1
|
Bharathi D, Lee J. Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Mar Drugs 2024; 22:348. [PMID: 39195465 DOI: 10.3390/md22080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Wang Z, Kasper A, Takahashi M, Amador AM, Bhattacharjee A, Kan J, Hernandez Y, Ternei M, Brady SF. Tapcin, an In Vivo Active Dual Topoisomerase I/II Inhibitor Discovered by Synthetic Bioinformatic Natural Product (Syn-BNP)-Coupled Metagenomics. Angew Chem Int Ed Engl 2024; 63:e202317187. [PMID: 38231130 PMCID: PMC11018531 DOI: 10.1002/anie.202317187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.
Collapse
Affiliation(s)
- Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Amanda Kasper
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Adrian Morales Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Abir Bhattacharjee
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jingbo Kan
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Melinda Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
3
|
Jähne J, Herfort S, Doellinger J, Lasch P, Tam LTT, Borriss R, Vater J. Investigation of the potential of Brevibacillus spp. for the biosynthesis of nonribosomally produced bioactive compounds by combination of genome mining with MALDI-TOF mass spectrometry. Front Microbiol 2023; 14:1286565. [PMID: 38156002 PMCID: PMC10753013 DOI: 10.3389/fmicb.2023.1286565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023] Open
Abstract
The biosynthetic potential of 11 Brevibacillus spp. strains was investigated by combination of genome mining with mass spectrometric analysis using MALDI-TOF mass spectrometry. These endophytic, plant associated Brevibacillus strains were isolated from crop plants, such as coffee and black pepper, in Vietnam. Draft genomes of these strains were available. They were classified (a) by comparison with type strains and a collection of genome-sequenced Brevibacillus spp. deposited in the NCBI data base as well as (b) by construction of a phylogenetic tree from the core sequences of publicly available genomes of Brevibacillus strains. They were identified as Brevibacillus brevis (1 strain); parabrevis (2 strains); porteri (3 strains); and 5 novel Brevibacillus genomospecies. Our work was specifically focused on the detection and characterization of nonribosomal peptides produced by these strains. Structural characterization of these compounds was performed by LIFT-MALDI-TOF/TOF mass spectrometric sequence analysis. The highlights of our work were the demonstration of the tyrocidines, a well-known family of cyclodecapeptides of great structural variability, as the main products of all investigated strains and the identification of a novel class of pentapeptides produced by B. brevis; B. schisleri; and B. porteri which we designate as brevipentins. Our biosynthetic studies demonstrate that knowledge of their biosynthetic capacity can efficiently assist classification of Brevibacillus species.
Collapse
Affiliation(s)
- Jennifer Jähne
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Stefanie Herfort
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Joerg Doellinger
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Peter Lasch
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Joachim Vater
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
4
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Uniacke-Lowe S, Collins FWJ, Hill C, Ross RP. Bioactivity Screening and Genomic Analysis Reveals Deep-Sea Fish Microbiome Isolates as Sources of Novel Antimicrobials. Mar Drugs 2023; 21:444. [PMID: 37623725 PMCID: PMC10456417 DOI: 10.3390/md21080444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
With the increase in antimicrobial resistance and the subsequent demand for novel therapeutics, the deep-sea fish microbiome can be a relatively untapped source of antimicrobials, including bacteriocins. Previously, bacterial isolates were recovered from the gut of deep-sea fish sampled from the Atlantic Ocean.In this study, we used in vitro methods to screen a subset of these isolates for antimicrobial activity, and subsequently mined genomic DNA from isolates of interest for bacteriocin and other antimicrobial metabolite genes. We observed antimicrobial activity against foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis and Micrococcus luteus. In total, 147 candidate biosynthetic gene clusters were identified in the genomic sequences, including 35 bacteriocin/RiPP-like clusters. Other bioactive metabolite genes detected included non-ribosomal peptide synthases (NRPS), polyketide synthases (PKS; Types 1 and 3), beta-lactones and terpenes. Moreover, four unique bacteriocin gene clusters were annotated and shown to encode novel peptides: a class IIc bacteriocin, two class IId bacteriocins and a class I lanthipeptide (LanM subgroup). Our dual in vitro and in silico approach allowed for a more comprehensive understanding of the bacteriocinogenic potential of these deep-sea isolates and an insight into the antimicrobial molecules that they may produce.
Collapse
Affiliation(s)
- Shona Uniacke-Lowe
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
| | | | - Colin Hill
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - R Paul Ross
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
| |
Collapse
|
6
|
Meleshin M, Koch L, Wiedemann C, Schutkowski M. Synthesis of Complex Thiazoline-Containing Peptides by Cyclodesulfhydration of N-Thioacyl-2-Mercaptoethylamine Derivatives. Angew Chem Int Ed Engl 2023; 62:e202301543. [PMID: 37029095 DOI: 10.1002/anie.202301543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Herein we report a mild, efficient, and epimerization-free method for the synthesis of peptide-derived 2-thiazolines and 5,6-dihydro-4H-1,3-thiazines based on a cyclodesulfhydration of N-thioacyl-2-mercaptoethylamine or N-thioacyl-3-mercaptopropylamine derivatives. The described reaction can be easily carried out in aqueous solutions at room temperature and it is triggered by change of the pH, leading to complex thiazoline or dihydrothiazine derivatives without epimerization in excellent to quantitative yields. The new method was applied in the total synthesis of the marine metabolite mollamide F, resulting in the revision of its stereochemistry.
