1
|
Chang JL, Gan YT, Peng XG, Ouyang QX, Pei J, Ruan HL. Peniandranoids A-E: Meroterpenoids with Antiviral and Immunosuppressive Activity from a Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:66-75. [PMID: 36596229 DOI: 10.1021/acs.jnatprod.2c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Peniandranoids A-E (1-5), five new meroterpenoids, together with three known analogues (6-8), were isolated from the fermentation of a soil-derived fungus, Penicillium sp.sb62. Their structures including absolute configurations were determined by extensive spectroscopic analysis, and the absolute configurations of compounds 1 and 5 were further elucidated by single-crystal X-ray diffraction. Peniandranoids A-E belong to a rare class of andrastin-type meroterpenoids incorporating an extra polyketide unit (a C10 polyketide unit for 1 and 2, a C9 polyketide unit for 3 and 4, and a furancarboxylic acid unit for 5). Compounds 1 and 6 exhibited favorable inhibitory activities against influenza virus A (H1N1) with EC50 values of 19 and 14 μg/mL, respectively. Compounds 3-8 exhibited potent immunosuppressive activities against concanavalin A-induced T cell proliferation with EC50 values ranging from 4.3 to 27 μM and lipopolysaccharide-induced B cell proliferation with EC50 values ranging from 7.5 to 23 μM, respectively.
Collapse
Affiliation(s)
- Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Yu-Tian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Qian-Xi Ouyang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Jiao Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| |
Collapse
|
2
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
3
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane‐Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| |
Collapse
|
4
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane-Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021; 60:23763-23770. [PMID: 34468074 PMCID: PMC8596746 DOI: 10.1002/anie.202108970] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Drimane-type sesquiterpenes exhibit various biological activities and are widely present in eukaryotes. Here, we completely elucidated the biosynthetic pathway of the drimane-type sesquiterpene esters isolated from Aspergillus calidoustus and we discovered that it involves a drimenol cyclase having the same catalytic function previously only reported in plants. Moreover, since many fungal drimenol derivatives possess a γ-butyrolactone ring, we clarified the functions of the cluster-associated cytochrome P450 and FAD-binding oxidoreductase discovering that these two enzymes are solely responsible for the formation of those structures. Furthermore, swapping of the enoyl reductase domain in the identified polyketide synthase led to the production of metabolites containing various polyketide chains with different levels of saturation. These findings have deepened our understanding of how fungi synthesize drimane-type sesquiterpenes and the corresponding esters.
Collapse
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
5
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
6
|
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, Seixas A, Gilmore MS. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs 2021; 19:328. [PMID: 34204046 PMCID: PMC8229437 DOI: 10.3390/md19060328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
Collapse
Affiliation(s)
- Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Muriel Primon-Barros
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Romeu C. Z. Luz
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Ícaro M. S. Castro
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Thiago G. S. Paim
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Maurício Tavares
- Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), Campus Litoral Norte, Imbé 95625-000, RS, Brazil;
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Pedro A. d’Azevedo
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Porto Alegre 90035-003, RS, Brazil;
| | - Ana P. G. Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90050-170, RS, Brazil;
| | - Adriana Seixas
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
8
|
|
9
|
Chemical Diversity and Biological Activities of Meroterpenoids from Marine Derived-Fungi: A Comprehensive Update. Mar Drugs 2020; 18:md18060317. [PMID: 32549331 PMCID: PMC7345968 DOI: 10.3390/md18060317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Meroterpenoids are a class of hybrid natural products, partially derived from a mixed terpenoid pathway. They possess remarkable structural features and relevant biological and pharmacological activities. Marine-derived fungi are a rich source of meroterpenoids featuring structural diversity varying from simple to complex molecular architectures. A combination of a structural variability and their myriad of bioactivities makes meroterpenoids an interesting class of naturally occurring compounds for chemical and pharmacological investigation. In this review, a comprehensive literature survey covering the period of 2009–2019, with 86 references, is presented focusing on chemistry and biological activities of various classes of meroterpenoids isolated from fungi obtained from different marine hosts and environments.
