1
|
Barnes G, Magann NL, Perrotta D, Hörmann FM, Fernandez S, Vydyam P, Choi JY, Prudhomme J, Neal A, Le Roch KG, Ben Mamoun C, Vanderwal CD. A Divergent Synthesis of Numerous Pyrroloiminoquinone Alkaloids Identifies Promising Antiprotozoal Agents. J Am Chem Soc 2024; 146:29883-29894. [PMID: 39412402 PMCID: PMC11528414 DOI: 10.1021/jacs.4c11897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
On the basis of a streamlined route to the pyrroloiminoquinone (PIQ) core, we made 16 natural products spread across four classes of biosynthetically related alkaloid natural products, and multiple structural analogs, all in ≤8 steps longest linear sequence (LLS). The strategy features a Larock indole synthesis as the key operation in a five-step synthesis of a key methoxy-PIQ intermediate. Critically, this compound was readily diverged via selective methylation of either (or both) of the imine-like or pyrrole nitrogens, which then permitted further divergence by either O-demethylation to o-quinone natural products or displacement of the methoxy group with a range of amine nucleophiles. Based on a single, early report of their potential utility against the malaria parasite, we assayed these compounds against several strains of Plasmodium falciparum, as well as two species of the related protozoan parasite Babesia. In combination with evaluations of their human cytotoxicity, we identified several compounds with potent (low-nM IC50) antimalarial and antibabesial activities that are much less toxic toward mammalian cells and are therefore promising lead compounds for antiprotozoal drug discovery.
Collapse
Affiliation(s)
- Griffin
L. Barnes
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Nicholas L. Magann
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Daniele Perrotta
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Fabian M. Hörmann
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Sebastian Fernandez
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Pratap Vydyam
- Department
of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jae-Yeon Choi
- Department
of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jacques Prudhomme
- Department
of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Armund Neal
- Department
of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Karine G. Le Roch
- Department
of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Choukri Ben Mamoun
- Department
of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Christopher D. Vanderwal
- Department
of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, 856 Health Sciences Road, Suite 5400, Irvine, California 92697, United States
| |
Collapse
|
2
|
Sala S, Shimomura M, Tham L, Sakata J, Sobolev AN, Moggach SA, Fromont J, Gomez O, Piggott MJ, Tokuyama H, Stewart SG, Flematti GR. Semisynthetic Studies Establish a Role for Conjugate Halide Exchange in the Formation of Chlorinated Pyrroloiminoquinones and Related Alkaloids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2507-2514. [PMID: 39348710 DOI: 10.1021/acs.jnatprod.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Two novel pyrroloiminoquinone alkaloids, 6-chlorodamirone A and 6-bromodamirone A, have been identified for the first time from the marine sponge Latrunculia sp. (order: Poecilosclerida: family Latrunculiidae), sourced from Western Australia. Alongside these new compounds, seven previously known metabolites were also isolated. Despite being obtained in submilligram quantities, the structures of these natural products were successfully elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. To confirm the structures of these newly discovered alkaloids, a semisynthetic approach was employed starting from the more abundant metabolite, damirone A, additionally, single crystal X-ray crystallography was used to validate our structural proposals. The semisynthetic studies suggest that the chlorinated alkaloids are likely formed through a nonenzymatic conjugate halide substitution reaction rather than an enzymatic process. This reactivity parallels that observed in related metabolites, such as the caulibugulones B and C. Furthermore, a biomimetic cascade reaction was attempted to synthesize the spirodienone moiety characteristic of the discorhabdin alkaloids, inspired by the nucleophilic substitution observed in the tricyclic damirone A system. Albeit unsuccessful, these findings provide valuable insight into the reactivity of halogenated pyrroloiminoquinones under various conditions.
Collapse
Affiliation(s)
- Samuele Sala
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- The Australian National Phenome Centre and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
| | - Masashi Shimomura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Louisa Tham
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Alexandre N Sobolev
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Stephen A Moggach
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Jane Fromont
- Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Oliver Gomez
- Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Matthew J Piggott
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Scott G Stewart
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Gavin R Flematti
- The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| |
Collapse
|
3
|
An J, Jackson RK, Tuccinardi JP, Wood JL. Pyrroloiminoquinone Alkaloids: Total Synthesis of Makaluvamines A and K. Org Lett 2023; 25:1868-1871. [PMID: 36913953 PMCID: PMC10044305 DOI: 10.1021/acs.orglett.3c00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Herein, an efficient, scalable, and concise approach to an advanced pyrroloiminoquinone synthetic intermediate (6b) by way of a Larock indole synthesis is reported. The synthetic utility of this intermediate is demonstrated by its ready conversion to makaluvamines A (1) and K (4).
Collapse
Affiliation(s)
- Jason An
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Richard K Jackson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Joseph P Tuccinardi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| |
Collapse
|
4
|
Kalinski JCJ, Polyzois A, Waterworth SC, Siwe Noundou X, Dorrington RA. Current Perspectives on Pyrroloiminoquinones: Distribution, Biosynthesis and Drug Discovery Potential. Molecules 2022; 27:8724. [PMID: 36557854 PMCID: PMC9787360 DOI: 10.3390/molecules27248724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.
Collapse
Affiliation(s)
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | | | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| |
Collapse
|
5
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
6
|
Sakata J. [Synthetic Studies on Complex Natural Products Based on Development of a Novel Synthetic Method for Heteroaromatic Skeleton]. YAKUGAKU ZASSHI 2022; 142:91-100. [PMID: 35110456 DOI: 10.1248/yakushi.21-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Among my recent work on the syntheses of complex natural products based on the development of a novel synthetic method for the heteroaromatic skeleton, this article primarily deals with the total syntheses of (+)-CC-1065, isobatzeline A/B, and batzeline A. These syntheses were accomplished via a novel indole synthesis utilizing a ring expansion reaction of benzocyclobutenone oxime sulfonate as the key step. The 1,2-dihydro-3H-pyrrolo[3,2-e]indole segments of (+)-CC-1065 were rapidly constructed via a two-directional double-ring expansion strategy. Highly substituted pyrrolidine-fused common 5-chloro-2-methylthioindoles of isobatzeline A/B and batzeline A were constructed using a ring expansion reaction of benzocyclobutenone oxime sulfonate with NaSMe and a benzyne-mediated cyclization/functionalization reaction.