Collapse
Affiliation(s)
- Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Lukas Koch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christoph Wiedemann
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Cai YY, Jiang XY, Gu YQ. Cytotoxicity Metabolites from Marine-Derived Fungus Aspergillus versicolor. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-04000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Hussain A, Bourguet-Kondracki ML, Majeed M, Ibrahim M, Imran M, Yang XW, Ahmed I, Altaf AA, Khalil AA, Rauf A, Wilairatana P, Hemeg HA, Ullah R, Green IR, Ali I, Shah STA, Hussain H. Marine life as a source for breast cancer treatment: A comprehensive review. Biomed Pharmacother 2023; 159:114165. [PMID: 36634590 DOI: 10.1016/j.biopha.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Breast cancer, one of the most significant tumors among all cancer cells, still has deficiencies for effective treatment. Moreover, substitute treatments employing natural products as bioactive metabolites has been seriously considered. The source of bioactive metabolites are not only the most numerous but also represent the richest source. A unique source is from the oceans or marine species which demonstrated intriguing chemical and biological diversity which represents an astonishing reserve for discovering novel anticancer drugs. Notably, marine sponges produce the largest amount of diverse bioactive peptides, alkaloids, terpenoids, polyketides along with many secondary metabolites whose potential is mostly therapeutic. In this review, our main focus is on the marine derived secondary metabolites which demonstrated cytotoxic effects towards numerous breast cancer cells and have been isolated from the marine sources such as marine sponges, cyanobacteria, fungi, algae, tunicates, actinomycetes, ascidians, and other sources of marine organisms.
Collapse
Affiliation(s)
- Amjad Hussain
- Department of Chemistry University of Okara, Okara, Pakistan; Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France.
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Maryam Majeed
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of chemistry, Faculty of Science, Research center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogentic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ataf Ali Altaf
- Department of Chemistry University of Okara, Okara, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi Khyber Pukhtanukha, Pakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | | | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| |
Collapse
|
9
|
Jähne J, Le Thi TT, Blumenscheit C, Schneider A, Pham TL, Le Thi PT, Blom J, Vater J, Schweder T, Lasch P, Borriss R. Novel Plant-Associated Brevibacillus and Lysinibacillus Genomospecies Harbor a Rich Biosynthetic Potential of Antimicrobial Compounds. Microorganisms 2023; 11:168. [PMID: 36677460 PMCID: PMC9867215 DOI: 10.3390/microorganisms11010168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
We have previously reported the draft genome sequences of 59 endospore-forming Gram-positive bacterial strains isolated from Vietnamese crop plants due to their ability to suppress plant pathogens. Based on their draft genome sequence, eleven of them were assigned to the Brevibacillus and one to the Lysinibacillus genus. Further analysis including full genome sequencing revealed that several of these strains represent novel genomospecies. In vitro and in vivo assays demonstrated their ability to promote plant growth, as well as the strong biocontrol potential of Brevibacilli directed against phytopathogenic bacteria, fungi, and nematodes. Genome mining identified 157 natural product biosynthesis gene clusters (BGCs), including 36 novel BGCs not present in the MIBiG data bank. Our findings indicate that plant-associated Brevibacilli are a rich source of putative antimicrobial compounds and might serve as a valuable starting point for the development of novel biocontrol agents.
Collapse
Affiliation(s)
- Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thanh Tam Le Thi
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thi Luong Pham
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Phuong Thao Le Thi
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Ha Noi, Vietnam
| | - Jochen Blom
- Bioinformatics and Systems Biology, Faculty of Biology and Chemistry, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, 17489 Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany
- Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
10
|
Wu C, Tang J, Limlingan Malit JJ, Wang R, Sung HHY, Williams ID, Qian PY. Bathiapeptides: Polythiazole-Containing Peptides from a Marine Biofilm-Derived Bacillus sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:1751-1762. [PMID: 35703501 DOI: 10.1021/acs.jnatprod.2c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria in marine biofilms are a rich reservoir of natural products. To facilitate novel secondary metabolite discovery, we investigated the metabolic profile of a marine biofilm-derived Bacillus sp. B19-2 by combining bioinformatics and LC-UV-MS analyses. After dereplication and purification of putatively unknown compounds, a new family of compounds 1-8 was uncovered and named bathiapeptides. Structural elucidation using NMR, HRESIMS, ozonolysis, advanced Marfey's analysis, and X-ray diffraction revealed that bathiapeptides are polypeptides that contain a rare polythiazole moiety. These compounds exhibited strong cytotoxicity against Hep G2, HeLa, MCF-7, and MGC-803 cell lines, and the lowest IC50 value was 0.5 μM. An iterative biosynthesis logic in bathiapeptides' biosynthesis was proposed based on the identified chemical structures and putative gene cluster analysis.
