1
|
França WWM, Filho SDM, Cavalcante LAO, Gomes MAAS, Gonçalves MTV, Diniz EGM, Nascimento WRC, Neto RGL, Albuquerque MCPA, Filho IJC, Araújo HDA, Aires AL, Vieira JRC. Methanolic Extract of Rhizophora mangle (Rhizophoraceae) Leaves: Phytochemical Characterization and Anthelmintic Evaluation against Schistosoma mansoni. Pharmaceuticals (Basel) 2024; 17:1178. [PMID: 39338340 PMCID: PMC11435278 DOI: 10.3390/ph17091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Rhizophora mangle is commonly used in traditional medicine to treat infections, reduce inflammation, and promote healing. This study aimed to analyze the phytochemical profile of the methanolic extract of R. mangle leaves (MELRm) and evaluate its in vitro schistosomicidal activity against Schistosoma mansoni as well as its cytotoxicity. Plant material was collected in Itamaracá City, Pernambuco, Brazil. The extract was analyzed using UV/Vis spectrophotometry and high-performance liquid chromatography (HPLC). The motility, mortality, and cell viability of adult worms were assessed in a schistosomicidal assay, while cytotoxicity was evaluated through a colorimetric assay with MTT on RAW 264.7 cells. The primary compounds identified in MELRm were phenolic compounds. In the schistosomicidal assay, all concentrations of MELRs induced changes in the motility of adult worms. At a concentration of 400 μg/mL, MELRs resulted in 56.25% mortality after 72 h of incubation. After 120 h, mortality rates of 75%, 62.5%, and 50% were observed at MELRm concentrations of 400, 200, and 100 μg/mL, respectively. No eggs were detected at any MELRm concentration. MELRs did not show cytotoxicity towards RAW 264.7 cells at the concentrations tested. These results indicate that MELRs demonstrate schistosomicidal activity in vitro, suggesting they are promising candidates for in vivo studies.
Collapse
Affiliation(s)
- Wilza W. M. França
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
- Centro de Ciências Médicas, Programa de Pós-Graduação em Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Sérgio D. Magalhães Filho
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
| | - Lucas A. O. Cavalcante
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Mary A. A. S. Gomes
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Maria T. V. Gonçalves
- Centro de Ciências Médicas, Programa de Pós-Graduação em Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Emily G. M. Diniz
- Centro de Ciências Médicas, Programa de Pós-Graduação em Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Wheverton R. C. Nascimento
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
| | - Reginaldo G. Lima Neto
- Centro de Ciências Médicas, Programa de Pós-Graduação em Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Iranildo J. Cruz Filho
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Laboratório de Biotecnologia e Fármacos, Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Vitória de Santo Antão 55608-680, PE, Brazil
| | - André L. Aires
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
- Centro de Ciências Médicas, Programa de Pós-Graduação em Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil
| | - Jeymesson R. C. Vieira
- Centro de Biociência, Programa de Pós-Graduação em Morfotecnologia, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-501, PE, Brazil; (W.W.M.F.); (J.R.C.V.)
| |
Collapse
|
2
|
Zarrinkar F, Sharifi I, Salarkia E, Keyhani A, Babaei Z, Khamesipour A, Hakimi Parizi M, Molaakbari E, Sharifi F, Dabiri S, Bamorovat M. Assessment of the antileishmanial activity of diallyl sulfide combined with meglumine antimoniate on Leishmania major: Molecular docking, in vitro, and animal model. PLoS One 2024; 19:e0307537. [PMID: 39213335 PMCID: PMC11364230 DOI: 10.1371/journal.pone.0307537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, no safe vaccine against leishmaniasis is available. So far, different control strategies against numerous reservoir hosts and biological vectors have not been environment-friendly and feasible. Hence, employing medicinal components and conventional drugs could be a promising approach to developing novel therapeutic alternatives. This study aimed to explore diallyl sulfide (DAS), a dynamic constituent of garlic, alone and in a mixture with meglumine antimoniate (MAT as standard drug) using in vitro and animal model experiments against Leishmania major stages. The binding affinity of DAS and four major defense elements of the immune system (iNOS, IFN-ɣ, IL-12, and TNF-α) was used to predict the predominant binding mode for molecular docking configurations. Herein, we conducted a broad range of experiments to monitor and assess DAS and MAT potential treatment outcomes. DAS, combined with MAT, displayed no cytotoxicity and employed a powerful anti-leishmanial activity, notably against the clinical stage. The function mechanism involved immunomodulation through the induction of Th1 cytokine phenotypes, triggering a high apoptotic profile, reactive oxygen species (ROS) production, and antioxidant enzymes. This combination significantly decreased cutaneous lesion diameter and parasite load in BALB/c mice. The histopathological findings performed the infiltration of inflammatory cells associated with T-lymphocytes, particularly CD4+ phenotypes, as determined by biochemical markers in alleviating the amastigote stage and improving the pathological changes in L. major infected BALB/c mice. Therefore, DAS and MAT deserve further advanced therapeutic development and should be considered as possible candidates for treating volunteer cases with cutaneous leishmaniasis in designing an upcoming clinical trial.
Collapse
Affiliation(s)
- Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Clemente CM, Murillo J, Garro AG, Arbeláez N, Pineda T, Robledo SM, Ravetti S. Piperine, quercetin, and curcumin identified as promising natural products for topical treatment of cutaneous leishmaniasis. Parasitol Res 2024; 123:185. [PMID: 38632113 PMCID: PMC11023993 DOI: 10.1007/s00436-024-08199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) E Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad de Buenos Aires, C1428EHA, Argentina
| | - Javier Murillo
- Grupo Estudios Preclínicos Para El Desarrollo de Productos, Corporación de Innovación CIDEPRO, Medellín, Colombia
- PECET-Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Ariel G Garro
- Ministerio de Ciencia y Tecnología de La Provincia de Córdoba (MinCyT-CBA), Álvarez de Arenales 230, CP 5004, Córdoba, Argentina
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, CP 5900, Villa María, Argentina
| | - Natalia Arbeláez
- Grupo Estudios Preclínicos Para El Desarrollo de Productos, Corporación de Innovación CIDEPRO, Medellín, Colombia
- PECET-Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Tatiana Pineda
- Grupo Estudios Preclínicos Para El Desarrollo de Productos, Corporación de Innovación CIDEPRO, Medellín, Colombia
- PECET-Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| | - Soledad Ravetti
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, CP 5900, Villa María, Argentina.
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), CP 5900, Villa María, Argentina.
| |
Collapse
|
4
|
Shirvalilou S, Khoei S, Khoee S, Soleymani M, Shirvaliloo M, Ali BH, Mahabadi VP. Dual-drug delivery by thermo-responsive Janus nanogel for improved cellular uptake, sustained release, and combination chemo-thermal therapy. Int J Pharm 2024; 653:123888. [PMID: 38342325 DOI: 10.1016/j.ijpharm.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Soleymani
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Milad Shirvaliloo
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, United Kingdom
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Memariani H, Memariani M, Ghasemian A. Quercetin as a Promising Antiprotozoan Phytochemical: Current Knowledge and Future Research Avenues. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7632408. [PMID: 38456097 PMCID: PMC10919984 DOI: 10.1155/2024/7632408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Despite tremendous advances in the prevention and treatment of infectious diseases, only few antiparasitic drugs have been developed to date. Protozoan infections such as malaria, leishmaniasis, and trypanosomiasis continue to exact an enormous toll on public health worldwide, underscoring the need to discover novel antiprotozoan drugs. Recently, there has been an explosion of research into the antiprotozoan properties of quercetin, one of the most abundant flavonoids in the human diet. In this review, we tried to consolidate the current knowledge on the antiprotozoal effects of quercetin and to provide the most fruitful avenues for future research. Quercetin exerts potent antiprotozoan activity against a broad spectrum of pathogens such as Leishmania spp., Trypanosoma spp., Plasmodium spp., Cryptosporidium spp., Trichomonas spp., and Toxoplasma gondii. In addition to its immunomodulatory roles, quercetin disrupts mitochondrial function, induces apoptotic/necrotic cell death, impairs iron uptake, inhibits multiple enzymes involved in fatty acid synthesis and the glycolytic pathways, suppresses the activity of DNA topoisomerases, and downregulates the expression of various heat shock proteins in these pathogens. In vivo studies also show that quercetin is effective in reducing parasitic loads, histopathological damage, and mortality in animals. Future research should focus on designing effective drug delivery systems to increase the oral bioavailability of quercetin. Incorporating quercetin into various nanocarrier systems would be a promising approach to manage localized cutaneous infections. Nevertheless, clinical trials are needed to validate the efficacy of quercetin in treating various protozoan infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
dos Santos JV, Medina JM, Dias Teixeira KL, Agostinho DMJ, Chorev M, Diotallevi A, Galluzzi L, Aktas BH, Gazos Lopes U. Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections. Pathogens 2024; 13:104. [PMID: 38392842 PMCID: PMC10893125 DOI: 10.3390/pathogens13020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.
Collapse
Affiliation(s)
- José Vitorino dos Santos
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | - Jorge Mansur Medina
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | | | - Daniel Marcos Julio Agostinho
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | - Michael Chorev
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.D.)
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.D.)
| | - Bertal Huseyin Aktas
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| |
Collapse
|
7
|
Swami R, Aggarwal K. The Prospects of Phytomedicines and Nanomedicines to Treat Leishmaniasis: A Comprehensive Review. Curr Drug Res Rev 2024; 16:308-318. [PMID: 37489778 DOI: 10.2174/2589977515666230725105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
The global shift in lifestyle has prompted health agencies to redirect their focus from poverty-related diseases to the emergence of lifestyle diseases prevalent in privileged regions. As a result, these diseases have been labeled as "neglected diseases," receiving limited research attention, funding, and resources. Neglected Tropical Diseases (NTDs) encompass a diverse group of vector-borne protozoal diseases that are prevalent in tropical areas worldwide. Among these NTDs is leishmaniasis, a disease that affects populations globally and manifests as skin abnormalities, internal organ involvement, and mucous-related abnormalities. Due to the lack of effective and safe medicines and vaccines, it is crucial to explore alternative resources. Phytomedicine, which comprises therapeutic herbal constituents with anti-leishmanial properties, holds promise but is limited by its poor physicochemical properties. The emerging field of nanomedicine has shown remarkable potential in revitalizing the anti-leishmanial efficacy of these phytoconstituents. In this investigation, we aim to highlight and discuss key plant constituents in combination with nanotechnology that have been explored in the fight against leishmaniasis.
