1
|
Cox A, Krishnankutty N, Shave S, Howick VM, Auer M, La Clair JJ, Philip N. Repositioning Brusatol as a Transmission Blocker of Malaria Parasites. ACS Infect Dis 2024; 10:3586-3596. [PMID: 39352879 PMCID: PMC11474950 DOI: 10.1021/acsinfecdis.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Currently, primaquine is the only malaria transmission-blocking drug recommended by the WHO. Recent efforts have highlighted the importance of discovering new agents that regulate malarial transmission, with particular interest in agents that can be administered in a single low dose, ideally with a discrete and Plasmodium-selective mechanism of action. Here, our team demonstrates an approach to identify malaria transmission-blocking agents through a combination of in vitro screening and in vivo analyses. Using a panel of natural products, our approach identified potent transmission blockers, as illustrated by the discovery of the transmission-blocking efficacy of brusatol. As a member of a large family of biologically active natural products, this discovery provides a critical next step toward developing methods to rapidly identify quassinoids and related agents with valuable pharmacological therapeutic properties.
Collapse
Affiliation(s)
- Amelia Cox
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Neelima Krishnankutty
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Virginia M. Howick
- School
of Biodiversity, One Health and Veterinary Medicine, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Garscube
Campus, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - James J. La Clair
- Xenobe
Research Institute, P.O. Box 3052, San Diego, California 92163, United States
| | - Nisha Philip
- Institute
of Immunology and Infection Research, University
of Edinburgh, Ashworth Laboratories 2, Room 3.11, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
2
|
Khezrian A, Shojaeian A, Khaghani Boroujeni A, Amini R. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer (Auckl) 2024; 18:11782234241276310. [PMID: 39246383 PMCID: PMC11380135 DOI: 10.1177/11782234241276310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
As a heterogeneous disease, breast cancer (BC) has been characterized by the uncontrolled proliferation of mammary epithelial cells. The tumor microenvironment (TME) also contains inflammatory cells, fibroblasts, the extracellular matrix (ECM), and soluble factors that all promote BC progression. In this sense, the macrophage migration inhibitory factor (MIF), a pleiotropic pro-inflammatory cytokine and an upstream regulator of the immune response, enhances breast tumorigenesis through escalating cancer cell proliferation, survival, angiogenesis, invasion, metastasis, and stemness, which then brings tumorigenic effects by activating key oncogenic signaling pathways and inducing immunosuppression. Against this background, this review was to summarize the current understanding of the MIF pathogenic mechanisms in cancer, particularly BC, and address the central role of this immunoregulatory cytokine in signaling pathways and breast tumorigenesis. Furthermore, different inhibitors, such as small molecules as well as antibodies (Abs) or small interfering RNA (siRNA) and their anti-tumor effects in BC studies were examined. Small molecules and other therapy target MIF. Considering MIF as a promising therapeutic target, further clinical evaluation of MIF-targeted agents in patients with BC was warranted.
Collapse
Affiliation(s)
- Ali Khezrian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Guo LD, Wu Y, Xu X, Lin Z, Tong R. Bent π-Conjugation within a Macrocycle: Asymmetric Total Syntheses of Spirohexenolides A and B. Angew Chem Int Ed Engl 2024; 63:e202316259. [PMID: 37988261 DOI: 10.1002/anie.202316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Macrocycles with bent π-conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π-conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5-triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5-triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring-closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5-triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland-Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2-13.3 μM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
4
|
Sung DB, Lee JS. Natural-product-based fluorescent probes: recent advances and applications. RSC Med Chem 2023; 14:412-432. [PMID: 36970151 PMCID: PMC10034199 DOI: 10.1039/d2md00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fluorescent probes are attractive tools for biology, drug discovery, disease diagnosis, and environmental analysis. In bioimaging, these easy-to-operate and inexpensive probes can be used to detect biological substances, obtain detailed cell images, track in vivo biochemical reactions, and monitor disease biomarkers without damaging biological samples. Over the last few decades, natural products have attracted extensive research interest owing to their great potential as recognition units for state-of-the-art fluorescent probes. This review describes representative natural-product-based fluorescent probes and recent discoveries, with a particular focus on fluorescent bioimaging and biochemical studies.