Collapse
Affiliation(s)
- Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jianwei Tang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ruojun Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ian D Williams
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
11
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
12
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
13
|
Shen Q, Zhou H, Dai G, Zhong G, Huo L, Li A, Liu Y, Yang M, Ravichandran V, Zheng Z, Tang YJ, Jiao N, Zhang Y, Bian X. Characterization of a Cryptic NRPS Gene Cluster in Bacillus velezensis FZB42 Reveals a Discrete Oxidase Involved in Multithiazole Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ming Yang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Vinothkannan Ravichandran
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhihui Zheng
- New Drug Research and Development Center, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Ya-Jie Tang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Liang Z, Li J, Ling C, Xu R, Yi X, Ju J, Li Q. Characterization of the Aminosugar Biosynthetic and Regulatory Genes of Vicenistatin in Monodonata labio-Associated Streptomyces parvus SCSIO Mla-L010. JOURNAL OF NATURAL PRODUCTS 2022; 85:256-263. [PMID: 35042332 DOI: 10.1021/acs.jnatprod.1c01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vicenistatin (1) is a potent polyketide antitumor antibiotic composed of a 20-membered macrolactam core appended to a unique aminosugar, vicenisamine. In this study, vicenistatin was isolated and its biosynthetic gene cluster identified from Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010. A set of five genes, vicC, vicD, vicE, vicF, and vicG, was confirmed to be involved in the biosynthesis of the aminosugar by gene inactivations. VicG was characterized as an N-methyltransferase that catalyzes the methylation of the 4'-amino group in the last step of the aminosugar biosynthetic pathway; the N-demethyl intermediate 4'-N-demethylvicenistatin (2) was isolated from the ΔvicG mutant strain. In addition, vicR1 was characterized as a positive pathway-specific regulatory gene. Notably, N-demethyl compound 2 was found to exert impressive antibacterial activities, with MIC values spanning 0.06-4 μg/mL, against a panel of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, Gram-negative Helicobacter pylori, and mycobacterium Mycobacterium smegmatis and the fungal pathogen Candida albicans. Compound 2 was also found to display reduced cytotoxicities relative to vicenistatin, especially against noncancerous human cell lines.
Collapse
Affiliation(s)
- Zhicheng Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 110039, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chunyao Ling
- Institute of Marine Drug, School of Pharmacy, Guangxi University of Traditional Chinese Medicine, No. 13 Wuhe Avenue, Qingxiu District, Nanning 530200, China
| | - Run Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiangxi Yi
- Institute of Marine Drug, School of Pharmacy, Guangxi University of Traditional Chinese Medicine, No. 13 Wuhe Avenue, Qingxiu District, Nanning 530200, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
15
|
Long J, Chen Y, Chen W, Wang J, Zhou X, Yang B, Liu Y. Cyclic Peptides from the Soft Coral-Derived Fungus Aspergillus sclerotiorum SCSIO 41031. Mar Drugs 2021; 19:701. [PMID: 34940700 PMCID: PMC8703611 DOI: 10.3390/md19120701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
Three novel cyclic hexapeptides, sclerotides C-E (1-3), and a new lipodepsipeptide, scopularide I (4), together with a known cyclic hexapeptide sclerotide A (5), were isolated from fermented rice cultures of a soft coral-derived fungus: Aspergillus sclerotiorum SCSIO 41031. The structures of the new peptides were determined by 1D and 2D NMR spectroscopic analysis, Marfey's method, ESIMS/MS analysis, and single crystal X-ray diffraction analysis. Scopularide I (4) exhibited acetylcholinesterase inhibitory activity with an IC50 value of 15.6 μM, and weak cytotoxicity against the human nasopharyngeal carcinoma cell line HONE-EBV with IC50 value of 10.1 μM.
Collapse
Affiliation(s)
- Jieyi Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.L.); (W.C.); (J.W.); (X.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
17
|
Saide A, Lauritano C, Ianora A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines 2021; 9:biomedicines9111556. [PMID: 34829785 PMCID: PMC8614969 DOI: 10.3390/biomedicines9111556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The deep-sea environment is a unique, challenging extreme habitat where species have had to adapt to the absence of light, low levels of oxygen, high pressure and little food. In order to survive such harsh conditions, these organisms have evolved different biochemical and physiological features that often have no other equivalent in terrestrial habitats. Recent analyses have highlighted how the deep sea is one of the most diverse and species-rich habitats on the planet but less explored compared to more accessible sites. Because of their adaptation to this extreme environment, deep-sea species have the potential to produce novel secondary metabolites with potent biological activities. Recent advances in sampling and novel techniques in microorganism culturing and chemical isolation have promoted the discovery of bioactive agents from deep-sea organisms. However, reports of natural products derived from deep-sea species are still scarce, probably because of the difficulty in accessing deep-sea samples, sampling costs and the difficulty in culturing deep-sea organisms. In this review, we give an overview of the potential treasure represented by metabolites produced by deep marine species and their bioactivities for the treatment and prevention of various human pathologies.
