1
|
Zhao P, Hou P, Zhang Z, Li X, Quan C, Xue Y, Lei K, Li J, Gao W, Fu F. Microbial-derived peptides with anti-mycobacterial potential. Eur J Med Chem 2024; 276:116687. [PMID: 39047606 DOI: 10.1016/j.ejmech.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pu Hou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhishen Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng University, 044000, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China.
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
2
|
Lu Y, Li Y, Fan J, Li X, Sun H, Wang L, Han X, Zhu Y, Zhang T, Shi Y, Xie Y, Hong B. Expanding structural diversity of 5'-aminouridine moiety of sansanmycin via mutational biosynthesis. Front Bioeng Biotechnol 2023; 11:1278601. [PMID: 38026887 PMCID: PMC10643210 DOI: 10.3389/fbioe.2023.1278601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sansanmycins represent a family of uridyl peptide antibiotics with antimicrobial activity specifically against Mycobacterium tuberculosis (including drug-resistant M. tuberculosis) and Pseudomonas aeruginosa. They target translocase I (MraY) to inhibit bacterial cell wall assembly. Given the unique mechanism of action, sansanmycin has emerged as a potential lead compound for developing new anti-tuberculosis drugs, while the 5'-aminouridine moiety plays a crucial role in the pharmacophore of sansanmycin. For expanding the structural diversity of the 5'-aminouridine moiety of sansanmycin through biosynthetic methods, we firstly demonstrated that SsaM and SsaK are responsible for the biosynthesis of the 5'-aminouridine moiety of sansanmycin in vivo. Using the ssaK deletion mutant (SS/KKO), we efficiently obtained a series of new analogues with modified 5'-aminouridine moieties through mutational biosynthesis. Based on molecular networking analysis of MS/MS, twenty-two new analogues (SS-KK-1 to -13 and SS-KK-A to -I) were identified. Among them, four new analogues (SS-KK-1 to -3 and SS-KK-C) were purified and bioassayed. SS-KK-2 showed better antibacterial activity against E. coli ΔtolC than the parent compound sansanmycin A. SS-KK-3 showed the same anti-TB activity as sansanmycin A against M. tuberculosis H37Rv as well as clinically isolated, drug-sensitive and multidrug-resistant M. tuberculosis strains. Furthermore, SS-KK-3 exhibited significantly improved structural stability compared to sansanmycin A. The results suggested that mutasynthesis is an effective and practical strategy for expanding the structural diversity of 5'-aminouridine moiety in sansanmycin.
Collapse
Affiliation(s)
- Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Fan
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Chang S, Luo Y, Wang M, He N, Chen M, Huang X, Wang J, Yuan L, Xie Y. Pairing comparative genomics with tandem mass-based molecular networking allows to highly efficient discovery of nonribosomal peptides from Nocardia spp. J Chromatogr A 2023; 1708:464343. [PMID: 37717450 DOI: 10.1016/j.chroma.2023.464343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Microbial natural products, particularly nonribosomal peptides (NRPs), have attracted significant attention due to their structural diversity and therapeutic potential. Nocardia, a genus of Actinomyces, is an important reservoir for natural products, especially NRPs. However, rediscovery is a significant challenge for mining new specialized metabolites from Nocardia, as well as from other sources. To overcome this challenge, we developed a strategy that combines comparative genomics with tandem mass-based molecular networking, which allows to efficiently discover new NRPs from Nocardia spp.. As a proof of concept, all genomes of Norcardia in NCBI database, including three strains from our lab, were compared with each other to prioritize unique biosynthetic gene clusters (BGCs) in the three in-house Nocardia strains, particularly those containing nonribosomal peptide synthases (NRPSs). Subsequently, the metabolomics data of those three in-house strains were analyzed employing tandem mass-based molecular networking. This led to the identification of a known lipopeptide, nocarjamide (1), and five new congeners (2-6) of nocarjamide, as well as a new decalipopeptide, nocarlipoamide (7), along with nocardimicin, a known compound found in Nocardia. The structure of the new decalipopeptide 7 was further extensively characterized using NMR, MS/MS, Marfey's analysis, and X-ray. In addition, the biosynthesis pathways for 1-7 were proposed through bioinformatics analysis, and thus the gene clusters responsible for biosynthesizing them were confirmed. Our results indicate that this strategy enables prompt dereplication of known compounds, rapid linkage of identified compounds with their biosynthesis gene cluster, and efficient discovery of new compounds.