Collapse
|
10
|
Marine-Derived Penicillium Species as Producers of Cytotoxic Metabolites. Mar Drugs 2017; 15:md15100329. [PMID: 29064452 PMCID: PMC5666435 DOI: 10.3390/md15100329] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of penicillin, Penicillium has become one of the most attractive fungal genera for the production of bioactive molecules. Marine-derived Penicillium has provided numerous excellent pharmaceutical leads over the past decades. In this review, we focused on the cytotoxic metabolites * (* Cytotoxic potency was referred to five different levels in this review, extraordinary (IC50/LD50: <1 μM or 0.5 μg/mL); significant (IC50/LD50: 1~10 μM or 0.5~5 μg/mL); moderate (IC50/LD50: 10~30 μM or 5~15 μg/mL); mild (IC50/LD50: 30~50 μM or 15~25 μg/mL); weak (IC50/LD50: 50~100 μM or 25~50 μg/mL). The comparative potencies of positive controls were referred when they were available). produced by marine-derived Penicillium species, and on their cytotoxicity mechanisms, biosyntheses, and chemical syntheses.
Collapse
|
11
|
Liao L, Bae SY, Won TH, You M, Kim SH, Oh DC, Lee SK, Oh KB, Shin J. Asperphenins A and B, Lipopeptidyl Benzophenones from a Marine-Derived Aspergillus sp. Fungus. Org Lett 2017; 19:2066-2069. [DOI: 10.1021/acs.orglett.7b00661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lijuan Liao
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Song Yi Bae
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Tae Hyung Won
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Minjung You
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Seong-Hwan Kim
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Dong-Chan Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Sang Kook Lee
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea
| | - Jongheon Shin
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| |
Collapse
|
12
|
Kaur A, Raja HA, Swenson DC, Agarwal R, Deep G, Falkinham JO, Oberlies NH. Talarolutins A-D: Meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus. PHYTOCHEMISTRY 2016; 126:4-10. [PMID: 27048854 PMCID: PMC4861051 DOI: 10.1016/j.phytochem.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 05/27/2023]
Abstract
Four meroterpenoids [talarolutins A-D] and one known compound [purpurquinone A] were characterized from an endophytic fungal isolate of Talaromyces minioluteus (G413), which was obtained from the leaves of the medicinal plant milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. The structures of talarolutins A-D were determined by the analysis of various NMR and MS techniques. The relative and absolute configuration of talarolutin A was determined by X-ray diffraction analysis. A combination of NOESY data and comparisons of ECD spectra were employed to assign the relative and absolute configuration of the other analogs. Talarolutins B-D were tested for cytotoxicity against human prostate carcinoma (PC-3) cell line, antimicrobial activity, and induction of quinone reductase; no notable bioactivity was observed in any assay.
Collapse
Affiliation(s)
- Amninder Kaur
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Dale C Swenson
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
13
|
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi. Mar Drugs 2016; 14:md14040076. [PMID: 27110799 PMCID: PMC4849080 DOI: 10.3390/md14040076] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022] Open
Abstract
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.
Collapse
|
14
|
Wan Q, Feng Z, Li X, Lv M, Guo Z, Deng Z, Zou K. Two new glycosidal metabolites of endophytic fungus Penicillium sp. (NO.4) from Tapiscia sinensis. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2015-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two new glycosides, 8-O-β-
d-glucopyranosyl-6-methyl-1-carboxylate methyl ester xanthone (1) and 4′-O-β-
d-galactopyranosyl djalonensone (2), together with four known compounds, 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate methyl ester (3), cassionllin (4), djalonensone (5) and alternariol (6), were isolated from the endophytic fungus Penicillium sp. (NO.4) of Tapiscia sinensis Oliv. The structures of compounds 1–6 were elucidated by the analysis of 1D and 2D NMR and HRMS. The cytotoxic activities of these compounds were evaluated against four cancer cell lines, as well as antimicrobial activities against two plant-pathogenic microbes. Compounds 1–6 showed moderate cytotoxicity against the A549 cancer cell line with IC50 values ranging from 6.8 to 35.8 μg mL−1 and were found to be inactive against three other cancer cell lines MCF-7, Caski and Hep G-2.
