethylamino group of the C-disaccharide suggest that introduction of an azide group by displacement and subsequent reduction may pave the way to the total synthesis of pluraflavin A.
Collapse
Affiliation(s)
- John Hartung
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| | | | - Samuel J. Danishefsky
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, Fax: (+) (212) 772-8691
| |
Collapse
|
14
|
Singh S, Baviskar AT, Jain V, Mishra N, Chand Banerjee U, Bharatam PV, Tikoo K, Singh Ishar MP. 3-Formylchromone based topoisomerase IIα inhibitors: discovery of potent leads. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00125c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|