Collapse
Affiliation(s)
- Shanshan Chang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Yajun Luo
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Mengyuan Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Mingxu Chen
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Xinyue Huang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Jiahan Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China.
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China.
| |
Collapse
|
4
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
5
|
Gong R, Yu L, Qin Y, Price NPJ, He X, Deng Z, Chen W. Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol Adv 2020; 46:107673. [PMID: 33276073 DOI: 10.1016/j.biotechadv.2020.107673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance poses an increasing threat to global health, and it is urgent to reverse the present trend by accelerating development of new natural product derived drugs. Nucleoside antibiotics, a valuable family of promising natural products with remarkable structural features and diverse biological activities, have played significant roles in healthcare and for plant protection. Understanding the biosynthesis of these intricate molecules has provided a foundation for bioengineering the microbial cell factory towards yield enhancement and structural diversification. In this review, we summarize the recent progresses in employing synthetic biology-based strategies to improve the production of target nucleoside antibiotics. Moreover, we delineate the advances on rationally accessing the chemical diversities of natural nucleoside antibiotics.
Collapse
Affiliation(s)
- Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Le Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yini Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Wu ZC, Boger DL. The quest for supernatural products: the impact of total synthesis in complex natural products medicinal chemistry. Nat Prod Rep 2020; 37:1511-1531. [PMID: 33169762 PMCID: PMC7678878 DOI: 10.1039/d0np00060d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: 2000 up to 2020This review presents select recent advances in the medicinal chemistry of complex natural products that are prepared by total synthesis. The underlying studies highlight enabling divergent synthetic strategies and methods that permit the systematic medicinal chemistry studies of key analogues bearing deep-seated structural changes not readily accessible by semisynthetic or biosynthetic means. Select and recent examples are detailed where the key structural changes are designed to improve defined properties or to overcome an intrinsic limitation of the natural product itself. In the examples presented, the synthetic efforts provided supernatural products, a term first introduced by our colleague Ryan Shenvi (Synlett, 2016, 27, 1145-1164), with properties superseding the parent natural product. The design principles and approaches for creating the supernatural products are highlighted with an emphasis on the properties addressed that include those that improve activity or potency, increase selectivity, enhance durability, broaden the spectrum of activity, improve chemical or metabolic stability, overcome limiting physical properties, add mechanisms of action, enhance PK properties, overcome drug resistance, and/or improve in vivo efficacy. Some such improvements may be regarded by some as iterative enhancements whereas others, we believe, truly live up to their characterization as supernatural products. Most such efforts are also accompanied by advances in synthetic organic chemistry, inspiring the development of new synthetic methodology and providing supernatural products with improved synthetic accessibility.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
7
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
8
|
Niu G, Li Z, Huang P, Tan H. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. J Antibiot (Tokyo) 2019; 72:906-912. [DOI: 10.1038/s41429-019-0230-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022]
|
9
|
Shi Y, Wang X, He N, Xie Y, Hong B. Rescrutiny of the sansanmycin biosynthetic gene cluster leads to the discovery of a novel sansanmycin analogue with more potency against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2019; 72:769-774. [PMID: 31341273 DOI: 10.1038/s41429-019-0210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023]
Abstract
A novel sansanmycin analogue, sansanmycin Q (1), was identified by genome mining from the fermentation broth of Streptomyces sp. SS (CPCC 200442). In comparison with other sansanmycin compounds, sansanmycin Q has an extra glycine residue at the N-terminus of the pseudopeptide backbone. The additional glycine was proved to be assembled to sansanmycin A by SsaB, a tRNA-dependent aminoacyltransferase, based on the results of rescrutiny of sansanmycin biosynthetic gene cluster, and then overexpression and knockout of ssaB in the wild-type strain. The structure of sansanmycin Q was assigned by interpretation of NMR and mass spectral data. The results of the bioassay disclosed that sansanmycin Q exhibited more potency against Mycobacterium tuberculosis H37Rv and a rifampicin- and isoniazid-resistant strain than sansanmycin A.