Collapse
Affiliation(s)
- Rajan Swami
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Keshav Aggarwal
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Peer GDG, Priyadarshini A, Gupta A, Vibhuti A, Raj VS, Chang CM, Pandey RP. Exploration of Antileishmanial Compounds Derived from Natural Sources. Antiinflamm Antiallergy Agents Med Chem 2024; 23:1-13. [PMID: 38279725 DOI: 10.2174/0118715230270724231214112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/28/2024]
Abstract
AIMS Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabolites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs. MATERIALS AND METHODS To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmaniasis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis. RESULTS This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against promastigote, axenic, and intracellular amastigote forms. CONCLUSION Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.
Collapse
Affiliation(s)
- Gajala Deethamvali Ghouse Peer
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| | - Anjali Priyadarshini
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| | - Archana Gupta
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| | - Arpana Vibhuti
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| | - Vethakkani Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist. Taoyuan City, 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, 131 029, Haryana, India
| |
Collapse
|
9
|
Alves OJA, Ozelin SD, Magalhães LF, Candido ACBB, Gimenez VMM, Silva MLAE, Cunha WR, Januário AH, Tavares DC, Magalhães LG, Pauletti PM. HPLC method for quantifying verbascoside in Stizophyllum perforatum and assessment of verbascoside acute toxicity and antileishmanial activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1324680. [PMID: 38143582 PMCID: PMC10749199 DOI: 10.3389/fpls.2023.1324680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
We report the chemical composition of the crude leaf extracts obtained from Stizophyllum perforatum (Cham.) Miers (Bignoniaceae), a simple high-performance liquid chromatography-diode array detection (HPLC-DAD) method based on mangiferin as an internal standard to quantify verbascoside, and the verbascoside acute oral toxicity and antileishmanial activity. HPLC-high-resolution mass spectrometry-DAD (HPLC-HRMS-DAD) analyses of the crude ethanol S. perforatum leaf extracts (CE-1 and CE-2) revealed that verbascoside was the major constituent in both extracts. CE-1 was purified, and verbascoside and casticin, among other compounds, were isolated. The developed HPLC-DAD method was validated and met the required standards. Investigation of the CE-2 acute toxicity indicated a lethal dose (LD50) greater than 2,000 mg/kg of body weight. Both CE-1 and CE-2 exhibited antileishmanial activity. The isolated compounds, verbascoside and casticin, also displayed antileishmanial activity with effective concentrations (IC50) of 6.23 and 24.20 µM against promastigote forms and 3.71 and 18.97 µM against amastigote forms of Leishmania amazonensis, respectively, but they were not cytotoxic to J774A.1 macrophages. Scanning electron microscopy of the L. amazonensis promastigotes showed that the parasites became more rounded and that their plasma membrane was altered in the presence of verbascoside. Additionally, transmission electron microscopy demonstrated that vacuoles emerged, lipids accumulated, kinetoplast size increased, and interstitial extravasation occurred in L. amazonensis promastigotes exposed to verbascoside. These findings suggest that S. perforatum is a promising candidate for further in vivo investigations against L. amazonensis.
Collapse
Affiliation(s)
| | - Saulo Duarte Ozelin
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | | | | | - Valéria Maria Melleiro Gimenez
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Wilson Roberto Cunha
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Ana Helena Januário
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Denise Crispim Tavares
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Lizandra Guidi Magalhães
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Patricia Mendonça Pauletti
- Center for Research in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
10
|
Obeid S, Berbel-Manaia E, Nicolas V, Dennemont I, Barbier J, Cintrat JC, Gillet D, Loiseau PM, Pomel S. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26:108144. [PMID: 37915600 PMCID: PMC10616420 DOI: 10.1016/j.isci.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Antileishmanial chemotherapy is currently limited due to severe toxic side effects and drug resistance. Hence, new antileishmanial compounds based on alternative approaches, mainly to avoid the emergence of drug resistance, are needed. The present work aims to decipher the mechanism of action of an antileishmanial drug candidate, named VP343, inhibiting intracellular Leishmania infantum survival via the host cell. Cell imaging showed that VP343 interferes with the fusion of parasitophorous vacuoles and host cell late endosomes and lysosomes, leading to lysosomal cholesterol accumulation and ROS overproduction within host cells. Proteomic analyses showed that VP343 perturbs host cell vesicular trafficking as well as cholesterol synthesis/transport pathways. Furthermore, a knockdown of two selected targets involved in vesicle-mediated transport, Pik3c3 and Sirt2, resulted in similar antileishmanial activity to VP343 treatment. This work revealed potential host cell pathways and targets altered by VP343 that would be of interest for further development of host-directed antileishmanial drugs.
Collapse
Affiliation(s)
- Sameh Obeid
- Université Paris-Saclay, CNRS BioCIS, 91400 Orsay, France
| | | | - Valérie Nicolas
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | | | - Julien Barbier
- Université Paris-Saclay, UMS-IPSIT, Microscopy Facility, 92019 Châtenay-Malabry, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
11
|
Lourenço EMG, da Silva F, das Neves AR, Bonfá IS, Ferreira AMT, Menezes ACG, da Silva MEC, Dos Santos JT, Martines MAU, Perdomo RT, Toffoli-Kadri MC, G Barbosa E, Saba S, Beatriz A, Rafique J, de Arruda CCP, de Lima DP. Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. ACS Infect Dis 2023; 9:2048-2061. [PMID: 37772925 DOI: 10.1021/acsinfecdis.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of Leishmania amazonensis, also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Fernanda da Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Iluska S Bonfá
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Alda Maria T Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Adriana C G Menezes
- Biotério Central, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Maria E C da Silva
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jéssica T Dos Santos
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Marco A U Martines
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Renata T Perdomo
- Laboratório de Biologia Molecular e Cultura de Células, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 59012-570, RN, Brazil
| | - Sumbal Saba
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Adilson Beatriz
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jamal Rafique
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Carla C P de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| |
Collapse
|
12
|
Maciuk A, Mazier D, Duval R. Future antimalarials from Artemisia? A rationale for natural product mining against drug-refractory Plasmodium stages. Nat Prod Rep 2023; 40:1130-1144. [PMID: 37021639 DOI: 10.1039/d3np00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Covering: up to 2023Infusions of the plants Artemisia annua and A. afra are gaining broad popularity to prevent or treat malaria. There is an urgent need to address this controversial public health question by providing solid scientific evidence in relation to these uses. Infusions of either species were shown to inhibit the asexual blood stages, the liver stages including the hypnozoites, but also the sexual stages, the gametocytes, of Plasmodium parasites. Elimination of hypnozoites and sterilization of mature gametocytes remain pivotal elements of the radical cure of P. vivax, and the blockage of P. vivax and P. falciparum transmission, respectively. Drugs active against these stages are restricted to the 8-aminoquinolines primaquine and tafenoquine, a paucity worsened by their double dependence on the host genetic to elicit clinical activity without severe toxicity. Besides artemisinin, these Artemisia spp. contain many natural products effective against Plasmodium asexual blood stages, but their activity against hypnozoites and gametocytes was never investigated. In the context of important therapeutic issues, we provide a review addressing (i) the role of artemisinin in the bioactivity of these Artemisia infusions against specific parasite stages, i.e., alone or in association with other phytochemicals; (ii) the mechanisms of action and biological targets in Plasmodium of ca. 60 infusion-specific Artemisia phytochemicals, with an emphasis on drug-refractory parasite stages (i.e., hypnozoites and gametocytes). Our objective is to guide the strategic prospecting of antiplasmodial natural products from these Artemisia spp., paving the way toward novel antimalarial "hit" compounds either naturally occurring or Artemisia-inspired.
Collapse
Affiliation(s)
| | - Dominique Mazier
- CIMI, CNRS, Inserm, Faculté de Médecine Sorbonne Université, 75013 Paris, France
| | - Romain Duval
- MERIT, IRD, Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
13
|
Afonso RC, Yien RMK, de Siqueira LBDO, Simas NK, Dos Santos Matos AP, Ricci-Júnior E. Promising natural products for the treatment of cutaneous leishmaniasis: A review of in vitro and in vivo studies. Exp Parasitol 2023; 251:108554. [PMID: 37268108 DOI: 10.1016/j.exppara.2023.108554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Although there are available treatments for cutaneous leishmaniasis (CL), the drugs used are far from ideal, toxic, and costly, in addition to the challenge faced by the development of resistance. Plants have been used as a source of natural compounds with antileishmanial action. However, few have reached the market and become phytomedicines with registration in regulatory agencies. Difficulties related to the extraction, purification, chemical identification, efficacy, safety, and production in sufficient quantity for clinical studies, hinder the emergence of new effective phytomedicines against leishmaniasis. Despite the difficulties reported, the major research centers in the world see that natural products are a trend concerning the treatment of leishmaniasis. The present work consists of a literature review of articles with in vivo studies, covering the period from January 2011 to December 2022, providing an overview of promising natural products for CL treatment. The papers show encouraging antileishmanial action of natural compounds with reduced parasite load and lesion size in animal models, suggesting new strategies for the treatment of the disease. The results reported in this review show advances in using natural products as safe and effective formulations, which can stimulate clinical studies to establish clinical therapy. In conclusion, the information in this review article serves as a preliminary basis for establishing a therapeutic protocol for future clinical trials that can validate the safety and efficacy of natural compounds, providing the development of affordable and safe phytomedicines for the treatment of CL.