Collapse
Affiliation(s)
- Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Natural Products from Tongan Marine Organisms. Molecules 2021; 26:molecules26154534. [PMID: 34361690 PMCID: PMC8347048 DOI: 10.3390/molecules26154534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.
Collapse
|
8
|
Utkina N, Likhatskaya G, Malyarenko O, Ermakova S, Balabanova L, Slepchenko L, Bakunina I. Effects of Sponge-Derived Alkaloids on Activities of the Bacterial α-D-Galactosidase and Human Cancer Cell α-N-Acetylgalactosaminidase. Biomedicines 2021; 9:biomedicines9050510. [PMID: 34063022 PMCID: PMC8147984 DOI: 10.3390/biomedicines9050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022] Open
Abstract
During a search for glycosidase inhibitors among marine natural products, we applied an integrated in vitro and in silico approach to evaluate the potency of some aaptamines and makaluvamines isolated from marine sponges on the hydrolyzing activity of α-N-acetylgalactosaminidase (α-NaGalase) from human cancer cells and the recombinant α-D-galactosidase (α-PsGal) from a marine bacterium Pseudoalteromonas sp. KMM 701. These alkaloids showed no direct inhibitory effect on the cancer α-NaGalase; but isoaaptamine (2), 9-demethylaaptamine (3), damirone B (6), and makaluvamine H (7) reduced the expression of the enzyme in the human colorectal adenocarcinoma cell line DLD-1 at 5 μM. Isoaaptamine (2), 9-demethylaaptamine (3), makaluvamine G (6), and zyzzyanone A (7) are slow-binding irreversible inhibitors of the bacterial α-PsGal with the inactivation rate constants (kinact) 0.12 min−1, 0.092 min−1, 0.079 min−1, and 0.037 min−1, as well as equilibrium inhibition constants (Ki) 2.70 µM, 300 µM, 411 µM, and 105 µM, respectively. Docking analysis revealed that these alkaloids bind in a pocket close to the catalytic amino acid residues Asp451 and Asp516 and form complexes, due to π-π interactions with the Trp308 residue and hydrogen bonds with the Lys449 residue. None of the studied alkaloids formed complexes with the active site of the human α-NaGalase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina Bakunina
- Correspondence: ; Tel.: +7-(432)-231-07-05-(3); Fax: +7-(432)-231-07-05-(7)
| |
Collapse
|
9
|
Paliwal D, Srivastava S, Sharma PK, Ahmad I. Marine Originated Fused Heterocyclic: Prospective Bioactivity against Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190328205729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The deep Sea has several herbal sources such as marine organisms. These marine
sources possibly have effective anticancer properties. The fused heterocyclic ring with marine
source has special characteristics with minimum toxicity and with maximum anticancer
effects. The review focused on and classified the prospective lead compounds which have
shown a promising therapeutic range as anticancer agents in clinical and preclinical trials.
Collapse
Affiliation(s)
- Deepika Paliwal
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Saurabh Srivastava
- Department of Oral & Maxillofacial Surgery, King George’s Medical University, Lucknow, UP 226003, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Kalinski JCJ, Krause RWM, Parker-Nance S, Waterworth SC, Dorrington RA. Unlocking the Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species. Mar Drugs 2021; 19:md19020068. [PMID: 33525412 PMCID: PMC7912287 DOI: 10.3390/md19020068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Sponges of the Latrunculiidae family produce bioactive pyrroloiminoquinone alkaloids including makaluvamines, discorhabdins, and tsitsikammamines. The aim of this study was to use LC-ESI-MS/MS-driven molecular networking to characterize the pyrroloiminoquinone secondary metabolites produced by six latrunculid species. These are Tsitsikamma favus, Tsitsikamma pedunculata, Cyclacanthia bellae, and Latrunculia apicalis as well as the recently discovered species, Tsitsikamma nguni and Tsitsikamma michaeli. Organic extracts of 43 sponges were analyzed, revealing distinct species-specific chemical profiles. More than 200 known and unknown putative pyrroloiminoquinones and related compounds were detected, including unprecedented makaluvamine-discorhabdin adducts and hydroxylated discorhabdin I derivatives. The chemical profiles of the new species T. nguni closely resembled those of the known T. favus (chemotype I), but with a higher abundance of tsitsikammamines vs. discorhabdins. T. michaeli sponges displayed two distinct chemical profiles, either producing mostly the same discorhabdins as T. favus (chemotype I) or non- or monobrominated, hydroxylated discorhabdins. C. bellae and L. apicalis produced similar pyrroloiminoquinone chemistry to one another, characterized by sulfur-containing discorhabdins and related adducts and oligomers. This study highlights the variability of pyrroloiminoquinone production by latrunculid species, identifies novel isolation targets, and offers fundamental insights into the collision-induced dissociation of pyrroloiminoquinones.
Collapse
Affiliation(s)
- Jarmo-Charles J. Kalinski
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (J.-C.J.K.); (S.P.-N.); (S.C.W.)
| | - Rui W. M. Krause
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa;
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (J.-C.J.K.); (S.P.-N.); (S.C.W.)
- South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth 6001, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Samantha C. Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (J.-C.J.K.); (S.P.-N.); (S.C.W.)
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (J.-C.J.K.); (S.P.-N.); (S.C.W.)