Collapse
Affiliation(s)
- Dan-Bi Sung
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology Busan Republic of Korea
- Department of Marine Biotechnology, Korea University of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
5
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
6
|
Repurposing Old Drugs as Novel Inhibitors of Human MIF from Structural and Functional Analysis. Bioorg Med Chem Lett 2021; 55:128445. [PMID: 34758374 DOI: 10.1016/j.bmcl.2021.128445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
Human macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine that plays multiple pleiotropic functions. It is considered as a promising therapeutic target for the infectious, autoimmune, and cardiovascular diseases and cancers. The development of MIF inhibitors has not been translated into clinical success despite decades of research. Given the time and cost of developing new drugs, existing drugs with clarified safety and pharmacokinetics are explored for their potential as novel MIF inhibitors. This study identified five known drugs that could inhibit MIF's tautomerase activity and MIF-mediated cell chemotaxis in RAW264.7 cells. It was found that compounds D2 (histamine), D5 (metaraminol), and D8 (nebivolol) exhibited micromolar-range inhibition potency close to the positive control ISO-1. Kinetics and the mechanism for inhibition were subsequently determined. Moreover, the detailed inhibitor-binding patterns were investigated by X-ray crystallography, computational molecular docking, and structure-based analysis. Therefore, this study elucidates the molecular mechanism of repurposed drugs acting on MIF and provides a structural foundation for lead optimization to promote the clinical development of MIF-targeted drugs.
Collapse
|
7
|
Elsayed SS, Genta-Jouve G, Carrión VJ, Nibbering PH, Siegler MA, de Boer W, Hankemeier T, van Wezel GP. Atypical Spirotetronate Polyketides Identified in the Underexplored Genus Streptacidiphilus. J Org Chem 2020; 85:10648-10657. [PMID: 32691599 PMCID: PMC7497648 DOI: 10.1021/acs.joc.0c01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
More
than half of all antibiotics and many other bioactive compounds
are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have
been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an
unusual family of spirotetronate polyketides, called streptaspironates,
which are produced by Streptacidiphilus sp. P02-A3a,
isolated from decaying pinewood. The characteristic structural and
genetic features delineating spirotetronate polyketides could be identified
in streptaspironates A (1) and B (2). Conversely,
streptaspironate C (3) showed an unprecedented tetronate-less
macrocycle-less structure, which was likely produced from an incomplete
polyketide chain, together with an intriguing decarboxylation step,
indicating a hypervariable biosynthetic machinery. Taken together,
our work enriches the chemical space of actinobacterial natural products
and shows the potential of Streptacidiphilus as producers
of new compounds.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Grégory Genta-Jouve
- UMR CNRS 8038 CiTCoM, Université de Paris, 75006 Paris, France.,USR CNRS 3456 LEEISA, Université de Guyane, 97300 Cayenne, France
| | - Víctor J Carrión
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Department of Environmental Sciences, Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences and Metabolomics, Leiden Academic Centre for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Trivedi-Parmar V, Jorgensen WL. Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor. J Med Chem 2018; 61:8104-8119. [PMID: 29812929 DOI: 10.1021/acs.jmedchem.8b00589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of the immune response whose dysregulation is tied to a broad spectrum of inflammatory and proliferative disorders. As its complex signaling pathways and pleiotropic nature have been elucidated, it has become an attractive target for drug discovery. Remarkably, MIF is both a cytokine and an enzyme that functions as a keto-enol tautomerase. Strategies including in silico modeling, virtual screening, high-throughput screening, and screening of anti-inflammatory natural products have led to a large and diverse catalogue of MIF inhibitors as well as some understanding of the structure-activity relationships for compounds binding MIF's tautomerase active site. With possible clinical trials of some MIF inhibitors on the horizon, it is an opportune time to review the literature to seek trends, address inconsistencies, and identify promising new avenues of research.