Collapse
Affiliation(s)
- Rhuane Coutinho Afonso
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil
| | - Raíssa Mara Kao Yien
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil; Laboratory of Natural Products and Biological Assays, Department of Natural Products and Food, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Naomi Kato Simas
- Laboratory of Natural Products and Biological Assays, Department of Natural Products and Food, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Barazorda-Ccahuana HL, Goyzueta-Mamani LD, Candia Puma MA, Simões de Freitas C, de Sousa Vieria Tavares G, Pagliara Lage D, Ferraz Coelho EA, Chávez-Fumagalli MA. Computer-aided drug design approaches applied to screen natural product's structural analogs targeting arginase in Leishmania spp. F1000Res 2023; 12:93. [PMID: 37424744 PMCID: PMC10323282 DOI: 10.12688/f1000research.129943.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa, Peru
| | - Mayron Antonio Candia Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru
| | - Camila Simões de Freitas
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieria Tavares
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Departamento de Patologia Clínica, COLTEC, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| |
Collapse
|
15
|
dos Santos RF, Da Silva T, Brito ACDS, Inácio JD, Ventura BD, Mendes MAP, Azevedo BF, Siqueira LM, Almeida-Amaral EE, Dutra PML, Da-Silva SAG. Therapeutic effect of oral quercetin in hamsters infected with Leishmania Viannia braziliensis. Front Cell Infect Microbiol 2023; 12:1059168. [PMID: 36710981 PMCID: PMC9880276 DOI: 10.3389/fcimb.2022.1059168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Leishmaniasis is a parasitic disease caused by several species of intracellular protozoa of the genus Leishmania that present manifestations ranging from cutaneous ulcers to the fatal visceral form. Leishmania Viannia braziliensis is an important species associated with American tegumentary leishmaniasis and the main agent in Brazil, with variable sensitivity to available drugs. The search for new therapeutic alternatives to treat leishmaniasis is an urgent need, especially for endemic countries. Not only is quercetin well known for its antioxidant activity in radical scavenging but also several other biological effects are described, including anti-inflammatory, antimicrobial, and pro-oxidant activities. This study aimed to investigate the flavonoid quercetin's therapeutic potential in L. (V.) braziliensis infection. Quercetin showed antiamastigote (IC50 of 21 ± 2.5 µM) and antipromastigote (25 ± 0.7 µM) activities and a selectivity index of 22. The treatment of uninfected or L. (V.) braziliensis-infected macrophages with quercetin increased reactive oxygen species (ROS)/H202 generation without altering Nitric Oxide (NO) production. Oral treatment with quercetin of infected hamsters, starting at 1 week of infection for 8 weeks, reduced the lesion thickness (p > 0.01) and parasite load (p > 0.001). The results of this study suggest that the antiamastigote activity of the flavonoid quercetin in vitro is associated, at least in part, with the modulation of ROS production by macrophages. The efficacy of oral quercetin treatment in hamsters infected with L. (V.) braziliensis was presented for the first time and shows its promising therapeutic potential.
Collapse
Affiliation(s)
- Rosiane Freire dos Santos
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thayssa Da Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréia Carolinne de Souza Brito
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Job Domingos Inácio
- Laboratório de Bioquímica de Tripanossomatídeos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bianca Domingues Ventura
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michely Aparecida Polido Mendes
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Fonseca Azevedo
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Moreira Siqueira
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Maria Lourenço Dutra
- Laboratório de Imunofisiologia do Exercício, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Disciplina de Parasitologia/Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Emiliano YSS, Almeida-Amaral EE. Apigenin is a promising molecule for treatment of visceral leishmaniasis. Front Cell Infect Microbiol 2023; 13:1066407. [PMID: 37091674 PMCID: PMC10113494 DOI: 10.3389/fcimb.2023.1066407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/07/2023] [Indexed: 04/25/2023] Open
Abstract
Current treatment for visceral leishmaniasis is based on drugs such as pentavalent antimony and amphotericin B. However, this treatment remains mostly ineffective and expensive, resulting in several side effects and generating resistance. Apigenin, a flavonoid present in fruits and vegetables, has demonstrated several biological functions. In the present study, we observed a concentration-dependent inhibition of the L. infantum promastigote in the presence of apigenin, exhibiting an IC50 value of 29.9 µM. Its effect was also evaluated in L. infantum-infected murine peritoneal macrophages, presenting an C50 value against intracellular amastigotes of 2.3 µM and a selectivity index of 34.3. In a murine model of visceral leishmaniasis, the in vivo effect of apigenin was measured using short-term and long-term treatment schemes. Treatment with apigenin demonstrated 99.7% and 94% reductions in the liver parasite load in the short-term and long-term treatment schemes, respectively. Furthermore, no alterations in serological and hematological parameters were observed. Taken together, these results suggest that apigenin is a potential candidate for visceral leishmaniasis chemotherapy by oral administration.
Collapse
|
17
|
Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK. Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/ Ex Vivo Studies and Mechanistic Insights. Mol Pharm 2022; 19:3367-3384. [PMID: 35980291 DOI: 10.1021/acs.molpharmaceut.2c00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis (VL) is one of the most fatal and neglected tropical diseases caused by Leishmania donovani (L. donovani). The applications of currently available chemotherapy (amphotericin B, miltefosine, and others) in VL treatment have been limited due to their poor bioavailability, unfavorable toxicity profile, and prolonged parenteral dosing. Quercetin (QT), a potent natural antioxidant, is a prominent target when conducting investigations on alternative therapies against L. donovani infections. However, the therapeutic applications of QT have been restricted due to its low solubility and bioavailability. In the present study, we developed and evaluated the antileishmanial activity (ALA) of quercetin-loaded nanoemulsion (QTNE) against L. donovani clinical strains. In vitro anti-promastigote assay results demonstrated that QTNE (IC50 6.6 μM, 48 h) significantly inhibited the growth of parasites more efficiently than the pure QT suspension in a dose- and time-dependent manner. Results of the anti-amastigote assay revealed that the infected macrophages (%) of QTNE were significantly more than those of the pure QT suspension at all concentrations (6.6, 26.4, and 52.8 μM; p < 0.05, p < 0.01 compared to the control). Moreover, the results of in vitro and ex vivo studies assisted in determining the mechanistic insights associated with the ALA of QTNE. The overall findings suggested that QTNE exhibited potential ALA by enhancing the intracellular ROS and nitric oxide levels, inducing distortion of membrane integrity and phosphatidylserine release (AV/PI), rupturing the parasite DNA (late apoptosis/necrosis process), and upregulating the immunomodulatory effects (IFN-γ and IL-10 levels). Additionally, QTNE showed superior biocompatibility against all of the treated healthy cells (PBMCs, PECs, and BMCs) as compared to the control. In conclusion, QTNE acts as a potential antileishmanial agent targeting both promastigote and intracellular amastigote forms of L. donovani, which thus opens a new avenue for the use of QTNE in VL therapy.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Vaishali 844102, Bihar, India.,Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Priya Ranjan Prasad Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
18
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of Leishmania? PLoS Negl Trop Dis 2022; 16:e0010373. [PMID: 35551517 PMCID: PMC9098005 DOI: 10.1371/journal.pntd.0010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Insect-vectored Leishmania are responsible for loss of more disability-adjusted life years than any parasite besides malaria. Elucidation of the environmental factors that affect parasite transmission by vectors is essential to develop sustainable methods of parasite control that do not have off-target effects on beneficial insects or environmental health. Many phytochemicals that inhibit growth of sand fly-vectored Leishmania—which have been exhaustively studied in the search for phytochemical-based drugs—are abundant in nectars, which provide sugar-based meals to infected sand flies. Principle findings In a quantitative meta-analysis, we compare inhibitory phytochemical concentrations for Leishmania to concentrations present in floral nectar and pollen. We show that nectar concentrations of several flowering plant species exceed those that inhibit growth of Leishmania cell cultures, suggesting an unexplored, landscape ecology-based approach to reduce Leishmania transmission. Significance If nectar compounds are as effective against parasites in the sand fly gut as predicted from experiments in vitro, strategic planting of antiparasitic phytochemical-rich floral resources or phytochemically enriched baits could reduce Leishmania loads in vectors. Such interventions could provide an environmentally friendly complement to existing means of disease control. Leishmania parasites infect over a million people each year—including over 200,000 infections with deadly visceral leishmaniasis—resulting in a greater health burden than any human parasite besides malaria. Leishmania infections of humans are transmitted by blood-feeding sand flies, which also consume floral nectar. Nectar contains many chemicals that inhibit Leishmania growth and are candidate treatments for infection of humans. However, these same compounds could also reduce infection in nectar-consuming sand flies. By combining existing data on the chemistry of nectar and sensitivity of Leishmania to plant compounds, we show that some floral nectars contain sufficient chemical concentrations to inhibit growth of insect-stage Leishmania. Our results suggest that consumption of these nectars could reduce parasite loads in sand flies and transmission of parasites to new human hosts. In contrast to insecticide-based methods of sand fly control, incorporation of antiparasitic nectar sources into landscapes and domestic settings could benefit public health without threatening beneficial insects. These findings suggest an unexplored, landscape-based approach to reduce transmission of a major neglected tropical disease worldwide.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail: ,
| | - Ryan S. Schwarz
- Department of Biology, Fort Lewis College, Durango, Colorado, United States of America
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
19
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Punch in the gut: Parasite tolerance of phytochemicals reflects host diet. Environ Microbiol 2022; 24:1805-1817. [PMID: 35315572 DOI: 10.1111/1462-2920.15981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Gut parasites of plant-eating insects are exposed to antimicrobial phytochemicals that can reduce infection. Trypanosomatid gut parasites infect insects of diverse nutritional ecologies as well as mammals and plants, raising the question of how host diet-associated phytochemicals shape parasite evolution and host specificity. To test the hypothesis that phytochemical tolerance of trypanosomatids reflects the chemical ecology of their hosts, we compared related parasites from honey bees and mosquitoes-hosts that differ in phytochemical consumption-and contrasted our results with previous studies on phylogenetically related, human-parasitic Leishmania. We identified one bacterial and ten plant-derived substances with known antileishmanial activity that also inhibited honey bee parasites associated with colony collapse. Bee parasites exhibited greater tolerance of chrysin-a flavonoid found in nectar, pollen, and plant resin-derived propolis. In contrast, mosquito parasites were more tolerant of cinnamic acid-a product of lignin decomposition present in woody debris-rich larval habitats. Parasites from both hosts tolerated many compounds that inhibit Leishmania, hinting at possible trade-offs between phytochemical tolerance and mammalian infection. Our results implicate the phytochemistry of host diets as a potential driver of insect-trypanosomatid associations, and identify compounds that could be incorporated into colony diets or floral landscapes to ameliorate infection in bees. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| |
Collapse
|
20
|
Khademvatan S, Amani S, Mohebodini M, Jafari M, Kumar V. Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Bioflavonoid-Induced Apoptosis and DNA Damage in Amastigotes and Promastigotes of Leishmania donovani: Deciphering the Mode of Action. Molecules 2021; 26:molecules26195843. [PMID: 34641387 PMCID: PMC8512304 DOI: 10.3390/molecules26195843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells’ ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.