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
- Correspondence:
| |
Collapse
|
11
|
Park JS, Cho E, Hwang JY, Park SC, Chung B, Kwon OS, Sim CJ, Oh DC, Oh KB, Shin J. Bioactive Bis(indole) Alkaloids from a Spongosorites sp. Sponge. Mar Drugs 2020; 19:3. [PMID: 33374750 PMCID: PMC7824209 DOI: 10.3390/md19010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Six new bis(indole) alkaloids (1-6) along with eight known ones of the topsentin class were isolated from a Spongosorites sp. sponge of Korea. Based on the results of combined spectroscopic analyses, the structures of spongosoritins A-D (1-4) were determined to possess a 2-methoxy-1-imidazole-5-one core connecting the indole moieties, and these were linked by a linear urea bridge for spongocarbamides A (5) and B (6). The absolute configurations of spongosoritins were assigned by electronic circular dichroism (ECD) computation. The new compounds exhibited moderate inhibition against transpeptidase sortase A and weak inhibition against human pathogenic bacteria and A549 and K562 cancer cell lines.
Collapse
Affiliation(s)
- Jae Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Chung J. Sim
- Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea;
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| |
Collapse
|
12
|
Aburjania Z, Whitt JD, Jang S, Nadkarni DH, Chen H, Rose JB, Velu SE, Jaskula-Sztul R. Synthetic Makaluvamine Analogs Decrease c-Kit Expression and Are Cytotoxic to Neuroendocrine Tumor Cells. Molecules 2020; 25:molecules25214940. [PMID: 33114525 PMCID: PMC7663375 DOI: 10.3390/molecules25214940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In an effort to discover viable systemic chemotherapeutic agents for neuroendocrine tumors (NETs), we screened a small library of 18 drug-like compounds obtained from the Velu lab against pulmonary (H727) and thyroid (MZ-CRC-1 and TT) neuroendocrine tumor-derived cell lines. Two potent lead compounds (DHN-II-84 and DHN-III-14) identified from this screening were found to be analogs of the natural product makaluvamine. We further characterized the antitumor activities of these two compounds using pulmonary (H727), thyroid (MZ-CRC-1) and pancreatic (BON) neuroendocrine tumor cell lines. Flow cytometry showed a dose-dependent increase in apoptosis in all cell lines. Induction of apoptosis with these compounds was also supported by the decrease in myeloid cell leukemia-1 (MCL-1) and X-chromosome linked inhibitor of apoptosis (XIAP) detected by Western blot. Compound treatment decreased NET markers chromogranin A (CgA) and achaete-scute homolog 1 (ASCL1) in a dose-dependent manner. Moreover, the gene expression analysis showed that the compound treatment reduced c-Kit proto-oncogene expression in the NET cell lines. Induction of apoptosis could also have been caused by the inhibition of c-Kit expression, in addition to the known mechanisms such as damage of DNA by topoisomerase II inhibition for this class of compounds. In summary, makaluvamine analogs DHN-II-84 and DHN-III-14 induced apoptosis, decreased neuroendocrine tumor markers, and showed promising antitumor activity in pulmonary, thyroid, and pancreatic NET cell lines, and hold potential to be developed as an effective treatment to combat neuroendocrine tumors.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
| | - Jason D. Whitt
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
| | - Dwayaja H. Nadkarni
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street S., Birmingham, AL 35294, USA;
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - J. Bart Rose
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street S., Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence: (S.E.V.); (R.J.-S.); Tel.: +1-(205)-975-2478 (S.E.V.); +1-(205)-975-3507 (R.J.-S.); Fax: +1-(205)-934-2543 (S.E.V.); +1-(205)-934-0135 (R.J.-S.)
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, 1824 6th Avenue S., Birmingham, AL 35233, USA; (Z.A.); (J.D.W.); (S.J.); (H.C.); (J.B.R.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
- Correspondence: (S.E.V.); (R.J.-S.); Tel.: +1-(205)-975-2478 (S.E.V.); +1-(205)-975-3507 (R.J.-S.); Fax: +1-(205)-934-2543 (S.E.V.); +1-(205)-934-0135 (R.J.-S.)
| |
Collapse
|
13
|
Li S, Lin N, Wu B. Laboratory culture and bioactive natural products of myxomycetes. Fitoterapia 2020; 146:104725. [PMID: 32946947 DOI: 10.1016/j.fitote.2020.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/17/2023]
Abstract
Myxomycetes, one of the lowest classes of eukaryote (true slime molds), are an unusual group of primitive organisms. Their life cycle consists of two stages, namely the free-living plasmodium and the fruiting body with unique structures and colors. The chemical studies on the secondary metabolites of the myxomycetes are limited due to a lack of understanding of their laboratory cultivation. In this review, 93 natural products from myxomycetes, including their chemical structures and bioactivities were described. We also provided a conceptual overview over five culture methods of myxomycetes, including moist chamber culture, feeding culture, pure culture, liquid culture and hanging drop culture.
Collapse
Affiliation(s)
- Sihui Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Na Lin
- Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
14
|
Yamashita Y, Poignant L, Sakata J, Tokuyama H. Divergent Total Syntheses of Isobatzellines A/B and Batzelline A. Org Lett 2020; 22:6239-6243. [PMID: 32623895 DOI: 10.1021/acs.orglett.0c01894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divergent total syntheses of isobatzellines A/B and batzelline A were accomplished. A fully substituted common indole intermediate bearing C-2 methylthio and C-5 chloro groups was constructed via ring expansion of benzocyclobutenone oxime sulfonate with NaSMe and a benzyne-mediated cyclization/functionalization sequence as the key steps. The total synthesis of isobatzelline B was achieved via formation of the iminoquinone structure by the redox-neutral acid-promoted C-5 proto-dechlorination of the common indole intermediate. The total syntheses of isobatzelline A and batzelline A were completed in a divergent manner by oxidation of the common indole intermediate using MnO2 or Mn(OAc)3, respectively.