Collapse
|
18
|
Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021; 142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most prevalent invasive form of cancer in females and posing a great challenge for overcoming disease burden. The growth in global cancer deaths mandates the discovery of new efficacious natural anti-tumor treatments. In this regard, aquatic species offer a rich supply of possible drugs. Studies have shown that several marine peptides damage cancer cells by a broad range of pathways, including apoptosis, microtubule balance disturbances, and suppression of angiogenesis. Traditional chemotherapeutic agents are characterized by a plethora of side effects, including immune response suppression. The discovery of novel putative anti-cancer peptides with lesser toxicity is therefore necessary and timely, especially those able to thwart multi drug resistance (MDR). This review addresses marine anti-cancer peptides for the treatment of breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
19
|
Muddukrishnaiah K, Akilandeswari K, Prasad S, Shilpa VP. Biologically Active Antimicrobial Compounds from Marine Microorganisms (2005-2019). Curr Pharm Biotechnol 2021; 22:1046-1060. [PMID: 32990534 DOI: 10.2174/1389201021666200929123040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The increase in contagious diseases like nosocomial infections, urinary tract infections, and meningitis has led to the emergence of antimicrobial resistance urgently needs new antimicrobial medication with new modes of action. Some of the antibiotics present in the market have been obtained from terrestrial plants, or extracted semisynthetically from materials which can be fermented. METHODS Marine microorganisms account for approximately 80% of sea biomass. They are essential for the survival and well-being of aquatic habitats due to their indispensable contribution to biogeochemical cycles and biological processes. In marine ecosystems, microorganisms live as microbial communities in seawater, where symbiotic relationships are formed, and their ecological functions are fulfilled. RESULTS Marine microorganisms remain the largest, most diverse and most exciting source of structurally and functionally complex antimicrobial agents. They are extremely involved in their structure and functions. Enormous biological wealth lies in marine habitats. These microorganisms are potential sources of novel antimicrobial compounds to combat the most infectious diseases like nosocomial infections, and urinary tract infections. CONCLUSION This study deals with biologically active antimicrobial compounds taken from marine microorganism source, which was reported between the years 2005 and 2019. This review highlights their chemical groups, their bioactivities and sources. Marine microorganism exploitation techniques have also been reported by the authors.
Collapse
Affiliation(s)
- Krishna Muddukrishnaiah
- Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - K Akilandeswari
- Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Sunnapu Prasad
- Department of Pharmaceutical Chemistry, Sri Ramakrishna Institute of Paramedical Science, College of Pharmacy, Coimbatore, Tamil Nadu 641044, India
| | - V P Shilpa
- Department of Pharmacy, Sanjo College of Pharmaceutical Studies, Vellapara, Palakkad, Kerala 678702, India
| |
Collapse
|
20
|
Xu R, Song Y, Li J, Ju J, Li Q. Chemical Synthesis and Structure-Activity Relationship Study Yield Desotamide a Analogues with Improved Antibacterial Activity. Mar Drugs 2021; 19:md19060303. [PMID: 34073984 PMCID: PMC8225045 DOI: 10.3390/md19060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Desotamides A, a cyclohexapeptide produced by the deep-sea-derived Streptomyces scopuliridis SCSIO ZJ46, displays notable antibacterial activities against strains of Streptococcus pnuemoniae, Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis (MRSE). In this study, to further explore its antibacterial potential and reveal the antibacterial structure-activity relationship of desotamides, 13 cyclopeptides including 10 new synthetic desotamide A analogues and wollamides B/B1/B2 were synthesized and evaluated for their antibacterial activities against a panel of Gram-positive and -negative pathogens. The bioactivity data reveal that residues at position II and VI greatly impact antibacterial activity. The most potent antibacterial analogues are desotamide A4 (13) and A6 (15) where l-allo-Ile at position II was substituted with l-Ile and Gly at position VI was simultaneously replaced by d-Lys or d-Arg; desotamides A4 (13) and A6 (15) showed a 2–4-fold increase of antibacterial activities against a series of Gram-positive pathogens including the prevalent clinical drug-resistant pathogen methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 8–32 μg/mL compared to the original desotamide A. The enhanced antibacterial activity, broad antibacterial spectrum of desotamides A4 and A6 highlighted their potential as new antibiotic leads for further development.
Collapse
Affiliation(s)
- Run Xu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563000, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (R.X.); (Y.S.); (J.L.); (J.J.)