Collapse
|
22
|
Amine-Linked Flavonoids as Agents Against Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2021; 65:AAC.02165-20. [PMID: 33685890 PMCID: PMC8092861 DOI: 10.1128/aac.02165-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed, synthesized, and characterized a library of 38 novel flavonoid compounds linked with amines. Some of these amine-linked flavonoids have potent in vitro activity against parasites that cause cutaneous leishmaniasis, a tropical disease endemic in 80 countries worldwide. The most promising candidate, FM09h, was highly active with IC50 of 0.3 μM against L. amazonensis, L. tropica and L. braziliensis amastigotes. It was metabolically stable (39% and 66% of FM09h remaining after 30-minute incubation with human and rat liver microsomes respectively). In L. amazonensis LV78 cutaneous leishmaniasis mouse model, intralesional injection of FM09h (10 mg/kg, once every 4 days for 8 times) demonstrated promising effect in reducing the footpad lesion thickness by 72%, displaying an efficacy comparable to SSG (63%).
Collapse
|
23
|
Rizk YS, Santos-Pereira S, Gervazoni L, Hardoim DDJ, Cardoso FDO, de Souza CDSF, Pelajo-Machado M, Carollo CA, de Arruda CCP, Almeida-Amaral EE, Zaverucha-do-Valle T, Calabrese KDS. Amentoflavone as an Ally in the Treatment of Cutaneous Leishmaniasis: Analysis of Its Antioxidant/Prooxidant Mechanisms. Front Cell Infect Microbiol 2021; 11:615814. [PMID: 33718267 PMCID: PMC7950538 DOI: 10.3389/fcimb.2021.615814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022] Open
Abstract
Treatment of leishmaniasis is a challenging subject. Although available, chemotherapy is limited, presenting toxicity and adverse effects. New drugs with antileishmanial activity are being investigated, such as antiparasitic compounds derived from plants. In this work, we investigated the antileishmanial activity of the biflavonoid amentoflavone on the protozoan Leishmania amazonensis. Although the antileishmanial activity of amentoflavone has already been reported in vitro, the mechanisms involved in the parasite death, as well as its action in vivo, remain unknown. Amentoflavone demonstrated activity on intracellular amastigotes in macrophages obtained from BALB/c mice (IC50 2.3 ± 0.93 μM). No cytotoxicity was observed and the selectivity index was estimated as greater than 10. Using BALB/c mice infected with L. amazonensis we verified the effect of an intralesional treatment with amentoflavone (0.05 mg/kg/dose, in a total of 5 doses every 4 days). Parasite quantification demonstrated that amentoflavone reduced the parasite load in treated footpads (46.3% reduction by limiting dilution assay and 56.5% reduction by Real Time Polymerase Chain Reaction). Amentoflavone decreased the nitric oxide production in peritoneal macrophages obtained from treated animals. The treatment also increased the expression of ferritin and decreased iNOS expression at the site of infection. Furthemore, it increased the production of ROS in peritoneal macrophages infected in vitro. The increase of ROS in vitro, associated with the reduction of NO and iNOS expression in vivo, points to the antioxidant/prooxidant potential of amentoflavone, which may play an important role in the balance between inflammatory and anti-inflammatory patterns at the infection site. Taken together these results suggest that amentoflavone has the potential to be used in the treatment of cutaneous leishmaniasis, working as an ally in the control and development of the lesion.
Collapse
Affiliation(s)
- Yasmin Silva Rizk
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sandy Santos-Pereira
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiza Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daiana de Jesus Hardoim
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Carla Cardozo Pinto de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Elmo Eduardo Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021; 9:microorganisms9020267. [PMID: 33525448 PMCID: PMC7911663 DOI: 10.3390/microorganisms9020267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.
Collapse
|
25
|
Gervazoni LFO, Barcellos GB, Ferreira-Paes T, Almeida-Amaral EE. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front Chem 2020; 8:579891. [PMID: 33330368 PMCID: PMC7732490 DOI: 10.3389/fchem.2020.579891] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is an infectious parasitic disease that is caused by protozoa of the genus Leishmania, a member of the Trypanosomatidae family. Leishmaniasis is classified by the World Health Organization as a neglected tropical disease that is responsible for millions of deaths worldwide. Although there are many possible treatments for leishmaniasis, these treatments remain mostly ineffective, expensive, and long treatment, as well as causing side effects and leading to the development of resistance. For novel and effective treatments to combat leishmaniasis, many research groups have sought to utilize natural products. In addition to exhibiting potential as therapeutic compounds, natural products may also contribute to the development of new drugs based on their chemical structures. This review presents the most promising natural products, including crude extracts and isolated compounds, employed against Leishmania spp.
Collapse
Affiliation(s)
- Luiza F O Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabrielle B Barcellos
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Taiana Ferreira-Paes
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Pereira KLG, Vasconcelos NBR, Braz JVC, InÁcio JDF, Estevam CS, Correa CB, Fernandes RPM, Almeida-Amaral EE, Scher R. Ethanolic extract of Croton blanchetianus Ball induces mitochondrial defects in Leishmania amazonensis promastigotes. AN ACAD BRAS CIENC 2020; 92:e20180968. [PMID: 33146273 DOI: 10.1590/0001-3765202020180968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 μg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 μg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katily L G Pereira
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Nancy B R Vasconcelos
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Juliana V C Braz
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Job D F InÁcio
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Charles S Estevam
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Cristiane B Correa
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Elmo E Almeida-Amaral
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Ricardo Scher
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| |
Collapse
|
27
|
Nhu TQ, Dam NP, Bich Hang BT, Bach LT, Thanh Huong DT, Buu Hue BT, Scippo ML, Phuong NT, Quetin-Leclercq J, Kestemont P. Immunomodulatory potential of extracts, fractions and pure compounds from Phyllanthus amarus and Psidium guajava on striped catfish (Pangasianodon hypophthalmus) head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2020; 104:289-303. [PMID: 32544554 DOI: 10.1016/j.fsi.2020.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to identify major phytochemical constituents, as well as compare the immunomodulatory effects of Psidium guajava L. and Phyllanthus amarus Schun and Thonn crude ethanol extracts and their fractions on striped catfish (Pangasianodon hypophthalmus) head kidney leukocytes (HKLs). Moreover, pure constituents were also investigated for their effects on those cells: hypophyllanthin, identified as a major constituent of P. amarus crude extracts and its hexane fraction; corosolic acid, ursolic acid, and oleanolic acid, identified in P. guajava crude extract, ethyl acetate and dichloromethane fractions; with other terpenic derivatives, as well as guajaverin and avicularin, identified with other flavonoids by LC-UV-MS in the crude P. guajava extract and its ethyl acetate fraction. Cell viability, respiratory burst assay (RBA), nitric oxide synthase (NOS) and lysozyme activity in HKLs were analyzed after 24 h stimulation with each extract (10, 20 and 40 μg/mL) or pure compound (7.5, 15 and 30 μM). Our results show that the hexane fraction of both plant extracts inhibited the viability of HKLs, while several other fractions enhanced the cell viability. All P. guajava fractions at all or some concentration considerably enhanced the RBA production in HKLs. Similarly, NOS production was also significantly increased by some or all concentrations of P. guajava dichloromethane and ethyl acetate fractions. However, the NOS production was dose-dependently inhibited in HKLs treated with Pa ethyl acetate and both plants aqueous fractions at 10 or 10 and 40 μg/mL respectively. The lysozyme activity in cells treated with P. guajava crude extracts and all its organic solvent fractions were stronger than those in P. amarus treatments. Pure compounds including corosolic acid, guajaverin, ursolic acid, hypophyllanthin inhibited the HKLs viability according to concentration and type of compound. All pure compounds except avicularin significantly stimulated, at certain or all concentrations, the RBA production and/or the lysozyme activity in HKLs. The NOS production was significantly reduced in HKLs treated with oleanolic acid (30 μM) and hypophyllanthin (7.5 μM) while its level was increased by hypophyllanthin at 30 μM. These results highlighted that the crude ethanol extracts of P. guajava and P. amarus, their fractions and some of their pure components at certain concentrations can potentially act as immunomodulators, and could be considered as valuable candidates in fishery sciences.
Collapse
Affiliation(s)
- Truong Quynh Nhu
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Nguyen Phuc Dam
- Department of Chemistry Education, School of Education, Can Tho University, Can Tho City, Viet Nam; Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Le Thi Bach
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam.