Collapse
Affiliation(s)
- Yumi Yamashita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Louna Poignant
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
15
|
McCauley EP, Smith GC, Crews P. Unraveling Structures Containing Highly Conjugated Pyrrolo[4,3,2- de]quinoline Cores That Are Deficient in Diagnostic Proton NMR Signals. JOURNAL OF NATURAL PRODUCTS 2020; 83:174-178. [PMID: 31904956 DOI: 10.1021/acs.jnatprod.9b01111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study began with the goal of identifying additional constituents from Zyzzya fuliginosa extracts obtained from an Indo-Pacific sponge (coll. no. 06132). The previous work identified several red and green pyrroloiminiquinones (aka pyrrolo[4,3,2-de]quinolines), and this reinvestigation provided two additional analogues, a blue compound named zyzzamine A (1) and a green compound named zyzzamine B (2). The relatively low ratio of H/[sum(CNO)] = 0.71 or 0.76 of this pair greatly complicated the final steps of compound characterization and required the use of five 2D NMR strategies and MS2 data sets.
Collapse
Affiliation(s)
- Erin P McCauley
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Gavin C Smith
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| |
Collapse
|
16
|
Study of molecular interactions by hydrogen bond of charged forms of makaluvamines and complex stability with H 2O and glutamic acid (Glu Ac) by the theory of the functional of density (B3LYP). J Mol Model 2019; 25:344. [PMID: 31720844 DOI: 10.1007/s00894-019-4231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
This work was undertaken to understand the mode of interaction of makaluvamines, a class of marine pyrroloiminoquinone alkaloids isolated from sponges of the genus Zyzzya, used in the treatment of several human cancer cell lines. This analysis was done by the quantum chemistry method. First, we used electrostatic potential (ESP) to reveal the different sites that accept and donate hydrogen bonds (HB) of charged forms (protonated and methylated) of makaluvamines (at level B3LYP/6-311++G(d,p)). In a second step, we studied the interactions by hydrogen bond between these molecules and water molecule on the one hand (at level B3LYP/6-311++G(d,p)) and on the other hand glutamic acid a protein residue of topoisomerase II (at level B3LYP/6-31+G(d,p)). Finally, we calculated the corrected BSSE interaction energies and estimated the relative stability of the formed complexes.
Collapse
|
17
|
Taufa T, Gordon RM, Hashmi MA, Hira K, Miller JH, Lein M, Fromont J, Northcote PT, Keyzers RA. Pyrroloquinoline derivatives from a Tongan specimen of the marine sponge Strongylodesma tongaensis. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Smith MW, Falk ID, Ikemoto H, Burns NZ. A Convenient C-H Functionalization Platform for Pyrroloiminoquinone Alkaloid Synthesis. Tetrahedron 2019; 75:3366-3370. [PMID: 31889735 DOI: 10.1016/j.tet.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrroloiminoquinone alkaloids represent a structurally intriguing class of natural products that display an array of useful biological properties. Here, we present a versatile and scalable platform for the synthesis of this diverse family - and in particular the antitumor discorhabdins - built upon sequential selective C-H functionalization of tryptamine. The utility of this strategy is showcased through short formal syntheses of damirones A-C, makaluvamines D and I, and discorhadbin E. Additionally, we describe efforts to develop the first catalytic asymmetric entry to the discorhabdin subclass.
Collapse
Affiliation(s)
- Myles W Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Isaac D Falk
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hideya Ikemoto
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Kalinski JCJ, Waterworth SC, Noundou XS, Jiwaji M, Parker-Nance S, Krause RWM, McPhail KL, Dorrington RA. Molecular Networking Reveals Two Distinct Chemotypes in Pyrroloiminoquinone-Producing Tsitsikamma favus Sponges. Mar Drugs 2019; 17:60. [PMID: 30654589 PMCID: PMC6356464 DOI: 10.3390/md17010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and known pyrroloiminoquinones and related compounds in extracts of seven specimens. Molecular taxonomic identification confirmed all sponges as T. favus and five specimens (chemotype I) were found to produce mainly discorhabdins and tsitsikammamines. Remarkably, however, two specimens (chemotype II) exhibited distinct morphological and chemical characteristics: the absence of discorhabdins, only trace levels of tsitsikammamines and, instead, an abundance of unbranched and halogenated makaluvamines. Targeted chromatographic isolation provided the new makaluvamine Q, the known makaluvamines A and I, tsitsikammamine B, 14-bromo-7,8-dehydro-3-dihydro-discorhabdin C, and the related pyrrolo-ortho-quinones makaluvamine O and makaluvone. Purified compounds displayed different activity profiles in assays for topoisomerase I inhibition, DNA intercalation and antimetabolic activity against human cell lines. This is the first report of makaluvamines from a Tsitsikamma sponge species, and the first description of distinct chemotypes within a species of the Latrunculiidae family. This study sheds new light on the putative pyrroloiminoquinone biosynthetic pathway of latrunculid sponges.
Collapse
Affiliation(s)
- Jarmo-Charles J Kalinski
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| | - Samantha C Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
- South African Environmental Observation Network, Elwandle Node, Nelson Mandela University Ocean Sciences Campus, Summerstrand, Port Elizabeth 6001, South Africa.
| | - Rui W M Krause
- Department of Chemistry, Rhodes University PO Box 94, Grahamstown 6140, South Africa.
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis 97331, OR, USA.