- Correspondence: ; Tel./Fax: +86-20-3406-6449
| |
Collapse
|
21
|
Staś M, Broda MA, Siodłak D. Thiazole-amino acids: influence of thiazole ring on conformational properties of amino acid residues. Amino Acids 2021; 53:673-686. [PMID: 33837859 PMCID: PMC8128816 DOI: 10.1007/s00726-021-02974-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modified thiazole-amino acid (Xaa-Tzl) residues have been found in macrocyclic peptides (e.g., thiopeptides and cyanobactins), which mostly inhibit protein synthesis in Gram + bacteria. Conformational study of the series of model compounds containing this structural motif with alanine, dehydroalanine, dehydrobutyrine and dehydrophenylalanine were performed using DFT method in various environments. The solid-state crystal structure conformations of thiazole-amino acid residues retrieved from the Cambridge Structural Database were also analysed. The studied structural units tend to adopt the unique semi-extended β2 conformation; which is stabilised mainly by N-H⋯NTzl hydrogen bond, and for dehydroamino acids also by π-electron conjugation. The conformational preferences of amino acids with a thiazole ring were compared with oxazole analogues and the role of the sulfur atom in stabilising the conformations of studied peptides was discussed.
Collapse
Affiliation(s)
- Monika Staś
- Faculty of Chemistry, University of Opole, 45-052, Opole, Poland.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo Náměstí 2, 166 10, Praha 6, Czech Republic.
| | | | - Dawid Siodłak
- Faculty of Chemistry, University of Opole, 45-052, Opole, Poland.
| |
Collapse
|
22
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
23
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
24
|
Whole-Genome Sequence Analysis of Paenibacillus alvei JR949 Revealed Biosynthetic Gene Clusters Coding for Novel Antimicrobials. Curr Microbiol 2021; 78:1168-1176. [PMID: 33616690 DOI: 10.1007/s00284-021-02393-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
The increased prevalence of multidrug-resistant pathogens poses a significant clinical threat, and hence, the discovery of novel antibiotics is the need of the hour. Several attempts are being made worldwide to screen and identify newer antibiotics from various microbial sources. The genus Paenibacillus is known for its biosynthetic potential and metabolic versatility in producing several secondary metabolites. In this study, we isolated Paenibacillus alvei strain JR949 from the soil, which exhibited antimicrobial activity against Enteropathogenic Escherichia coli (EPEC), Pseudomonas aeruginosa (PAO1), and methicillin-resistant Staphylococcus aureus (MRSA). The whole genome of this strain was sequenced using the Illumina platform. The genome mining of the draft genome sequence revealed a total of 31 biological gene clusters (BGCs) responsible for the synthesis of secondary metabolites. The construction of the similarity network of the BGCs and the comparative analysis with the genetically related strains aided the identification of metabolites produced by this strain. We identified BGCs coding for paenibactin, paenibacterin, anabaenopeptin NZ857, icosalide A/B, polymyxin, and bicornutinA1/A2 with 100% similarity. The BGCs with lower sequence similarity to paenibacterin, polymyxin B, colistin A/B, pellasoren, tridecaptin, pelgipeptin, and marthiapeptide were also identified. Furthermore, 13 putative NRPS BGCs, 3 NRPS-T1PKS hybrid clusters, a T1PKS, and a bacteriocin BGC were identified with very low similarity (≤ 25%) or no similarity with known antibiotics. Further experimental investigations may result in the discovery of novel antimicrobial drugs.
Collapse
|
25
|
Newman DJ, Cragg GM. Plant Endophytes and Epiphytes: Burgeoning Sources of Known and "Unknown" Cytotoxic and Antibiotic Agents? PLANTA MEDICA 2020; 86:891-905. [PMID: 32023633 DOI: 10.1055/a-1095-1111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the last 20 or so years, the influence of endophytes and, quite recently, epiphytes of plants upon the compounds found in those plants, which were usually assumed to be phytochemicals produced by the plant for a variety of reasons, often as a defense against predators, is becoming more evident, in particular in the case of antitumor agents originally isolated from plant sources, though antibiotic agents might also be found, particularly from epiphytes. In this review, we started with the first report in 1993 of a taxol-producing endophyte and then expanded the compounds discussed to include camptothecin, the vinca alkaloids, podophyllotoxin, and homoharringtonine from endophytic microbes and then the realization that maytansine is not a plant secondary metabolite at all, and that even such a well-studied plant such as Arabidopsis thaliana has a vast repertoire of potential bioactive agents in its leaf epiphytic bacteria. We have taken data from a variety of sources, including a reasonable history of these discoveries that were not given in recent papers by us, nor in other papers covering this topic. The sources included the Scopus database, but we also performed other searches using bibliographic tools, thus, the majority of the papers referenced are the originals, though we note some very recent papers that have built on previous results. We concluded with a discussion of the more modern techniques that can be utilized to "persuade" endophytes and epiphytes to switch on silent biosynthetic pathways and how current analytical techniques may aid in evaluating such programs. We also comment at times on some findings, particularly in the case of homoharringtonine, where there are repetitious data reports differing by a few years claiming the same endophyte as the producer.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, NCI Natural Products Branch, Wayne, PA, USA
| | - Gordon M Cragg
- NIH Special Volunteer, NCI Natural Products Branch, Gaithersburg, MD, USA
| |
Collapse
|
26
|
Wang C, Lu Y, Cao S. Antimicrobial compounds from marine actinomycetes. Arch Pharm Res 2020; 43:677-704. [PMID: 32691395 DOI: 10.1007/s12272-020-01251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 04/03/2023]
Abstract
Marine actinomycetes were the main origin of marine natural products in the past 40 years. This review was to present the sources, structures and antimicrobial activities of 313 new natural products from marine actinomycetes reported from 1976 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yuanyu Lu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI, 96720, USA.