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Viet Nam.
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, Liège, Belgium.
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam.
| | - Joëlle Quetin-Leclercq
- Louvain Drug Research Institute (LDRI) Pharmacognosy Research Group, Université Catholique de Louvain, B-1200, Brussels, Belgium.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| |
Collapse
|
28
|
Kumar R, Rani R, Kumar S, Sethi K, Jain S, Batra K, Kumar S, Tripathi BN. Drug-induced reactive oxygen species-mediated inhibitory effect on growth of Trypanosoma evansi in axenic culture system. Parasitol Res 2020; 119:3481-3489. [PMID: 32869169 DOI: 10.1007/s00436-020-06861-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/23/2020] [Indexed: 11/28/2022]
Abstract
Trypanosoma evansi, an extracellular haemoflagellate, has a wide range of hosts receptive and susceptible to infection, in which it revealed highly inconsistent clinical effects. Drugs used for the treatment of trypanosomosis have been utilized for more than five decades and have several problems like local and systemic toxicity. In the present investigation, imatinib and sorafenib were selected as drugs as they are reported to have the potential to cause reactive oxygen species (ROS)-mediated effect in cancer cells. Both have also been reported to have potential against T. brucei, T. cruzi and Leishmania donovani. To date, imatinib and sorafenib have not evaluated for their growth inhibitory effect against T. evansi. Imatinib and sorafenib showed significant (p < 0.001) inhibition on parasite growth and multiplication with IC50 (50% inhibitory concentration) values 6.12 μM and 0.33 μM respectively against T. evansi. Both the drug molecules demonstrated for the generation of ROS in T. evansi and were found up to 65% increased level of ROS as compared with negative control in the axenic culture system. Furthermore, different concentrations of imatinib and sorafenib were found non-toxic on horse peripheral blood mononuclear cells and Vero cell lines. Also, in conclusion, our results demonstrated that imatinib- and sorafenib-induced generation of ROS contributed inhibitory effect on the growth of Trypanosoma evansi in an axenic culture system.
Collapse
Affiliation(s)
- Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India.
| | - Ruma Rani
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India
| | - Saroj Kumar
- Faculty of Veterinary & Animal Sciences, Banaras Hindu University, RGSC, Barkachha, Mirzapur, Uttar Pradesh, India
| | - Khushboo Sethi
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India
| | - Shikha Jain
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India
| | - Kanisht Batra
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125001, India
| | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India
| | - B N Tripathi
- Parasitology Lab, ICAR-National Research Centre on Equine, Hisar, Haryana, 125001, India
| |
Collapse
|
29
|
Ahmad A, Ullah S, Syed F, Tahir K, Khan AU, Yuan Q. Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine (Lond) 2020; 15:809-828. [DOI: 10.2217/nnm-2019-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis, a category 1 disease, has remained neglected for decades, and therefore, has developed into a severe health problem worldwide. Unfortunately, the available antileishmanial drugs are limited, and the parasites have shown an inevitable resistance toward most of these drugs. All these factors pose a barrier to control the parasite at present. Hence, new strategies are needed to develop more effective and less toxic nanomedicines that could treat and manage the Leishmania parasite. One of these effective strategies is to construct nanometals with biologically active molecules that could possess dynamic antileishmanial activities with desirable biocompatibility. In this review paper, antileishmanial potencies of different metal nanoparticles, with particular emphasis on biogenic metal nanoparticles from 2011 to 2019, are summarized. The mechanisms by which metal-based nanomedicines kill Leishmania are also discussed.
Collapse
Affiliation(s)
- Aftab Ahmad
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Sadeeq Ullah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chaoyang District, Beijing, 100029, PR China
| | - Fatima Syed
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University D.I. Khan, KP, 29050, Pakistan
| | - Arif U Khan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
30
|
Badirzadeh A, Heidari-Kharaji M, Fallah-Omrani V, Dabiri H, Araghi A, Salimi Chirani A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0007843. [PMID: 31929528 PMCID: PMC6957141 DOI: 10.1371/journal.pntd.0007843] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neglected parasitic diseases (NTDs) like cutaneous leishmaniasis (CL) have caused high mortality and morbidity rate in developing countries. This disease is considered as one of the six major tropical diseases, and has a great importance in HIV infected individuals as an opportunistic infection in those areas that both infections are endemic. This study evaluated the therapeutic effects of the Urtica dioica L (U. dioica) aqueous extract as an anti-leishmanial herbal drug in-vitro and in-vivo, and in addition to that, evaluated two vital immune system cytokines including gamma interferon (IFN-γ) and interleukin-4 (IL-4) plus nitric oxide (NO) and arginase activity against Leishmania major (L. major) infected mice. METHODOLOGY/PRINCIPAL FINDINGS In-vitro anti-leishmanial activity of U. dioica aqueous extract was determined using MTT method and also Parasite Rescue Transformation Assay. Also, the footpad lesion size and parasite load in BALB/c mice infected with L. major were quantified for in-vivo assessment. Furthermore, for evaluating the immune responses, the levels of IFN-γ, IL-4, NO and arginase were measured in the BALB/c mice. These results indicated that U. dioica extract significantly reduced the L. major promastigotes viability. According to the in-vitro cytotoxicity assay of the extract on Leishmania parasites (CC50) and infected macrophages (EC50), the extract had no toxicity to the macrophages, however it efficiently killed the L. major amastigotes. In addition, the lesion size, parasite load, IL-4, and ARG were decreased in the treated infected mice, however IFN-γ and NO were significantly increased. CONCLUSIONS/SIGNIFICANCE This study established satisfactory results in Leishmania parasite clearing both in-vivo and in-vitro. Therefore, U. dioica extract can be considered as an effective and harmless herbal compound for killing the parasite without toxicity to the host macrophages. Furthermore, it also can treat the CL by switching the mouse immune response towards a cell-mediated response (Th1); hence, it may be identified as a perfect therapeutic herbal drug for CL treatment.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Fallah-Omrani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Araghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Alireza Salimi Chirani
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Antinarelli LMR, Meinel RS, Coelho EAF, da Silva AD, Coimbra ES. Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct Leishmania species by multitarget action in the parasites. ACTA ACUST UNITED AC 2019; 71:1854-1863. [PMID: 31595530 DOI: 10.1111/jphp.13177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The in vitro antileishmanial effect of analogues of resveratrol (AR) present in the N-aryl imines and N-aryl hydrazones series was investigated. In addition, possible parasite targets were evaluated. METHODS Antipromastigote activity of Leishmania amazonensis, L. braziliensis and L. infantum, as well as the cytotoxicity on macrophages was determined by MTT assay and L. braziliensis-infected macrophages effect by Giemsa stain. After staining, effects on the parasite targets were analysed by flow cytometry or by fluorescence microscopy. KEY-FINDINGS Among the tested compounds, the derivative AR26 showed the best effect against promastigotes of all Leishmania species (IC50 < 3.0 µg/ml), being more active than miltefosine, the control drug. AR26 was also effective against amastigotes of L. braziliensis (IC50 = 15.9 µg/ml), with low toxicity to mammalian cells. The evaluation of mechanism of action of AR26 on L. braziliensis promastigotes indicates mitochondrial potential depolarization, plasma membrane permeabilization, interference in the progression of the cell cycle and accumulation of autophagic vacuoles. In addition, any increase of the reactive oxygen species levels was detected in the treated L. braziliensis-macrophages. CONCLUSIONS Data indicate that the antileishmanial activity of AR26 is related to multitarget action, and the resveratrol analogues could be used in future studies as antileishmanial agent.
Collapse
Affiliation(s)
- Luciana Maria Ribeiro Antinarelli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Raissa Soares Meinel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
32
|
de Menezes IRA, da Costa RHS, Augusti Boligon A, Rolón M, Coronel C, Vega C, Melo Coutinho HD, da Costa MS, Tintino SR, Silva Pereira RL, de Albuquerque TR, da Silva Almeida JRG, Quintans-Júnior LJ. Ximenia americana L. enhances the antibiotic activity and inhibit the development of kinetoplastid parasites. Comp Immunol Microbiol Infect Dis 2019; 64:40-46. [PMID: 31174698 DOI: 10.1016/j.cimid.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this work was evaluate the cytotoxic, leishmanicidal and tripanocidal activity, as well as to evaluate its antimicrobial and modulatory activity in association with different antibiotics of the hydroethanolic extract of the Ximenia Americana stem bark (EHXA). METHOD In vitro tests against Trypanosoma cruzi, Leishmania sp. and citotoxicity were performed. The evaluation of the antibacterial and bacterial resistance modulatory effect was given by the microdilution method. RESULTS The chemical profile show different classes of compounds with significant presence of quercetrin and caffeic acid. The EHXA demonstrated activity only in the concentration of 1000 μg/mL against the L. infantum and L. brasiliensis promastigotes, causing mortality percentage of 40.66 and 27.62%, respectively. The extract presented a significant toxicity only in the concentration of 1000 μg/mL, causing a mortality of 55.42% of fibroblasts. The antibacterial activity of the EHXA demonstrated a MIC value ≥1024 μg/mL against all the tested bacteria. However, in the modulation assay with EHXA in association with different antibiotics the extract had a synergistic effect against S. aureus strains when associated with norfloxacin. CONCLUSION The results of this investigation demonstrate for the first time the chemical composition of the hydroethanolic extract of the Ximenia Americana stem bark, your potential antiparasitic and modulatory effect. The low cytotoxic and biological potential against S. aureus open therapeutic perspectives against leishmaniosis and bacterial infections.
Collapse
Affiliation(s)
| | | | | | - Miriam Rolón
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | - Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | | | - Maria Socorro da Costa
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Saulo Relison Tintino
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato, CE, Brazil
| | | | | | | | | |
Collapse
|
33
|
da Silva ER, Brogi S, Lucon-Júnior JF, Campiani G, Gemma S, Maquiaveli CDC. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. Food Funct 2019; 10:3172-3180. [DOI: 10.1039/c9fo00265k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taxifolin, quercetin glucuronide and quercetin glucosides inhibit arginase from Leishmania amazonensis.