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
20
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
21
|
Another Look at Pyrroloiminoquinone Alkaloids-Perspectives on Their Therapeutic Potential from Known Structures and Semisynthetic Analogues. Mar Drugs 2017; 15:md15040098. [PMID: 28353633 PMCID: PMC5408244 DOI: 10.3390/md15040098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
This study began with the goal of identifying constituents from Zyzzya fuliginosa extracts that showed selectivity in our primary cytotoxicity screen against the PANC-1 tumor cell line. During the course of this project, which focused on six Z. fuliginosa samples collected from various regions of the Indo-Pacific, known compounds were obtained consisting of nine makaluvamine and three damirone analogues. Four new acetylated derivatives were also prepared. High-accuracy electrospray ionization mass spectrometry (HAESI-MS) m/z ions produced through MS2 runs were obtained and interpreted to provide a rapid way for dereplicating isomers containing a pyrrolo[4,3,2-de]quinoline core. In vitro human pancreas/duct epithelioid carcinoma (PANC-1) cell line IC50 data was obtained for 16 compounds and two therapeutic standards. These results along with data gleaned from the literature provided useful structure activity relationship conclusions. Three structural motifs proved to be important in maximizing potency against PANC-1: (i) conjugation within the core of the ABC-ring; (ii) the presence of a positive charge in the C-ring; and (iii) inclusion of a 4-ethyl phenol or 4-ethyl phenol acetate substituent off the B-ring. Two compounds, makaluvamine J (9) and 15-O-acetyl makaluvamine J (15), contained all three of these frameworks and exhibited the best potency with IC50 values of 54 nM and 81 nM, respectively. These two most potent analogs were then tested against the OVCAR-5 cell line and the presence of the acetyl group increased the potency 14-fold from that of 9 whose IC50 = 120 nM vs. that of 15 having IC50 = 8.6 nM.
Collapse
|
22
|
Backenköhler J, Spindler S, Spiteller P. Total Synthesis of Damirone C, Makaluvamine O, Makaluvone, Batzelline C and Batzelline D. ChemistrySelect 2017. [DOI: 10.1002/slct.201700285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Backenköhler
- Universität BremenInstitut für Organische und Analytische Chemie Leobener Str. NW2C 28359 Bremen Germany
| | - Stefanie Spindler
- Universität BremenInstitut für Organische und Analytische Chemie Leobener Str. NW2C 28359 Bremen Germany
| | - Peter Spiteller
- Universität BremenInstitut für Organische und Analytische Chemie Leobener Str. NW2C 28359 Bremen Germany
| |
Collapse
|
23
|
Nijampatnam B, Dutta S, Velu SE. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin. Chin J Nat Med 2016; 13:561-77. [PMID: 26253489 DOI: 10.1016/s1875-5364(15)30052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/29/2022]
Abstract
The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs.
Collapse
Affiliation(s)
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
24
|
Milne BF, Norman P. Resonant-Convergent PCM Response Theory for the Calculation of Second Harmonic Generation in Makaluvamines A–V: Pyrroloiminoquinone Marine Natural Products from Poriferans of Genus Zyzzya. J Phys Chem A 2015; 119:5368-76. [DOI: 10.1021/jp5102362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bruce F. Milne
- Nano-Bio
Spectroscopy Group and ETSF Scientific Development Centre, Department
of Materials Physics, University of the Basque Country, CFM CSIC-UPV/EHU-MPC and DIPC, Avenida de Tolosa 72, E-20018 Donostia, Spain
- Centre
for Computational Physics, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
25
|
Boucle S, Melin C, Clastre M, Guillard J. Design, synthesis and evaluation of new marine alkaloid-derived pentacyclic structures with anti-tumoral potency. Mar Drugs 2015; 13:655-65. [PMID: 25607930 PMCID: PMC4306956 DOI: 10.3390/md13010655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
This work describes the synthesis and biological evaluation of a new heterocyclic hybrid derived from the ellipticine and the marine alkaloid makaluvamine A. Pyridoquinoxalinedione 12 was obtained in seven steps with 6.5% overall yield. 12 and its intermediates 1–11 were evaluated for their in vitro cytotoxic activity against different cancer cell lines and tested for their inhibitory activity against the human DNA topoisomerase II. The analysis by electrophoresis shows that the pentacycle 12 inhibits the topoisomerase II like doxorubicine at 100 µM. Compound 9 was found to have an interesting profile, having a cytotoxicity of 15, 15, 15 and 10 μM against Caco-2, HCT-116, Pc-3 and NCI cell lines respectively, without any noticeable toxicity against human fibroblast.
Collapse
Affiliation(s)
- Sebastien Boucle
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| | - Celine Melin
- University François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200 Tours, France.
| | - Marc Clastre
- University François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200 Tours, France.
| | - Jerome Guillard
- University of Poitiers, UMR CNRS IC2MP 7285, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| |
Collapse
|
26
|
Chemoinformatic analysis as a tool for prioritization of trypanocidal marine derived lead compounds. Mar Drugs 2014; 12:1169-84. [PMID: 24599097 PMCID: PMC3967203 DOI: 10.3390/md12031169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Marine trypanocidal natural products are, most often, reported with trypanocidal activity and selectivity against human cell lines. The triaging of hits requires a consideration of chemical tractability for drug development. We utilized a combined Lipinski's rule-of-five, chemical clustering and ChemGPS-NP principle analysis to analyze a set of 40 antitrypanosomal natural products for their drug like properties and chemical space. The analyses identified 16 chemical clusters with 11 well positioned within drug-like chemical space. This study demonstrated that our combined analysis can be used as an important strategy for prioritization of active marine natural products for further investigation.
Collapse
|
27
|
Nijampatnam B, Nadkarni DH, Wu H, Velu SE. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs. Microorganisms 2014; 2:128-39. [PMID: 25767719 PMCID: PMC4354892 DOI: 10.3390/microorganisms2030128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/19/2014] [Accepted: 08/29/2014] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity.