| |
Collapse
|
27
|
Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, Jankie S, Gautam H, Singh S, Karan SK, Maharaj S, Fuloria S, Shrivastava J, Agarwal A, Singh S, Kishor A, Jadon G, Sharma A. Natural Bioactive Thiazole-Based Peptides from Marine Resources: Structural and Pharmacological Aspects. Mar Drugs 2020; 18:md18060329. [PMID: 32599909 PMCID: PMC7345825 DOI: 10.3390/md18060329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide–peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
- Correspondence: (R.D.); (S.D.); Tel.: +1-868-493-5655 (R.D.); +1-787-758-2525 (ext. 5413) (S.D.)
| | - Neeraj Kumar Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Suresh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Rita Mourya
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, P.O. Box 196, Gondar 6200, Ethiopia;
| | - Suresh V. Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia;
| | - Satish Jankie
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Hemendra Gautam
- Arya College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, Nawabganj, Bareilly 243407, Uttar Pardesh, India;
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Ideal Institute of Pharmacy, Wada, Palghar 421303, Maharashtra, India;
| | - Sanjay Kumar Karan
- Department of Pharmaceutical Chemistry, Seemanta Institute of Pharmaceutical Sciences, Jharpokharia, Mayurbhanj 757086, Orissa, India;
| | - Sandeep Maharaj
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Shivkanya Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia; (N.K.F.); (S.F.)
| | - Jyoti Shrivastava
- Department of Pharmaceutical Chemistry, The Oxford College of Pharmacy, Hongasandra, Bangalore 560068, Karnataka, India;
| | - Alka Agarwal
- Department of Pharmaceutical Chemistry, U.S. Ostwal Institute of Pharmacy, Mangalwad, Chittorgarh 313603, Rajasthan, India;
| | - Shamjeet Singh
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago; (S.J.); (S.M.); (S.S.)
| | - Awadh Kishor
- Department of Pharmaceutical Biotechnology, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Gunjan Jadon
- Department of Pharmaceutical Chemistry, Shrinathji Institute of Pharmacy, Nathdwara 313301, Rajsamand, Rajasthan, India;
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| |
Collapse
|
28
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
29
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
30
|
Liu Q, Liu Z, Sun C, Shao M, Ma J, Wei X, Zhang T, Li W, Ju J. Discovery and Biosynthesis of Atrovimycin, an Antitubercular and Antifungal Cyclodepsipeptide Featuring Vicinal-dihydroxylated Cinnamic Acyl Chain. Org Lett 2019; 21:2634-2638. [PMID: 30958008 DOI: 10.1021/acs.orglett.9b00618] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atrovimycin (1), a cyclodepsipeptide containing a unique vicinal-hydroxylated cinnamic acyl chain, was isolated and elucidated from Streptomyces atrovirens LQ13. The biosynthetic pathway of 1 was achieved, revealing cytochrome P450 (Avm43) and epoxide hydrolase (Avm29) enzymes constructing the vicinal-dihydroxy substitution, as well as a tailoring P450 (Avm28) enzyme catalyzing β-hydroxylation of the l-Phe moiety. Atrovimycin shows in vitro antifungal activity and antitubercular activity against Mycobacterium tuberculosis H37Rv both in vitro (with MIC of 2.5 μg/mL) and in vivo.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-Sen University , Guangzhou 510275 , China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL) , Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou 510530 , China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Mingwei Shao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL) , Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS) , Guangzhou 510530 , China.,University of Chinese Academy of Sciences , Beijing 110039 , China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , China.,University of Chinese Academy of Sciences , Beijing 110039 , China
| |
Collapse
|
31
|
Liu Y, Ma Z, Zhao X, Shan Q, He P, Du Y, Wang Y. Simple and Efficient Synthesis of Anithiactins A‐C, Thiasporine A and Their Potent Antitumor 2,4‐Linked Oligothiazole Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201803664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Liu
- School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Zhanwei Ma
- School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Xiangyun Zhao
- School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Qiuli Shan
- School of Biological Science and TechnologyUniversity of Jinan Jinan 250022 China
| | - Peng He
- State Key Laboratory of Environmental Chemistry and Eco-toxicologyResearch Center for Eco-Environmental SciencesChinese Academy of Sciences Beijing 100085 China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicologyResearch Center for Eco-Environmental SciencesChinese Academy of Sciences Beijing 100085 China
| | - Yibin Wang
- Key Laboratory of Marine Ecology and Environmental Science and EngineeringFirst Institute of Oceanography State Oceanic Administration Qingdao 266061 China
| |
Collapse
|
32
|
Oberheide A, Pflanze S, Stallforth P, Arndt HD. Solid-Phase-Based Total Synthesis and Stereochemical Assignment of the Cryptic Natural Product Aurantizolicin. Org Lett 2019; 21:729-732. [DOI: 10.1021/acs.orglett.8b03940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ansgar Oberheide
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| | - Sebastian Pflanze
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Chemistry of Microbial Communication, Beutenbergstr. 11A, D-07745 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstr. 10, D-07743 Jena, Germany
| |
Collapse
|
33
|
Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, de Pascale D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar Drugs 2018; 16:md16100355. [PMID: 30274274 PMCID: PMC6213577 DOI: 10.3390/md16100355] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities. This review covers novel antibiotics isolated from deep-sea microorganisms. The chemical classes of the compounds, their bioactivities, and the sources of organisms are outlined. Furthermore, the authors report recent advances in techniques and strategies for the exploitation of deep-sea microorganisms.