Collapse
Affiliation(s)
- Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Xinwei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China. .,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.
| |
Collapse
|
10
|
Alanjary M, Cano-Prieto C, Gross H, Medema MH. Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 2019; 36:1249-1261. [PMID: 31259995 DOI: 10.1039/c9np00021f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2014 to 2019Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) have been the subject of engineering efforts for multiple decades. Their modular assembly line architecture potentially allows unlocking vast chemical space for biosynthesis. However, attempts thus far are often met with mixed success, due to limited molecular compatibility of the parts used for engineering. Now, new engineering strategies, increases in genomic data, and improved computational tools provide more opportunities for major progress. In this review we highlight some of the challenges and progressive strategies for the re-design of NRPSs & type I PKSs and survey useful computational tools and approaches to attain the ultimate goal of semi-automated and design-based engineering of novel peptide and polyketide products.
Collapse
Affiliation(s)
- Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
11
|
GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus. J Antibiot (Tokyo) 2019; 72:237-240. [DOI: 10.1038/s41429-019-0144-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/24/2018] [Accepted: 01/12/2019] [Indexed: 11/09/2022]
|
12
|
Jiang ZB, Ren WC, Shi YY, Li XX, Lei X, Fan JH, Zhang C, Gu RJ, Wang LF, Xie YY, Hong B. Structure-based manual screening and automatic networking for systematically exploring sansanmycin analogues using high performance liquid chromatography tandem mass spectroscopy. J Pharm Biomed Anal 2018; 158:94-105. [PMID: 29885606 DOI: 10.1016/j.jpba.2018.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
Abstract
Sansanmycins (SS), one of several known uridyl peptide antibiotics (UPAs) possessing a unique chemical scaffold, showed a good inhibitory effect on the highly refractory pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis, especially on the multi-drug resistant M. tuberculosis. This study employed high performance liquid chromatography-mass spectrometry detector (HPLC-MSD) ion trap and LTQ orbitrap tandem mass spectrometry (MS/MS) to explore sansanmycin analogues manually and automatically by re-analysis of the Streptomyces sp. SS fermentation broth. The structure-based manual screening method, based on analysis of the fragmentation pathway of known UPAs and on comparisons of the MS/MS spectra with that of sansanmycin A (SS-A), resulted in identifying twenty sansanmycin analogues, including twelve new structures (1-12). Furthermore, to deeply explore sansanmycin analogues, we utilized a GNPS based molecular networking workflow to re-analyze the HPLC-MS/MS data automatically. As a result, eight more new sansanmycins (13-20) were discovered. Compound 1 was discovered to lose two amino acids of residue 1 (AA1) and (2S, 3S)-N3-methyl-2,3-diamino butyric acid (DABA) from the N-terminus, and compounds 6, 11 and 12 were found to contain a 2',3'-dehydrated 4',5'-enamine-3'-deoxyuridyl moiety, which have not been reported before. Interestingly, three trace components with novel 5,6-dihydro-5'-aminouridyl group (16-18) were detected for the first time in the sansanmycin-producing strain. Their structures were primarily determined by detail analysis of the data from MS/MS. Compounds 8 and 10 were further confirmed by nuclear magnetic resonance (NMR) data, which proved the efficiency and accuracy of the method of HPLC-MS/MS for exploration of novel UPAs. Comparing to manual screening, the networking method can provide systematic visualization results. Manual screening and networking method may complement with each other to facilitate the mining of novel UPAs.