Collapse
Affiliation(s)
- Bhavitavya Nijampatnam
- Department of Chemistry, University of Alabama at Birmingham, 901, 14th Street South, Birmingham, AL 35294-1240, USA; E-Mails: (B.N.); (D.H.N.)
| | - Dwayaja H. Nadkarni
- Department of Chemistry, University of Alabama at Birmingham, 901, 14th Street South, Birmingham, AL 35294-1240, USA; E-Mails: (B.N.); (D.H.N.)
| | - Hui Wu
- Department of Pediatric Dentistry, UAB School of Dentistry, 1919 7th Avenue South, Birmingham, AL 35294-0007, USA; E-Mail:
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, 901, 14th Street South, Birmingham, AL 35294-1240, USA; E-Mails: (B.N.); (D.H.N.)
| |
Collapse
|
28
|
LaBarbera DV, Skibo EB. The Synthesis of Vinylogous Amidine Heterocycles. J Org Chem 2013; 78:11887-95. [DOI: 10.1021/jo401927n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel V. LaBarbera
- The
Skaggs School of Pharmacy and Pharmaceutical Sciences, Department
of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Edward B. Skibo
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
29
|
Abstract
Zyzzyanones A-D is a group of biologically active marine alkaloids isolated from Australian marine sponge Zyzzya fuliginosa. They contain a unique bispyrroloquinone ring system as the core structure. The first total synthesis of all four zyzzyanones is described here. The synthesis of these alkaloids started from a previously known 6-benzylamino indole-4,7-quinone derivative and involves 6-7 steps. The key step in the synthesis involves the construction of a pyrrole ring in one step using a Mn(OAc)3 mediated oxidative free radical cyclization reaction of a 6-benzylamino indole-4,7-quinone derivative with 4-benzyloxyphenyl acetaldehyde diethyl acetal in CH3CN.
Collapse
Affiliation(s)
- Dwayaja H Nadkarni
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
30
|
KAJIYAMA D, SAITOH T, NISHIYAMA S. Application of Electrochemically Generated Hypervalent Iodine Oxidant to Natural Products Synthesis. ELECTROCHEMISTRY 2013. [DOI: 10.5796/electrochemistry.81.319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Oshiyama T, Satoh T, Okano K, Tokuyama H. Total synthesis of makaluvamine A/D, damirone B, batzelline C, makaluvone, and isobatzelline C featuring one-pot benzyne-mediated cyclization–functionalization. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, White KL, Shackleford DM, Edstein MD, Andrews KT, Camp D, Quinn RJ. Antimalarial Activity of Pyrroloiminoquinones from the Australian Marine Sponge Zyzzya sp. J Med Chem 2012; 55:5851-8. [DOI: 10.1021/jm3002795] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rohan A. Davis
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | | | - Sandra Duffy
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Vicky M. Avery
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, VIC
3052, Australia
| | - William N. Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, VIC
3052, Australia
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, VIC
3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, VIC
3052, Australia
| | | | | | - David Camp
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Ronald J. Quinn
- Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
33
|
Abstract
Recent reports on the synthetic studies of marine pyrroloiminoquinone alakloids and their analogs are reviewed.
Collapse
Affiliation(s)
- Yasuyuki Kita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| | | |
Collapse
|
34
|
|
35
|
A journey under the sea: the quest for marine anti-cancer alkaloids. Molecules 2011; 16:9665-96. [PMID: 22113577 PMCID: PMC6264372 DOI: 10.3390/molecules16119665] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/09/2011] [Indexed: 01/31/2023] Open
Abstract
The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action.
Collapse
|
36
|
Miyanaga A, Janso JE, McDonald L, He M, Liu H, Barbieri L, Eustáquio AS, Fielding EN, Carter GT, Jensen PR, Feng X, Leighton M, Koehn FE, Moore BS. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria. J Am Chem Soc 2011; 133:13311-3. [PMID: 21815669 PMCID: PMC3161154 DOI: 10.1021/ja205655w] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pyrroloquinoline alkaloid family of natural products, which includes the immunosuppressant lymphostin, has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase that is central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly-line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Jeffrey E. Janso
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Leonard McDonald
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Min He
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Hongbo Liu
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Laurel Barbieri
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Alessandra S. Eustáquio
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Elisha N. Fielding
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Guy T. Carter
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
| | - Xidong Feng
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Margaret Leighton
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Frank E. Koehn
- Natural Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
37
|
Genta-Jouve G, Francezon N, Puissant A, Auberger P, Vacelet J, Pérez T, Fontana A, Mourabit AA, Thomas OP. Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49:533-536. [PMID: 21761452 DOI: 10.1002/mrc.2772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 05/31/2023]
Abstract
Citharoxazole (1), a new batzelline derivative featuring a benzoxazole moiety, was isolated from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae Vacelet, 1969, together with the known batzelline C (2). This is the first chemical study of a Mediterranean Latrunculia species and the benzoxazole moiety is unprecedented for this family of marine natural products. The structure was mainly elucidated by the interpretation of NMR spectra and especially HMBC correlations.