Collapse
Affiliation(s)
- Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, 31400 Toulouse, France.
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| | - Grant Garren January
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, I-50019 Florence, Italy.
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK.
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| |
Collapse
|
34
|
Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol 2018; 3:909-919. [PMID: 30038309 DOI: 10.1038/s41564-018-0200-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.
Collapse
|
35
|
Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P. Actinobacteria-Derived peptide antibiotics since 2000. Peptides 2018; 103:48-59. [PMID: 29567053 DOI: 10.1016/j.peptides.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 11/23/2022]
Abstract
Members of the Actinobacteria, including Streptomyces spp., Kutzneria sp. Actinoplanes spp., Actinomycete sp., Nocardia sp., Brevibacteriumsp.,Actinomadura spp., Micromonospora sp., Amycolatopsis spp., Nonomuraea spp., Nocardiopsis spp., Marinactinospora sp., Rhodococcus sp., Lentzea sp., Actinokineospora sp., Planomonospora sp., Streptomonospora sp., and Microbacterium sp., are an important source of structurally diverse classes of short peptides of ∼30 residues or fewer that will likely play an important role in new antibiotic development and discovery. Additionally, many have unique structures that make them recalcitrant to traditional modes of drug resistance via novel mechanisms, and these are ideal therapeutic tools and potential alternatives to current antibiotics. The need for novel antibiotic is urgent, and this review summarizes 199 Actinobacteria compounds published since 2000, including 35 cyclic lipopeptides containing piperazic or pipecolic acids, eight aromatic peptides, five glycopeptides, 21 bicyclic peptides, 44 other cyclic lipopeptides, five linear lipopeptides, six 2,5-diketopiperazines, one dimeric peptide, four nucleosidyl peptides, two thioamide-containing peptides, 25 thiopeptides, nine lasso peptides, and 34 typical cyclic peptides. The current and potential therapeutic applications of these peptides, including their structure, antituberculotic, antibacterial, antifungal, antiviral, anti-brugia, anti-plasmodial, and anti-trypanosomal activities, are discussed.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
36
|
Phyo YZ, Ribeiro J, Fernandes C, Kijjoa A, Pinto MMM. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities. Molecules 2018; 23:E306. [PMID: 29385101 PMCID: PMC6017543 DOI: 10.3390/molecules23020306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, many naturally occurring peptides have attracted the attention of medicinal chemists due to their promising applicability as pharmaceuticals or as models for drugs used in therapeutics. Marine peptides are chiral molecules comprising different amino acid residues. Therefore, it is essential to establish the configuration of the stereogenic carbon of their amino acid constituents for a total characterization and further synthesis to obtain higher amount of the bioactive marine peptides or as a basis for structural modifications for more potent derivatives. Moreover, it is also a crucial issue taking into account the mechanisms of molecular recognition and the influence of molecular three-dimensionality in this process. In this review, a literature survey covering the report on the determination of absolute configuration of the amino acid residues of diverse marine peptides by chromatographic methodologies is presented. A brief summary of their biological activities was also included emphasizing to the most promising marine peptides. A case study describing an experience of our group was also included.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Gogineni V, Hamann MT. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim Biophys Acta Gen Subj 2018; 1862:81-196. [PMID: 28844981 PMCID: PMC5918664 DOI: 10.1016/j.bbagen.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, United States.