Collapse
Affiliation(s)
- Zhi-Bo Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Wei-Cong Ren
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yuan-Yuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xing-Xing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Jia-Hui Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Cong Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Ren-Jie Gu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Li-Fei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yun-Ying Xie
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
13
|
Liu XD, Gu KB, Xia SS, Zhang DJ, Li YG. Dolyemycins A and B, two novel cyclopeptides isolated from Streptomyces griseus subsp. griseus HYS31. J Antibiot (Tokyo) 2018; 71:838-845. [PMID: 29980746 DOI: 10.1038/s41429-018-0071-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
Abstract
Two novel cyclopeptides with special skeleton, namely, dolyemycins A (1) and B (2) were isolated from Streptomyces griseus subsp. griseus HYS31 by bio-guided isolation. Their structures were elucidated by detailed analysis of spectroscopic data. These two compounds were cyclopeptides containing eleven amino acids including five unusual amino acids (hydroxyglycine, 3-hydroxyleucine, 3-phenylserine, β-hydroxy-O-methyltyrosine, 2,3-diaminobutyric acid) in both of them and an extra nonprotein amino acids (3-methylaspartic acid) in Dolyemycin B only. Dolyemycins A and B performed antiproliferative activity against human lung cancer A549 cells with IC50 values of 1.0 and 1.2 µM, respectively.
Collapse
Affiliation(s)
- Xiao-Dong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Kang-Bo Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Sha-Sha Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dao-Jing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Yuan-Guang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
14
|
A strategy for the identification of patterns in the biosynthesis of nonribosomal peptides by Betaproteobacteria species. Sci Rep 2017; 7:10400. [PMID: 28871139 PMCID: PMC5583390 DOI: 10.1038/s41598-017-11314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/22/2017] [Indexed: 11/17/2022] Open
Abstract
Nonribosomal peptides have an important pharmacological role due to their extensive biological properties. The singularities in the biosynthesis of these natural products allowed the development of genome-mining strategies which associate them to their original biosynthetic gene clusters. Generally, these compounds present complex architectures that make their identification difficult. Based on these evidences, genomes from species of the class Betaproteobacteria were studied with the purpose of finding biosynthetic similarities among them. These organisms were applied as templates due to their large number of biosynthetic gene clusters and the natural products isolated from them. The strategy for Rapid Identification of Nonribosomal Peptides Portions (RINPEP) proposed in this work was built by reorganizing the data obtained from antiSMASH and NCBI with a product-centered way. The verification steps of RINPEP comprehended the fragments of existent compounds and predictions obtained in silico with the purpose of finding common subunits expressed by different genomic sequences. The results of this strategy revealed patterns in a global overview of the biosynthesis of nonribosomal peptides by Betaproteobacteria.
Collapse
|
15
|
Wang SS, Zhang NN, He N, Guo WQ, Lei X, Cai Q, Hong B, Xie YY. Exploiting Substrate Diversity of NRPS Led to the Generation of New Sansanmycin Analogs. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Further exploration of substrate diversity of the sansanmycin biosynthetic pathway using available halogen- and methyl-phenylalanines led to the generation of diverse sansanmycin derivatives, either at the single C- or N-terminus alone or at both C- and N-termini. The structures of all of these derivatives were determined by MS/MS spectra, and amongst them, the structures of [2-Cl-Phe]-sansanmycin H (1) and [2-Cl-Phe]-sansanmycin A (2) were further identified by NMR. Both the C-terminal derivative 1 and the N-terminal derivative 2 were assayed for their antibacterial activities, and compound 1 exhibited moderate activity against P. aeruginosa and ΔtolC mutant E. coli.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuan Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiang Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yun-Ying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun 2017; 8:14414. [PMID: 28248311 PMCID: PMC5337940 DOI: 10.1038/ncomms14414] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis. Drug resistant tuberculosis (TB) infections are emerging at a high rate, with only few therapeutic options currently available. Here, the authors report synthetic analogues of the natural product sansanmycin that target mycobacterial cell wall biosynthesis and represent potent leads for improved anti-TB treatments.