Collapse
Affiliation(s)
- Edson Roberto da Silva
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - João Francisco Lucon-Júnior
- Programa de Pós-graduação em Biociência Animal
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Claudia do Carmo Maquiaveli
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| |
Collapse
|
34
|
Gervazoni LFO, Gonçalves-Ozório G, Almeida-Amaral EE. 2'-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl Trop Dis 2018; 12:e0006930. [PMID: 30521527 PMCID: PMC6283348 DOI: 10.1371/journal.pntd.0006930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
Background To overcome the current problems in leishmaniasis chemotherapy, natural products have become an interesting alternative over the past few decades. Flavonoids have been studied as promising family of compounds for leishmaniasis treatment. 2’-Hydroxyflavanone (2HF) is a flavanone, a class of flavonoid that has shown promising results in cancer studies. In this study, we demonstrated the effects of 2HF in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis promastigotes. Methodology/Principal findings 2HF was effective against promastigotes and the intracellular amastigote form, decreasing the infection index in macrophages infected with wild-type and antimony-resistant promastigotes, but it was not toxic to macrophages. In silico analysis indicated 2HF as a good oral candidate for leishmaniasis treatment. In vivo, 2HF was able to reduce the lesion size and parasite load in a murine model of cutaneous leishmaniasis using wild-type and antimony-resistant promastigotes, demonstrating no cross-resistance with antimonials. Conclusions/Significance Taken together, these results suggest 2HF as a potential candidate for leishmaniasis chemotherapy for cutaneous leishmaniasis caused by both wild-type and antimony-resistant Leishmania species by oral administration. Furthermore, studies should be conducted to determine the ideal dose and therapeutic regimen. Leishmaniasis is a parasitic disease endemic to 98 countries, affecting more than 12 million people globally, and there are more than 350 million people in risk areas. Although there are many drugs available as alternatives for leishmaniasis treatment, they remain mostly ineffective, expensive and longstanding, in addition to generating side effects and resistance. Antimonial resistance is currently one of the biggest obstacles in leishmaniasis chemotherapy. Due to the poor chemotherapy scenario and the need for a drug able to overcome resistance problems and therapeutic failures, natural products have become an important alternative for leishmaniasis treatment. Here, we evaluated the antileishmanicidal activity of 2HF in vitro and in vivo against wild-type and antimony-resistant L. amazonensis cells. 2HF inhibited the cellular proliferation of promastigotes and the intracellular amastigote form in a dose-dependent manner in both wild-type and antimony-resistant cells. Furthermore, 2HF reduced the lesion size and parasitic load in a murine model of cutaneous leishmaniasis using wild-type and antimony-resistant promastigotes without altering hematological parameters and serological toxicology markers. This is the first time that the activity of a flavonoid on the antimony-resistant L. amazonensis has been demonstrated in vitro and in vivo by the oral route.
Collapse
Affiliation(s)
- Luiza F. O. Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Gabriella Gonçalves-Ozório
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
35
|
Rezaei F, Saghaie L, Sabet R, Fassihi A, Hatam G. Novel Catechol Derivatives of Arylimidamides as Antileishmanial Agents. Chem Biodivers 2018; 15:e1800228. [PMID: 29999602 DOI: 10.1002/cbdv.201800228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Two novel bis-arylimidamide derivatives with terminal catechol moieties (9a and 10a) and two parent compounds with terminal phenyl groups (DB613 and DB884) were synthesized as dihydrobromide salts (9b and 10b). The designed compounds were hybrid molecules consisting of a catechol functionality embedded in an arylimidamide moiety. All compounds were examined for in vitro antiparasitic activity upon promastigotes of Leishmania major and L. infantum as well as axenic amastigotes of L. major. It was shown that conversion of terminal phenyl groups into catechol moieties resulted in more than 10-fold improvement in potency, coupled with lower cytotoxicity against fibroblast cells, compared to the corresponding parent compounds. The furan-containing analog 9a exhibited the highest activity with submicromolar IC50 values, ranging from 0.29 to 0.36 μm, which is comparable in efficacy to the reference drug amphotericin B (IC50 0.28 - 0.33 μm). The results justify further study of this class of compounds. It seems that the combination of catechol chelating groups with potent antiparasitic agents could improve the efficacy by presenting novel hybrid compounds.
Collapse
Affiliation(s)
- Foroogh Rezaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Da Silva BJM, Pereira SWG, Rodrigues APD, Do Nascimento JLM, Silva EO. In vitro antileishmanial effects of Physalis angulata root extract on Leishmania infantum. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:404-410. [PMID: 30195443 DOI: 10.1016/j.joim.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE In the present study, we evaluated the effects of the aqueous extract of Physalis angulata root (AEPa) on Leishmania infantum proliferation, morphology, and the driving mechanism in leishmanicidal activity and modulatory action on macrophages. METHODS L. infantum promastigotes were treated with 50 and 100 µg/mL AEPa for 72 h and then antipromastigote assay was performed by counts in a Newbauer chamber, morphological changes were analyzed by transmission electron microscopy and the mechanism of the leishmanicidal activity was detected. In addition, macrophages were infected with L. infantum and were used to evaluate anti-amastigote activity of AEPa and effects of AEPa on cytokine secretion after 72-hour treatment. RESULTS Treatment with AEPa reduced the numbers of L. infantum promastigotes (50% inhibitory concentration (IC50) = 65.9 μg/mL; selectivity index (SI) = 22.1) and amastigotes (IC50 = 37.9 μg/mL; SI = 38.5) compared with the untreated control. Amphotericin B reduced 100% of the promastigote numbers after 72 h of treatment (IC50 = 0.2 μg/mL). AEPa induced several morphological changes and increased the production of reactive oxygen species and apoptotic death in promastigotes after treating for 72 h. AEPa (100 μg/mL) promoted tumor necrosis factor-α secretion in macrophages infected with L. infantum after 72 h of treatment, but did not induce an increase in this cytokine in noninfected macrophages. In addition, AEPa showed no cytotoxic effect on J774-A1 cells (50% cytotoxic concentration >1000 μg/mL). CONCLUSION AEPa presented antileishmanial activity against the promastigotes and amastigotes of L. infantum without macrophage cytotoxicity; these results show that natural products such as P. angulata have leishmanicidal potential and in the future may be an alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Bruno José Martins Da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil
| | - Sandro Wilson Gomes Pereira
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| | - Ana Paula Drummond Rodrigues
- Laboratory of Electron Microscopy, Department of Health Surveillance, Ministry of Health, Evandro Chagas Institute, Belém, Pará 66087-082, Brazil
| | - José Luiz Martins Do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-360, Brazil
| | - Edilene Oliveira Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (INCT-INBEB), Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
38
|
Da Silva BJM, Souza-Monteiro JR, Rogez H, Crespo-López ME, Do Nascimento JLM, Silva EO. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum. Biomed Pharmacother 2018; 97:1613-1621. [DOI: 10.1016/j.biopha.2017.11.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/26/2023] Open
|
39
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Cunha F, Tintino SR, Figueredo F, Barros L, Duarte AE, Vega Gomez MC, Coronel CC, Rolón M, Leite N, Sobral-Souza CE, Brito SV, Waczuc EP, Boligon AA, Athayde M, Kamdem JP, Coutinho HDM, Franco J. HPLC-DAD phenolic profile, cytotoxic and anti-kinetoplastidae activity of Melissa officinalis. PHARMACEUTICAL BIOLOGY 2016; 54:1664-1670. [PMID: 26864563 DOI: 10.3109/13880209.2015.1120320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Context Melissa officinalis subsp. inodora Bornm. (Lamiaceae) has been used since ancient times in folk medicine against various diseases, but it has not been investigated against protozoa. Objective To evaluate the activities of M. officinalis against Leishmania braziliensis, Leishmania infantum and Trypanosoma cruzi as well as its cytotoxicity in fibroblast cell line. Materials and methods The fresh leaves were chopped into 1 cm(2) pieces, washed and macerated with 99.9% of ethanol for 72 h at room temperature. Antiparasitic activity of M. officinalis was accessed by direct counting of cells after serial dilution, while the cytotoxicity of M. officinalis was evaluated in fibroblast cell line (NCTC929) by measuring the reduction of resazurin. The test duration was 24 h. High-performance liquid chromatography (HPLC) was used to characterise the extract. Results The extract at concentrations of 250 and 125 μg/mL inhibited 80.39 and 54.27% of promastigote (LC50 value = 105.78 μg/mL) form of L. infantum, 80.59 and 68.61% of L. brasiliensis (LC50 value = 110.69 μg/mL) and against epimastigote (LC50 value = 245.23 μg/mL) forms of T. cruzi with an inhibition of 54.45 and 22.26%, respectively, was observed. The maximum toxicity was noted at 500 μg/mL with 95.41% (LC50 value = 141.01 μg/mL). The HPLC analysis identified caffeic acid and rutin as the major compounds. Discussion The inhibition of the parasites is considered clinically relevant (< 500 μg/mL). Rutin and caffeic acids may be responsible for the antiprotozoal effect of the extract. Conclusion The ethanol extract of M. officinalis can be considered a potential alternative source of natural products with antileishmania and antitrypanosoma activities.