Collapse
Affiliation(s)
- Qiao Wan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Ziwei Feng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Xueshuang Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Mengmeng Lv
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, P.R. China
| |
Collapse
|
15
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
16
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
17
|
Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 2016; 183:8-18. [DOI: 10.1016/j.micres.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023]
|
18
|
Ma HG, Liu Q, Zhu GL, Liu HS, Zhu WM. Marine natural products sourced from marine-derived Penicillium fungi. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:92-115. [PMID: 26880598 DOI: 10.1080/10286020.2015.1127230] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.
Collapse
Affiliation(s)
- Hong-Guang Ma
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Qiang Liu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Guo-Liang Zhu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Hai-Shan Liu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| | - Wei-Ming Zhu
- a Key Laboratory of Marine Drugs, Ministry of Education of China , School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003 , China
| |
Collapse
|
19
|
Wang Y, Qi S, Zhan Y, Zhang N, Wu AA, Gui F, Guo K, Yang Y, Cao S, Hu Z, Zheng Z, Song S, Xu Q, Shen Y, Deng X. Aspertetranones A-D, Putative Meroterpenoids from the Marine Algal-Associated Fungus Aspergillus sp. ZL0-1b14. JOURNAL OF NATURAL PRODUCTS 2015; 78:2405-2410. [PMID: 26378981 DOI: 10.1021/acs.jnatprod.5b00487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aspertetranones A-D (1-4), four new highly oxygenated putative rearranged triketide-sesquiterpenoid meroterpenes, were isolated from the marine algal-associated fungus Aspergillus sp. ZL0-1b14. On the basis of a comprehensive spectroscopic analysis, the planar structures of aspertetranones were determined to possess an unusual skeleton in the terpenoid part. The relative and absolute configurations of the aspertetranones were assigned on the basis of NOESY analysis, X-ray crystallography, and circular dichroism spectroscopy. Compounds 1-4 were evaluated for anti-inflammatory activity in LPS-stimulated RAW264.7 macrophages. Aspertetranone D exhibited an inhibitory effect against IL-6 production with 69% inhibition at 40 μM.
Collapse
Affiliation(s)
| | | | | | - Nanwen Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University , Fuzhou, Fujian 350108, China
| | - An-An Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian China
| | | | | | | | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo , 924 Stainback Hwy, Hilo, Hawaii 96720, United States
- Natural Products and Experimental Therapeutics, Cancer Center, University of Hawai'i at Manoa , 701 Ilalo Street, Honolulu, Hawaii 96813, United States
| | | | | | | | | | - Yuemao Shen
- School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| | | |
Collapse
|
20
|
|
21
|
Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity. Antonie van Leeuwenhoek 2015; 108:215-9. [DOI: 10.1007/s10482-015-0462-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
22
|
Elissawy AM, El-Shazly M, Ebada SS, Singab AB, Proksch P. Bioactive terpenes from marine-derived fungi. Mar Drugs 2015; 13:1966-92. [PMID: 25854644 PMCID: PMC4413195 DOI: 10.3390/md13041966] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022] Open
Abstract
Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Sherif S. Ebada
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - AbdelNasser B. Singab
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine Universität, Geb. 26.23, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-211-811-4163; Fax: +49-211-811-1923
| |
Collapse
|
23
|
Liao L, You M, Chung BK, Oh DC, Oh KB, Shin J. Alkaloidal metabolites from a marine-derived Aspergillus sp. fungus. JOURNAL OF NATURAL PRODUCTS 2015; 78:349-354. [PMID: 25581396 DOI: 10.1021/np500683u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fumiquinazoline S (1), a new quinazoline-containing alkaloid, and the known fumiquinazolines F (6) and L (7) of the same structural class were isolated from the solid-substrate culture of an Aspergillus sp. fungus collected from marine-submerged wood. In addition, isochaetominines A-C (2-4) and 14-epi-isochaetominine C (5), new alkaloids possessing an unusual amino acid-based tetracyclic core framework related to the fumiquinazolines, were isolated from the same fungal strain. The structures of these compounds were determined by combined spectroscopic methods, and the absolute configurations were assigned by NOESY, ROESY, and advanced Marfey's analyses along with biogenetic considerations. The new compounds exhibited weak inhibition against Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- Lijuan Liao
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Minjung You
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Beom Koo Chung
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea
| | - Dong-Chan Oh
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | - Ki-Bong Oh
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea
| | - Jongheon Shin
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| |
Collapse
|
24
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2014. [DOI: 10.1039/c4np90015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|