Collapse
|
17
|
Serpi M, Ferrari V, Pertusati F. Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs? J Med Chem 2016; 59:10343-10382. [PMID: 27607900 DOI: 10.1021/acs.jmedchem.6b00325] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel antibiotics are urgently needed to combat the rise of infections due to drug-resistant microorganisms. Numerous natural nucleosides and their synthetically modified analogues have been reported to have moderate to good antibiotic activity against different bacterial and fungal strains. Nucleoside-based compounds target several crucial processes of bacterial and fungal cells such as nucleoside metabolism and cell wall, nucleic acid, and protein biosynthesis. Nucleoside analogues have also been shown to target many other bacterial and fungal cellular processes although these are not well characterized and may therefore represent opportunities to discover new drugs with unique mechanisms of action. In this Perspective, we demonstrate that nucleoside analogues, cornerstones of anticancer and antiviral treatments, also have great potential to be repurposed as antibiotics so that an old drug can learn new tricks.
Collapse
Affiliation(s)
- Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Valentina Ferrari
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| |
Collapse
|
18
|
Ding LJ, Yuan W, Liao XJ, Han BN, Wang SP, Li ZY, Xu SH, Zhang W, Lin HW. Oryzamides A-E, Cyclodepsipeptides from the Sponge-Derived Fungus Nigrospora oryzae PF18. JOURNAL OF NATURAL PRODUCTS 2016; 79:2045-2052. [PMID: 27489998 DOI: 10.1021/acs.jnatprod.6b00349] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new cyclohexadepsipeptides, oryzamides A-C (1-3), two isolation artifacts, oryzamides D (4) and E (5), and the known congener scopularide A (6), all possessing a rare 3-hydroxy-4-methyldecanoic acid (HMDA) substructure, were isolated from the mycelial extract of the sponge-derived fungus Nigrospora oryzae PF18. Their planar structures were elucidated by spectroscopic analysis and comparison with the literature data. The absolute configurations were determined using the advanced Marfey's method and single-crystal X-ray diffraction analysis. Among them, oryzamides D (4) and E (5) were a pair of diastereomers at the sulfur atom of the l-methionine sulfoxide residue, which showcased the possible separation of a pair of methionine sulfoxide diastereomers. The X-ray crystal structure of scopularide A (6) was obtained for the first time, thereby establishing its relative and absolute configuration at C-4 of the HMDA residue. Oryzamides A-C (1-3) did not display cytotoxic, antibacterial, antiparasitic, and NF-κB inhibitory activities.