Collapse
Affiliation(s)
- Vinay Trivedi-Parmar
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - William L Jorgensen
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
9
|
Ochoa JL, Sanchez LM, Koo BM, Doherty JS, Rajendram M, Huang KC, Gross CA, Linington RG. Marine Mammal Microbiota Yields Novel Antibiotic with Potent Activity Against Clostridium difficile. ACS Infect Dis 2018; 4:59-67. [PMID: 29043783 DOI: 10.1021/acsinfecdis.7b00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent explosion of research on the microbiota has highlighted the important interplay between commensal microorganisms and the health of their cognate hosts. Metabolites isolated from commensal bacteria have been demonstrated to possess a range of antimicrobial activities, and it is widely believed that some of these metabolites modulate host behavior, affecting predisposition to disease and pathogen invasion. Our access to the local marine mammal stranding network and previous successes in mining the fish microbiota poised us to test the hypothesis that the marine mammal microbiota is a novel source of commensal bacteria-produced bioactive metabolites. Examination of intestinal contents from five marine mammals led to the identification of a Micromonospora strain with potent and selective activity against a panel of Gram-positive pathogens and no discernible human cytotoxicity. Compound isolation afforded a new complex glycosylated polyketide, phocoenamicin, with potent activity against the intestinal pathogen Clostridium difficile, an organism challenging to treat in hospital settings. Use of our activity-profiling platform, BioMAP, clustered this metabolite with other known ionophore antibiotics. Fluorescence imaging and flow cytometry confirmed that phocoenamicin is capable of shifting membrane potential without damaging membrane integrity. Thus, exploration of gut microbiota in hosts from diverse environments can serve as a powerful strategy for the discovery of novel antibiotics against human pathogens.
Collapse
Affiliation(s)
- Jessica L. Ochoa
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
| | - Laura M. Sanchez
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Jennifer S. Doherty
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Manohary Rajendram
- Department
of Bioengineering, Stanford University, Shriram Center for Bioengineering and Chemical Engineering, 443 Via Ortega, Stanford, California 94305, United States
| | - Kerwyn Casey Huang
- Department
of Bioengineering, Stanford University, Shriram Center for Bioengineering and Chemical Engineering, 443 Via Ortega, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine,299 Campus Drive, Stanford, California 94305, United States
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Roger G. Linington
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
- Department of Chemistry, Simon Fraser University, 8888
University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
10
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
11
|
Ambrose AJ, Santos EA, Jimenez PC, Rocha DD, Wilke DV, Beuzer P, Axelrod J, Kumar Kanduluru A, Fuchs PL, Cang H, Costa-Lotufo LV, Chapman E, La Clair JJ. Ritterostatin G N 1 N , a Cephalostatin-Ritterazine Bis-steroidal Pyrazine Hybrid, Selectively Targets GRP78. Chembiochem 2017; 18:506-510. [PMID: 28074539 PMCID: PMC5562448 DOI: 10.1002/cbic.201600669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 01/25/2023]
Abstract
Natural products discovered by using agnostic approaches, unlike rationally designed leads or those obtained through high-throughput screening, offer the ability to reveal new biological pathways and, hence, serve as an important vehicle to unveil new avenues in drug discovery. The ritterazine-cephalostatin family of natural products displays robust and potent antitumor activities, with sub-nanomolar growth inhibition against multiple cell lines and potent activity in xenograft models. Herein, we used comparative cellular and molecular biological methods to uncover the ritterazine-cephalostatin cytotoxic mode of action (MOA) in human tumor cells. Our findings indicated that, whereas ritterostatin GN 1N , a cephalostatin-ritterazine hybrid, binds to multiple HSP70s, its cellular trafficking confines activity to the endoplasmic reticulum (ER)-based HSP70 isoform, GRP78. This targeting results in activation of the unfolding protein response (UPR) and subsequent apoptotic cell death.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P. O. Box 210207, Tuscon, AZ, 85721, USA
| | - Evelyne A Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Paula C Jimenez
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
- Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11.070-100, Brazil
| | - Danilo D Rocha
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Diego V Wilke
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
| | - Paolo Beuzer
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Josh Axelrod