Collapse
Affiliation(s)
- Grégory Genta-Jouve
- Laboratoire de Chimie des Molécules Bioactives et des Arômes UMR 6001 CNRS, Institut de Chimie de Nice, Faculté des Science, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu JF, Fan H, Xiong J, Wu SB. Discorhabdins and Pyrroloiminoquinone-Related Alkaloids. Chem Rev 2011; 111:5465-91. [DOI: 10.1021/cr100435g] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Hui Fan
- Department of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, No. 3663 Zhongshan Road N, Shanghai 200062, China
| | - Juan Xiong
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shi-Biao Wu
- Department of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, No. 3663 Zhongshan Road N, Shanghai 200062, China
| |
Collapse
|
39
|
Chen T, Xu Y, Guo H, Liu Y, Hu P, Yang X, Li X, Ge S, Velu SE, Nadkarni DH, Wang W, Zhang R, Wang H. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One 2011; 6:e20729. [PMID: 21673964 PMCID: PMC3108973 DOI: 10.1371/journal.pone.0020729] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/11/2011] [Indexed: 11/30/2022] Open
Abstract
The present study was designed to determine the biological effects of novel marine alkaloid analog 7-(4-fluorobenzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one (FBA-TPQ) on human ovarian cancer cells for its anti-tumor potential and the underlying mechanisms as a novel chemotherapeutic agent. Human ovarian cancer cells (A2780 and OVCAR-3), and Immortalized non-tumorigenic human Ovarian Surface Epithelial cells (IOSE-144), were exposed to FBA-TPQ for initial cytotoxicity evaluation (via MTS assay kit, Promega). The detailed in-vitro (cell level) and in-vivo (animal model) studies on the antitumor effects and possible underlying mechanisms of action of the compounds were then performed. FBA-TPQ exerted potent cytotoxicity against human ovarian cancer A2780 and OVCAR-3 cells as an effective inhibitor of cell growth and proliferation, while exerting lesser effects on non-tumorigenic IOSE-144 cells. Further study in the more sensitive OVCAR-3 cell line showed that it could potently induce cell apoptosis (Annexin V-FITC assay), G2/M cell cycle arrest (PI staining analysis) and also dose-dependently inhibit OVCAR-3 xenograft tumors' growth on female athymic nude mice (BALB/c, nu/nu). Mechanistic studies (both in vitro and in vivo) revealed that FBA-TPQ might exert its activity through Reactive Oxygen Species (ROS)-associated activation of the death receptor, p53-MDM2, and PI3K-Akt pathways in OVCAR-3 cells, which is in accordance with in vitro microarray (Human genome microarrays, Agilent) data analysis (GEO accession number: GSE25317). In conclusion, FBA-TPQ exhibits significant anticancer activity against ovarian cancer cells, with minimal toxicity to non-tumorigenic human IOSE-144 cells, indicating that it may be a potential therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yi Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - He Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yanling Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Pingting Hu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xinying Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiaoguang Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shichao Ge
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dwayaja H. Nadkarni
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Hui Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
40
|
Wada Y, Fujioka H, Kita Y. Synthesis of the marine pyrroloiminoquinone alkaloids, discorhabdins. Mar Drugs 2010; 8:1394-416. [PMID: 20479983 PMCID: PMC2866491 DOI: 10.3390/md8041394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022] Open
Abstract
Many natural products with biologically interesting structures have been isolated from marine animals and plants such as sponges, corals, worms, etc. Some of them are discorhabdin alkaloids. The discorhabdin alkaloids (discorhabdin A-X), isolated from marine sponges, have a unique structure with azacarbocyclic spirocyclohexanone and pyrroloiminoquinone units. Due to their prominent potent antitumor activity, discorhabdins have attracted considerable attention. Many studies have been reported toward the synthesis of discorhabdins. We have accomplished the first total synthesis of discorhabdin A (1), having the strongest activity in vitro among discorhabdins in 2003. In 2009, we have also accomplished the first total synthesis of prianosin B (2), having the 16,17-dehydropyrroloiminoquinone moiety, by a novel dehydrogenation reaction with a catalytic amount of NaN(3). These synthetic studies, as well as syntheses of the discorhabdins by various chemists to-date, are reviewed here.
Collapse
Affiliation(s)
- Yasufumi Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Fujioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- * Authors to whom correspondence should be addressed; E-Mails:
(H.F.);
(Y.K.); Tel.: +81 6 6879 8225; Fax: +81 6 6879 8229
| | - Yasuyuki Kita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- * Authors to whom correspondence should be addressed; E-Mails:
(H.F.);
(Y.K.); Tel.: +81 6 6879 8225; Fax: +81 6 6879 8229
| |
Collapse
|
41
|
Johnson TA, Morgan MVC, Aratow NA, Estee SA, Sashidhara KV, Loveridge ST, Segraves NL, Crews P. Assessing pressurized liquid extraction for the high-throughput extraction of marine-sponge-derived natural products. JOURNAL OF NATURAL PRODUCTS 2010; 73:359-64. [PMID: 20030364 PMCID: PMC2846233 DOI: 10.1021/np900565a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In order to compare the utility of standard solvent partitioning (SSP) versus accelerated solvent extraction (ASE), a series of experiments were performed and evaluated. Overall yields, solvent consumption, processing time, and chemical stability of the fractions obtained by both methods were compared. Five marine sponges were selected for processing and analysis containing 12 structurally distinct, bioactive natural products. Extracts generated using SSP and ASE were assessed for chemical degradation using comparative LC MS-ELSD. The extraction efficiency (EE) of the ASE apparatus was 3 times greater than the SSP method on average, while the total extraction yields (TEY) were roughly equivalent. Furthermore, the ASE methodology required only 2 h to process each sample versus 80 h for SSP, and the LC MS-ELSD from extracts of both methods appeared comparable. These results demonstrate that ASE can serve as an effective high-throughput methodology for extracting marine organisms to streamline the discovery of novel and bioactive natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Phillip Crews
- To whom correspondence should be addressed. Tel.: 831-459-2603. Fax: 831-459-2935.
| |
Collapse
|
42
|
Jeon JE, Na Z, Jung M, Lee HS, Sim CJ, Nahm K, Oh KB, Shin J. Discorhabdins from the Korean marine sponge Sceptrella sp. JOURNAL OF NATURAL PRODUCTS 2010; 73:258-262. [PMID: 20055495 DOI: 10.1021/np9005629] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two new pyrroloiminoquinone alkaloids of the discorhabdin class, along with 12 compounds including one previously described synthetic derivative of the same and related skeletal classes, were isolated from the sponge Sceptrella sp., collected from Gageodo, Korea. The structures of these new compounds, designated as (-)-3-dihydrodiscorhabdin D (11) and (-)-discorhabdin Z (12), were determined by combined spectroscopic analyses. Compound 12 possesses an unusual hemiaminal group among the discorhabdin alkaloids. These compounds exhibited moderate to significant cytotoxicity, antibacterial activity, and inhibitory activity against sortase A.