Collapse
Affiliation(s)
- Li-Jian Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
- College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wei Yuan
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Xiao-Jian Liao
- College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| | - Zhi-Yong Li
- Key Laboratory of Microbial Metabolism, Marine Biotechnology Laboratory, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Shi-Hai Xu
- College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wei Zhang
- Center for Marine Bioproducts Development, Flingers University , Adelaide 5001, Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200127, People's Republic of China
| |
Collapse
|
19
|
Shi Y, Jiang Z, Lei X, Zhang N, Cai Q, Li Q, Wang L, Si S, Xie Y, Hong B. Improving the N-terminal diversity of sansanmycin through mutasynthesis. Microb Cell Fact 2016; 15:77. [PMID: 27154005 PMCID: PMC4858918 DOI: 10.1186/s12934-016-0471-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sansanmycins are uridyl peptide antibiotics (UPAs), which are inhibitors of translocase I (MraY) and block the bacterial cell wall biosynthesis. They have good antibacterial activity against Pseudomonas aeruginosa and Mycobacterium tuberculosis strains. The biosynthetic gene cluster of sansanmycins has been characterized and the main biosynthetic pathway elucidated according to that of pacidamycins which were catalyzed by nonribosomal peptide synthetases (NRPSs). Sananmycin A is the major compound of Streptomyces sp. SS (wild type strain) and it bears a non-proteinogenic amino acid, meta-tyrosine (m-Tyr), at the N-terminus of tetrapeptide chain. RESULTS ssaX deletion mutant SS/XKO was constructed by the λ-RED mediated PCR targeting method and confirmed by PCR and southern blot. The disruption of ssaX completely abolished the production of sansanmycin A. Complementation in vivo and in vitro could both recover the production of sansanmycin A, and the overexpression of SsaX apparently increased the production of sansanmycin A by 20%. Six new compounds were identified in the fermentation culture of ssaX deletion mutant. Some more novel sansanmycin analogues were obtained by mutasynthesis, and totally ten sansanmycin analogues, MX-1 to MX-10, were purified and identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). The bioassay of these sansanmycin analogues showed that sansanmycin MX-1, MX-2, MX-4, MX-6 and MX-7 exhibited comparable potency to sansanmycin A against M. tuberculosis H37Rv, as well as multi-drug-resistant (MDR) and extensive-drug-resistant (XDR) strains. Moreover, sansanmycin MX-2 and MX-4 displayed much better stability than sansanmycin A. CONCLUSIONS We demonstrated that SsaX is responsible for the biosynthesis of m-Tyr in vivo by gene deletion and complementation. About twenty novel sansanmycin analogues were obtained by mutasynthesis in ssaX deletion mutant SS/XKO and ten of them were purified and structurally identified. Among them, MX-2 and MX-4 showed promising anti-MDR and anti-XDR tuberculosis activity and greater stability than sansanmycin A. These results indicated that ssaX deletion mutant SS/XKO was a suitable host to expand the diversity of the N-terminus of UPAs, with potential to yield more novel compounds with improved activity and/or other properties.
Collapse
Affiliation(s)
- Yuanyuan Shi
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Zhibo Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Xuan Lei
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Ningning Zhang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qiang Cai
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qinglian Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Lifei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Shuyi Si
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Yunying Xie
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| | - Bin Hong
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
20
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
21
|
Precursor-directed biosynthesis of new sansanmycin analogs bearing para-substituted-phenylalanines with high yields. J Antibiot (Tokyo) 2016; 69:765-768. [DOI: 10.1038/ja.2016.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/09/2022]
|
22
|
Harnessing natural product assembly lines: structure, promiscuity, and engineering. J Ind Microbiol Biotechnol 2015; 43:371-87. [PMID: 26527577 DOI: 10.1007/s10295-015-1704-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.
Collapse
|
23
|
Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998. Sci Rep 2015; 5:14111. [PMID: 26370924 PMCID: PMC4572928 DOI: 10.1038/srep14111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activated by constitutive expression of a foreign activator gene ssaA from sansanmycin biosynthetic gene cluster of Streptomyces sp. strain SS. Expression of the gene cluster was verified by RT-PCR analysis of key biosynthetic genes. The activated metabolites demonstrated potent inhibitory activity against the highly refractory pathogen Pseudomonas aeruginosa, and characterization of the metabolites led to the discovery of eight acetylated mureidomycin analogues. To our surprise, constitutive expression of the native activator gene SSGG_02995, a ssaA homologue in S. roseosporus NRRL 15998, has no beneficial effect on mureidomycin stimulation. This study provides a new way to activate cryptic gene cluster for the acquisition of novel antibiotics and will accelerate the exploitation of prodigious natural products in Streptomyces.
Collapse
|
24
|
Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:823-33. [PMID: 25709407 PMCID: PMC4334309 DOI: 10.2147/dddt.s63023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review.
Collapse
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
25
|
Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015; 23:110-9. [DOI: 10.1016/j.tim.2014.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|