Collapse
Affiliation(s)
- Francisco Cunha
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
- b Programa De Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal De Santa Maria - UFSM , Santa Maria , RS , Brazil
| | - Saulo R Tintino
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - Fernando Figueredo
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - Luiz Barros
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
- b Programa De Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal De Santa Maria - UFSM , Santa Maria , RS , Brazil
| | - Antonia E Duarte
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
- b Programa De Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal De Santa Maria - UFSM , Santa Maria , RS , Brazil
| | - Maria Celeste Vega Gomez
- c Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill , Asunción , Paraguay
| | - Cathia Cecilia Coronel
- c Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill , Asunción , Paraguay
| | - Mírian Rolón
- c Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill , Asunción , Paraguay
| | - Nadghia Leite
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - Celestina E Sobral-Souza
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - S V Brito
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - Emily Pansera Waczuc
- e Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica , Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria , Rio Grande do Sul 97105-900 , Brazil
| | | | | | - Jean Paul Kamdem
- e Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica , Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria , Rio Grande do Sul 97105-900 , Brazil
- f Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul , Porto Alegre , RS CEP 90035-003 , Brazil
| | - Henrique Douglas Melo Coutinho
- a Departamento De Química Biológica , Laboratório De Microbiologia E Biologia Molecular, Universidade Regional Do Cariri , Crato , CE , Brazil
| | - Jéferson Franco
- b Programa De Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal De Santa Maria - UFSM , Santa Maria , RS , Brazil
- d Universidade Federal Dos Pampas , São Gabriel , RS , Brazil
| |
Collapse
|
41
|
Da Silva B, Da Silva R, Rodrigues A, Farias L, Do Nascimento J, Silva E. Physalis angulata induces death of promastigotes and amastigotes of Leishmania ( Leishmania ) amazonensis via the generation of reactive oxygen species. Micron 2016; 82:25-32. [DOI: 10.1016/j.micron.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/13/2015] [Accepted: 12/05/2015] [Indexed: 12/26/2022]
|
42
|
de Luna LAV, de Moraes ACM, Consonni SR, Pereira CD, Cadore S, Giorgio S, Alves OL. Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J Nanobiotechnology 2016; 14:12. [PMID: 26912341 PMCID: PMC4765018 DOI: 10.1186/s12951-016-0165-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Graphene oxide (GO) is a highly oxidized graphene form with oxygen functional groups on its surface. GO is an excellent platform to support and stabilize silver nanoparticles (AgNP), which gives rise to the graphene oxide-silver nanoparticle (GOAg) nanocomposite. Understanding how this nanocomposite interacts with cells is a toxicological challenge of great importance for future biomedical applications, and macrophage cells can provide information concerning the biocompatibility of these nanomaterials. The cytotoxicity of the GOAg nanocomposite, pristine GO, and pristine AgNP was compared toward two representative murine macrophages: a tumoral lineage (J774) and peritoneal macrophages collected from Balb/c mouse. The production of reactive oxygen species (ROS) by J774 macrophages was also monitored. We investigated the internalization of nanomaterials by transmission electron microscopy (TEM). The quantification of internalized silver was carried out by inductively coupled plasma mass spectrometry (ICP-MS). Nanomaterial stability in the cell media was investigated overtime by visual observation, inductively coupled plasma optical emission spectrometry (ICP OES), and dynamic light scattering (DLS). RESULTS The GOAg nanocomposite was more toxic than pristine GO and pristine AgNP for both macrophages, and it significantly induced more ROS production compared to pristine AgNP. TEM analysis showed that GOAg was internalized by tumoral J774 macrophages. However, macrophages internalized approximately 60 % less GOAg than did pristine AgNP. The images also showed the degradation of nanocomposite inside cells. CONCLUSIONS Although the GOAg nanocomposite was less internalized by the macrophage cells, it was more toxic than the pristine counterparts and induced remarkable oxidative stress. Our findings strongly reveal a synergistic toxicity effect of the GOAg nanocomposite. The toxicity and fate of nanocomposites in cells are some of the major concerns in the development of novel biocompatible materials and must be carefully evaluated.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Laboratory of Solid State Chemistry (LQES), Institute of Chemistry, University of Campinas, Campinas, Brazil.
- Laboratory of Leishmaniasis (Lableish), Institute of Biology, University of Campinas, Campinas, Brazil.
| | | | - Sílvio Roberto Consonni
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Laboratory of Cytochemistry and Immunocytochemistry (LCI), Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Catarinie Diniz Pereira
- Atomic Spectrometry Group (GEAtom), Institute of Chemistry, University of Campinas, Campinas, Brazil.
| | - Solange Cadore
- Atomic Spectrometry Group (GEAtom), Institute of Chemistry, University of Campinas, Campinas, Brazil.
| | - Selma Giorgio
- Laboratory of Leishmaniasis (Lableish), Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Oswaldo Luiz Alves
- Laboratory of Solid State Chemistry (LQES), Institute of Chemistry, University of Campinas, Campinas, Brazil.
| |
Collapse
|
43
|
Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Menna-Barreto RFS, Almeida-Amaral EE. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action. PLoS Negl Trop Dis 2016; 10:e0004442. [PMID: 26862901 PMCID: PMC4749305 DOI: 10.1371/journal.pntd.0004442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/17/2016] [Indexed: 01/08/2023] Open
Abstract
Background The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis. Methodology/Principal Finding Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. Conclusions/Significance In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports further studies of apigenin as a candidate for the chemotherapeutic treatment of leishmaniasis. Leishmaniasis is an important neglected disease caused by protozoa of the genus Leishmania and affects more than 12 million people worldwide. Pentavalent antimonials and amphotericin B have been used for decades to treat leishmaniasis; however, these drugs result in numerous adverse side effects, have variable efficacy and are subject to parasite resistance. The lack of suitable therapy necessitates the development of novel antileishmanial compounds. In this study, we investigated the antileishmanial activity of apigenin in vitro and in vivo and described the mechanism of action against intracellular amastigotes of Leishmania amazonensis. Apigenin reduced the infection index in a dose-dependent manner and increased reactive oxygen species (ROS) generation. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, treatment with apigenin was also effective in vivo, showing oral bioavailability and significantly reducing lesion sizes and parasite burden without altering serological toxicity markers.
Collapse
Affiliation(s)
- Fernanda Fonseca-Silva
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Job D. F. Inacio
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Marilene M. Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
44
|
Marques F, Vale-Costa S, Cruz T, Marques JM, Silva T, Neves JV, Cortes S, Fernandes A, Rocha E, Appelberg R, Rodrigues P, Tomás AM, Gomes MS. Studies in the mouse model identify strain variability as a major determinant of disease outcome in Leishmania infantum infection. Parasit Vectors 2015; 8:644. [PMID: 26684322 PMCID: PMC4684599 DOI: 10.1186/s13071-015-1259-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 02/04/2023] Open
Abstract
Background Visceral leishmaniasis is a severe and potentially fatal disease caused by protozoa of the genus Leishmania, transmitted by phlebotomine sandflies. In Europe and the Mediterranean region, L. infantum is the commonest agent of visceral leishmaniasis, causing a wide spectrum of clinical manifestations, including asymptomatic carriage, cutaneous lesions and severe visceral disease. Visceral leishmaniasis is more frequent in immunocompromised individuals and data obtained in experimental models of infection have highlighted the importance of the host immune response, namely the efficient activation of host’s macrophages, in determining infection outcome. Conversely, few studies have addressed a possible contribution of parasite variability to this outcome. Methods In this study, we compared three isolates of L. infantum regarding their capacity to grow in the organs of mice, the way they activate the host’s macrophages and other components of the immune response and also their capacity to cope with host’s antimicrobial mechanisms, namely reactive oxygen and nitrogen species. Results We found that the three parasite strains significantly differed regarding the degree to which they induced nitric oxide synthase (NOS2) and arginase expression in infected macrophages and the pattern of cytokine production they induced in the host, resulting in different degrees of inflammatory response in infected livers. Additionally, the three strains also significantly differed in their in vitro susceptibility to reactive oxygen and nitrogen species. This variability was reflected in the capacity of each strain to persist and proliferate in the organs of wild-type as well as NOS2- and phagocyte oxidase- deficient mice. Conclusions The results obtained in this study show that parasite strain variability is an important determinant of disease outcome in L. infantum visceral leishmaniasis, with relevant implications for studies on host-pathogen interaction and also for leishmanicidal drug development. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1259-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe Marques
- Instituto de Investigação e Inovação em Saúde and IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Sílvia Vale-Costa
- Instituto de Investigação e Inovação em Saúde and IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,Present address: Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | - Tânia Cruz
- Instituto de Investigação e Inovação em Saúde and IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Joana Moreira Marques
- Instituto de Investigação e Inovação em Saúde and IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Tânia Silva
- Instituto de Investigação e Inovação em Saúde; IBMC, Instituto de Biologia Molecular e Celular, and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - João Vilares Neves
- Instituto de Investigação e Inovação em Saúde and IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Sofia Cortes
- GHTM, Global Health and Tropical Medicine, IHMT, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal. .,Present Address: Molekularbiologie und Funktionelle Genomik, Technische Hochschule Wildau, Wildau, Germany.
| | - Ana Fernandes
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Eduardo Rocha
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, and CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde; IBMC, Instituto de Biologia Molecular e Celular, and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Pedro Rodrigues
- Instituto de Investigação e Inovação em Saúde; IBMC, Instituto de Biologia Molecular e Celular, and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Ana M Tomás
- Instituto de Investigação e Inovação em Saúde; IBMC, Instituto de Biologia Molecular e Celular, and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Maria Salomé Gomes
- Instituto de Investigação e Inovação em Saúde; IBMC, Instituto de Biologia Molecular e Celular, and ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
45
|
Leishmanicidal Activity of (+)-Phyllanthidine and the Phytochemical Profile of Margaritaria nobilis (Phyllanthaceae). Molecules 2015; 20:22157-69. [PMID: 26690400 PMCID: PMC6332510 DOI: 10.3390/molecules201219829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/26/2023] Open
Abstract
The effects of the Securinega alkaloid (+)-phyllanthidine on Leishmania (L.) amazonensis and the first chemical investigation of Margaritaria nobilis L.f. (Phyllanthaceae) are described. Treating the parasites with this alkaloid caused a dose-dependent reduction in promastigote growth of 67.68% (IC50 82.37 μg/mL or 353 µM) and in amastigote growth of 83.96% (IC50 49.11 μg/mL or 210 µM), together with ultrastructural alterations in the promastigotes. No cytotoxic effect was detected in mammalian cells (CC50 1727.48 µg/mL or CC50 5268 µM). Classical chromatographic techniques and spectral methods led to the isolation and identification of betulinic acid, kaempferol, corilagin, gallic acid and its methyl ester, besides (+)-phyllanthidine from M. nobilis leaves and stems. Margaritaria nobilis is another source of the small group of Securinega alkaloids, together with other Phyllanthaceae (Euphorbiaceae s.l.) species. The low toxicity to macrophages and the effects against promastigotes and amastigotes are suggestive that (+)-phyllanthidine could be a promising antileishmanial agent for treating cutaneous leishmaniasis.