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
38
|
Chen YX, Liu C, Liu N, Wu Y, Zhao QJ, Hu HG, Li X, Zou Y. Total Synthesis and Antibacterial Study of Cyclohexapeptides Desotamide B, Wollamide B and Their Analogs. Chem Biodivers 2017; 15. [DOI: 10.1002/cbdv.201700414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Yi-Xing Chen
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| | - Chao Liu
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| | - Nan Liu
- China State Institute of Pharmaceutical Industry; Shanghai 200433 P. R. China
| | - Ye Wu
- School of Pharmacy; Chengdu Medical Collage; Chengdu 610083 P. R. China
| | - Qing-Jie Zhao
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| | - Hong-Gang Hu
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| | - Xiang Li
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| | - Yan Zou
- Department of Organic Chemistry; School of Pharmacy; Second Military Medical University; Shanghai 200433 P. R. China
| |
Collapse
|
39
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
40
|
Song Y, Li Q, Qin F, Sun C, Liang H, Wei X, Wong NK, Ye L, Zhang Y, Shao M, Ju J. Neoabyssomicins A–C, polycyclic macrolactones from the deep-sea derived Streptomyces koyangensis SCSIO 5802. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Ma J, Huang H, Xie Y, Liu Z, Zhao J, Zhang C, Jia Y, Zhang Y, Zhang H, Zhang T, Ju J. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat Commun 2017; 8:391. [PMID: 28855504 PMCID: PMC5577134 DOI: 10.1038/s41467-017-00419-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/28/2017] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis remains one of the world’s deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1–6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6–8) from the respective mutants. Most impressively, ilamycins E1/E2, which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads. Tuberculosis (TB) remains one of the world’s deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.
Collapse
Affiliation(s)
- Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jin Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxi Jia
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2017; 15:md15090273. [PMID: 28850074 PMCID: PMC5618412 DOI: 10.3390/md15090273] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA.
| | | | | |
Collapse
|
43
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
44
|
Gui C, Zhang S, Zhu X, Ding W, Huang H, Gu YC, Duan Y, Ju J. Antimicrobial Spirotetronate Metabolites from Marine-Derived Micromonospora harpali SCSIO GJ089. JOURNAL OF NATURAL PRODUCTS 2017; 80:1594-1603. [PMID: 28489382 DOI: 10.1021/acs.jnatprod.7b00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two new spirotetronate aglycones, 22-dehydroxymethyl-kijanolide (1) and 8-hydroxy-22-dehydroxymethyl-kijanolide (2), along with seven new spirotetronate glycosides, microsporanates A-F (3-8) and tetrocarcin P (9), together with three known tetrocarcins [tetrocarcins A (10), B (11), and AC6H (12)], were isolated from fermentation broths of the marine-derived Micromonospora harpali SCSIO GJ089. The structures of 1-9 were elucidated on the basis of 1D and 2D NMR and MS spectroscopic data. Compounds 3-8 feature an α,β-unsaturated carbonyl moiety within their spirotetronate skeletons. Moreover, compounds 3-12 displayed strong to moderate antibacterial activities against Gram positive bacteria Bacillus thuringiensis BT01 and B. subtilis BS01 with MIC values ranging from 0.016 to 8.0 μg/mL.
Collapse
Affiliation(s)
- Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 110039, People's Republic of China
| | - Shanwen Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 110039, People's Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , 172 Tongzipo Road, Changsha 410013, People's Republic of China
| | - Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 110039, People's Republic of China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, U.K
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , 172 Tongzipo Road, Changsha 410013, People's Republic of China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 110039, People's Republic of China
| |
Collapse
|
45
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
46
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
47
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
48
|
Abstract
This is an update report on marine natural products isolated from cold-water organisms in the last decade, following the previous review that covered the literature up to 2005. Emphasis is on structural assignments and biological activity.
Collapse
Affiliation(s)
- Sylvia Soldatou
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| | - Bill J. Baker
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| |
Collapse
|
49
|
Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem Pharmacol 2016; 134:18-34. [PMID: 27867014 DOI: 10.1016/j.bcp.2016.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
This review highlights cave habitats, cave microbiomes and their potential for drug discovery. Such studies face many challenges, including access to remote and pristine caves, and sample collection and transport. Inappropriate physical and chemical growth conditions in the laboratory for the isolation and cultivation of cave microorganisms pose many complications including length of cultivation; some cave microorganisms can take weeks and even months to grow. Additionally, DNA extraction from cave environmental samples may be difficult due to the high concentration of various minerals that are natural DNA blocking agents. Once cave microorganisms are grown in the lab, other problems often arise, such as maintenance of pure culture, consistency of antimicrobial activity and fermentation conditions for antimicrobial production. In this review, we suggest that, although based on what has been done in the field, there is potential in using cave microorganisms to produce antimicrobial agents, one needs to be highly committed and prepared.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Vilnius University, Lithuania
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada.
| |
Collapse
|
50
|
Schwenk S, Ronco C, Oberheide A, Arndt HD. Biomimetic Synthesis of Urukthapelstatin A by Aza-Wittig Ring Contraction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sebastian Schwenk
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Cyril Ronco
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Ansgar Oberheide
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität; Institut für Organische Chemie und Makromolekulare Chemie; Humboldtstr. 10 07743 Jena Germany
| |
Collapse
|