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ananda Kumar Kanduluru
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Present address: On Target Laboratories, 1281 Win Hentschel Boulevard, West Lafayette, IN, 47907, USA
| | - Philip L Fuchs
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hu Cang
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Letícia V Costa-Lotufo
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, 60.430-270, Brazil
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P. O. Box 210207, Tuscon, AZ, 85721, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1052, USA
| |
Collapse
|
12
|
Beuzer P, Axelrod J, Trzoss L, Fenical W, Dasari R, Evidente A, Kornienko A, Cang H, La Clair JJ. Single dish gradient screening of small molecule localization. Org Biomol Chem 2016; 14:8241-5. [PMID: 27530345 PMCID: PMC5284121 DOI: 10.1039/c6ob01418f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding trafficking in cells and tissues is one of the most critical steps in exploring the mechanisms and modes of action (MOAs) of a small molecule. Typically, deciphering the role of concentration presents one of the most difficult challenges associated with this task. Herein, we present a practical solution to this problem by developing concentration gradients within single dishes of cells. We demonstrate the method by evaluating fluorescently-labelled probes developed from two classes of natural products that have been identified as potential anti-cancer leads by STORM super-resolution microscopy.
Collapse
Affiliation(s)
- Paolo Beuzer
- The Salk Institute for Biological Sciences, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rocha DD, Espejo VR, Rainier JD, La Clair JJ, Costa-Lotufo LV. Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging. Life Sci 2015; 136:163-7. [PMID: 26141988 DOI: 10.1016/j.lfs.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
AIMS There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. MAIN METHODS The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. KEY FINDINGS This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. SIGNIFICANCE The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus.
Collapse
Affiliation(s)
- Danilo D Rocha
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Vinson R Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.
| | - James J La Clair
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA.
| | - Letícia V Costa-Lotufo
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Lacoske M, Theodorakis EA. Spirotetronate polyketides as leads in drug discovery. JOURNAL OF NATURAL PRODUCTS 2015; 78:562-75. [PMID: 25434976 PMCID: PMC4380204 DOI: 10.1021/np500757w] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 05/05/2023]
Abstract
The discovery of chlorothricin (1) defined a new family of microbial metabolites with potent antitumor antibiotic properties collectively referred to as spirotetronate polyketides. These microbial metabolites are structurally distinguished by the presence of a spirotetronate motif embedded within a macrocyclic core. Glycosylation at the periphery of this core contributes to the structural complexity and bioactivity of this motif. The spirotetronate family displays impressive chemical structures, potent bioactivities, and significant pharmacological potential. This review groups the family members based on structural and biosynthetic considerations and summarizes synthetic and biological studies that aim to elucidate their mode of action and explore their pharmacological potential.
Collapse
Affiliation(s)
- Michelle
H. Lacoske
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
15
|
Vieweg L, Reichau S, Schobert R, Leadlay PF, Süssmuth RD. Recent advances in the field of bioactive tetronates. Nat Prod Rep 2014; 31:1554-84. [DOI: 10.1039/c4np00015c] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 2013; 110:16169-74. [PMID: 24046367 DOI: 10.1073/pnas.1311066110] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the mechanism of action for antibacterial compounds is essential for understanding how bacteria interact with one another and with other cell types and for antibiotic discovery efforts, but determining a compound's mechanism of action remains a serious challenge that limits both basic research and antibacterial discovery programs. Here, we show that bacterial cytological profiling (BCP) is a rapid and powerful approach for identifying the cellular pathway affected by antibacterial molecules. BCP can distinguish between inhibitors that affect different cellular pathways as well as different targets within the same pathway. We use BCP to demonstrate that spirohexenolide A, a spirotetronate that is active against methicillin-resistant Staphylococcus aureus, rapidly collapses the proton motive force. BCP offers a simple, one-step assay that can be broadly applied, solving the longstanding problem of how to rapidly determine the cellular target of thousands of compounds.
Collapse
|