Collapse
|
46
|
Machado PDA, Mota VZ, Cavalli ACDL, de Carvalho GSG, Da Silva AD, Gameiro J, Cuin A, Coimbra ES. High selective antileishmanial activity of vanadium complex with stilbene derivative. Acta Trop 2015; 148:120-7. [PMID: 25917716 DOI: 10.1016/j.actatropica.2015.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 11/15/2022]
Abstract
Leishmaniasis is a group of disease caused by different species of the parasite Leishmania affecting millions of people worldwide. Conventional therapy relies on multiple parenteral injections with pentavalent antimonials which exhibit high toxicity and various side effects have been reported. Hence, the research for an effective and low toxic effect drug is necessary. In the present work, the synthesis, spectroscopic and analytical characterizations of stilbene derivative (H2Salophen) and its vanadium complex (VOSalophen) are reported. Besides the chemical ancillary information, investigation of the leishmanicidal effects of these compounds were provided. The biological assays against promastigote and amastigote forms of L. amazonensis have been shown that VOSalophen exhibited a strong antiparasitic activity (IC50 of 6.65 and 3.51 μM, respectively). Furthermore, the leishmanicidal activity was concentration and time-dependent. Regarding toxicity and selectivity on mammalian cells, VOSalophen have not caused significant damage to human erythrocytes in all concentrations tested and VOSalophen was almost seven times more destructive for the intracellular parasite than for macrophages. Furthermore, the leishmanicidal activity of VOSalophen in promastigote forms of L. amazonensis could be associated to mitochondrial dysfunction and increase of the reactive oxygen species (ROS) production. In L. amazonensis-infected macrophages, VOSalophen induces ROS production and a microbicidal action NO-dependent. Our biological results indicate the effective and selective action of VOSalophen against L. amazonensis and the leishmanicidal effect can be associated to parasite disorders and immumodulatory effects.
Collapse
Affiliation(s)
- Patrícia de Almeida Machado
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Vinícius Zamprogno Mota
- LQBin - Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Ana Clara de Lima Cavalli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | | | - Adilson David Da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Jacy Gameiro
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Alexandre Cuin
- LQBin - Laboratório de Química BioInorgânica, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
47
|
de Sousa LRF, Wu H, Nebo L, Fernandes JB, da Silva MFDGF, Kiefer W, Schirmeister T, Vieira PC. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp Parasitol 2015; 156:42-8. [PMID: 26044356 DOI: 10.1016/j.exppara.2015.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 01/18/2023]
Abstract
Cysteine proteinases (cathepsins) from Leishmania spp. are promising molecular targets against leishmaniasis. Leishmania mexicana cathepsin L is essential in the parasite life cycle and a pivotal in virulence factor in mammals. Natural products that have been shown to display antileishmanial activity were screened as part of our ongoing efforts to design inhibitors against the L. mexicana cathepsin L-like rCPB2.8. Among them, agathisflavone (1), tetrahydrorobustaflavone (2), 3-oxo-urs-12-en-28-oic acid (3), and quercetin (4) showed significant inhibitory activity on rCPB2.8 with IC50 values ranging from 0.43 to 18.03 µM. The mechanisms of inhibition for compounds 1-3, which showed Ki values in the low micromolar range (Ki = 0.14-1.26 µM), were determined. The biflavone 1 and the triterpene 3 are partially noncompetitive inhibitors, whereas biflavanone 2 is an uncompetitive inhibitor. The mechanism of action established for these leishmanicidal natural products provides a new outlook in the search for drugs against Leishmania.
Collapse
Affiliation(s)
- Lorena R F de Sousa
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil; Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Hongmei Wu
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Liliane Nebo
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - João B Fernandes
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - Maria F das G F da Silva
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil
| | - Werner Kiefer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Paulo C Vieira
- Department of Chemistry, Federal University of São Carlos, Washington Luís Km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
48
|
Fonseca-Silva F, Canto-Cavalheiro MM, Menna-Barreto RFS, Almeida-Amaral EE. Effect of Apigenin on Leishmania amazonensis Is Associated with Reactive Oxygen Species Production Followed by Mitochondrial Dysfunction. JOURNAL OF NATURAL PRODUCTS 2015; 78:880-884. [PMID: 25768915 DOI: 10.1021/acs.jnatprod.5b00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Leishmaniasis is an important neglected disease caused by protozoa of the genus Leishmania that affects more than 12 million people worldwide. Leishmaniasis treatment requires the administration of toxic and poorly tolerated drugs, and parasite resistance greatly reduces the efficacy of conventional medications. Apigenin (1), a naturally occurring plant flavone, has a wide range of reported biological effects. In this study, antileishmanial activity of 1 in vitro was investigated, and its mechanism of action against Leishmania amazonensis promastigotes was described. Treatment with 1 for 24 h resulted in concentration-dependent inhibition of cellular proliferation (IC50 = 23.7 μM) and increased reactive oxygen species (ROS) generation. Glutathione and N-acetyl-l-cysteine protected L. amazonensis from the effects of 1 and reduced ROS levels after the treatment. By contrast, oxidized glutathione did not reduce the levels of ROS caused by 1 by not preventing the proliferation inhibition. Apigenin 1 also induced an extensive swelling in parasite mitochondria, leading to an alteration of the mitochondrial membrane potential, rupture of the trans-Golgi network, and cytoplasmic vacuolization. These results demonstrate the leishmanicidal effect of 1 and suggest the involvement of ROS leading to mitochondrial collapse as part of the mechanism of action.
Collapse
Affiliation(s)
- Fernanda Fonseca-Silva
- †Laboratório de Bioquímica de Tripanosomatídeos and ‡Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marilene M Canto-Cavalheiro
- †Laboratório de Bioquímica de Tripanosomatídeos and ‡Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- †Laboratório de Bioquímica de Tripanosomatídeos and ‡Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Elmo E Almeida-Amaral
- †Laboratório de Bioquímica de Tripanosomatídeos and ‡Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Antinarelli LMR, Dias RMP, Souza IO, Lima WP, Gameiro J, da Silva AD, Coimbra ES. 4-Aminoquinoline Derivatives as Potential Antileishmanial Agents. Chem Biol Drug Des 2015; 86:704-14. [DOI: 10.1111/cbdd.12540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Luciana M. R. Antinarelli
- Departamento de Parasitologia Microbiologia e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| | - Rafael M. P. Dias
- Departamento de Química; Instituto de Ciências Exatas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| | - Isabela O. Souza
- Departamento de Química; Instituto de Ciências Exatas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| | - Wallace P. Lima
- Laboratório de Imunofarmacologia; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; 21941-902 Rio de Janeiro Brazil
| | - Jacy Gameiro
- Departamento de Parasitologia Microbiologia e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| | - Adilson D. da Silva
- Departamento de Química; Instituto de Ciências Exatas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| | - Elaine S. Coimbra
- Departamento de Parasitologia Microbiologia e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Juiz de Fora; Cidade Universitária 36036-900 Juiz de Fora Brazil
| |
Collapse
|
50
|
Inacio JDF, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE. The effect of (-)-epigallocatechin 3-O--gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Negl Trop Dis 2014; 8:e3093. [PMID: 25144225 PMCID: PMC4140776 DOI: 10.1371/journal.pntd.0003093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease associated with extensive mortality and morbidity. The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. Natural compounds have been used as novel treatments for parasitic diseases. In this paper, we evaluated the effect of (-)-epigallocatechin 3-O-gallate (EGCG) on Leishmania braziliensis in vitro and in vivo and described the mechanism of EGCG action against L. braziliensis promastigotes and intracellular amastigotes. METHODOLOGY/PRINCIPAL FINDING In vitro activity and reactive oxygen species (ROS) measurements were determined during the promastigote and intracellular amastigote life stages. The effect of EGCG on mitochondrial membrane potential (ΔΨm) was assayed using JC-1, and intracellular ATP concentrations were measured using a luciferin-luciferase system. The in vivo experiments were performed in infected BALB/c mice orally treated with EGCG. EGCG reduced promastigote viability and the infection index in a time- and dose-dependent manner, with IC50 values of 278.8 µM and 3.4 µM, respectively, at 72 h and a selectivity index of 149.5. In addition, EGCG induced ROS production in the promastigote and intracellular amastigote, and the effects were reversed by polyethylene glycol (PEG)-catalase. Additionally, EGCG reduced ΔΨm, thereby decreasing intracellular ATP concentrations in promastigotes. Furthermore, EGCG treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. CONCLUSIONS/SIGNIFICANCE In conclusion, our study demonstrates the leishmanicidal effects of EGCG against the two forms of L. braziliensis, the promastigote and amastigote. In addition, EGCG promotes ROS production as a part of its mechanism of action, resulting in decreased ΔΨm and reduced intracellular ATP concentrations. These actions ultimately culminate in parasite death. Furthermore, our data suggest that EGCG is orally effective in the treatment of L. braziliensis-infected BALB/c mice without altering serological toxicity markers.
Collapse
Affiliation(s)
- Job D. F. Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilene M. Canto-Cavalheiro
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elmo E. Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|