Collapse
Affiliation(s)
- Ju-Eun Jeon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Nadkarni DH, Wang F, Wang W, Rayburn ER, Ezell SJ, Murugesan S, Velu SE, Zhang R. Synthesis and in vitro anti-lung cancer activity of novel 1, 3, 4, 8-tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one alkaloid analogs. Med Chem 2009; 5:227-36. [PMID: 19442212 DOI: 10.2174/157340609788185873] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The high mortality rate and lack of effective therapies make lung cancer an ideal target for novel therapeutic agents. The present study was designed to implement a novel chemical synthesis pathway and to determine the biological activities of synthetic makaluvamine analogs in human lung cancer. Seventeen compounds were synthesized and purified, and their chemical structures were elucidated on the basis of physicochemical constants and NMR spectra. Their in vitro activity was determined in human lung cancer cell lines. Based on initial screens, compound Ic was found to be the most potent, and was therefore used as a model for further studies in lung cancer cells. Ic induced both apoptosis and S-phase cell cycle arrest. Furthermore, it activated p53 and induced cleavage of PARP and caspases 8 and 9. Our preclinical data indicate that the makaluvamine analogs are potential therapeutic agents against lung cancer, providing a basis for further development of Ic (and perhaps other analogs) as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Dwayaja H Nadkarni
- 1Department of Chemistry, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Murugesan S, Nadkarni DH, Velu SE. A facile synthesis of bispyrroloquinone and bispyrroloiminoquinone ring system of marine alkaloids. Tetrahedron Lett 2009; 50:3074-3076. [PMID: 25698845 DOI: 10.1016/j.tetlet.2009.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bispyrroloquinone and bispyrroloiminoquinone are two important polycyclic ring systems present in biologically active marine alkaloids such as Zyzzyanones, tsitsikammamines and wakayin. A facile synthesis of these two ring systems starting from a 6-benzylamino indole-4,7-quinone or 6-benzylamino pyrroloiminoquinone is described here. This chemistry involves the construction of a pyrrole ring in a single step by treatment of the starting reagents with ethyl acetoacetate or phenylbutane-1,3-dione in the presence of ceric ammonium nitrate in MeOH/CH2Cl2 solvent.
Collapse
Affiliation(s)
- Srinivasan Murugesan
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, Alabama 35294, USA
| | - Dwayaja H Nadkarni
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, Alabama 35294, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, Alabama 35294, USA
| |
Collapse
|
46
|
El-Naggar M, Capon RJ. Discorhabdins revisited: cytotoxic alkaloids from southern australian marine sponges of the genera Higginsia and Spongosorites. JOURNAL OF NATURAL PRODUCTS 2009; 72:460-464. [PMID: 19226152 DOI: 10.1021/np8007667] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical analysis of southern Australian marine sponges of the genera Higginsia and Spongosorites has yielded examples of the discorhabdin class of alkaloids. These include the known metabolites (+)-discorhabdin A (1), (+)-discorhabdin D (2), makaluvamine J (6), and damirone A (7), together with four new analogues, (+)-dihydrodiscorhabdin A (3), (+)-debromodiscorhabdin A (4), (+)-dihydrodiscorhabdin L (8), and (+)-discorhabdin X (5), with the latter compound being the first reported example of a thio heterocycle flanked by oxo-thio-acetal and azo-thio-acetal functionalities. Structures for the new compounds were assigned on the basis of detailed spectroscopic interpretation.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Centre for Molecular Biodiversity, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | |
Collapse
|
47
|
Passarella D, Belinghieri F, Scarpellini M, Pratesi G, Zunino F, Gia OM, Via LD, Santoro G, Danieli B. Synthesis and biological evaluation of pyrroloiminoquinone derivatives. Bioorg Med Chem 2008; 16:2431-8. [DOI: 10.1016/j.bmc.2007.11.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/14/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
48
|
Peters S, Jaeger RJR, Spiteller P. Red Pyrroloquinoline Alkaloids from the MushroomMycena haematopus. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Synthesis and antiproliferative activity of benzyl and phenethyl analogs of makaluvamines. Bioorg Med Chem 2007; 16:2541-9. [PMID: 18093835 DOI: 10.1016/j.bmc.2007.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/18/2007] [Accepted: 11/20/2007] [Indexed: 11/20/2022]
Abstract
Analogs of marine alkaloid, makaluvamine, bearing substituted benzyl and substituted phenethyl side chains have been synthesized and their antiproliferative activities have been evaluated. 4-Methyl, 4-chloro, and 4-fluoro substituted benzyl analogs possessed pronounced antiproliferative effects on the breast cancer cell line, MCF-7 at IC(50) values of 2.3 microM, 1.8 microM, and 2.8 microM, respectively. 4-Methyl, 4-chloro, and 3,4-methylenedioxy derivatives showed the best activity against MCF-7 among the phenethyl analogs with IC(50) values of 2.3 microM, 2.8 microM, and 2.4muM, respectively. In general, methoxy substitutions resulted in slight loss in activity in both benzyl and phenethyl series. Benzyl, 4-fluorobenzyl, 3,4-dimethoxyphenethyl, and 3,4-methylenedioxyphenethyl analogs were tested by NCI in their 60 cell lines in vitro human cancer cell screen. All four compounds showed excellent inhibition against several tested cancer cell lines. Benzyl and 4-fluorobenzyl analogs were relatively more active than 3,4-dimethoxy phenethyl and 3,4-methylenedioxy phenethyl analogs. In NCI assays, the best LogGI(50) values were shown by the fluorobenzyl analog against the renal cancer cell line RXF-393 (<-8.0M) and dimethoxy phenethyl analog against the CNS cancer cell line, SF-268 (<-8.0M). The best LogLC(50) value was shown by the fluorobenzyl analog against the breast cancer cell line MCF-7 (-6.01 M).
Collapse
|
50
|
Abstract
The Myxomycetes (true slime molds) are an unusual group of primitive organisms that may be assigned to one of the lowest classes of eukaryotes. As their fruit bodies are very small and it is very difficult to collect much quantity, few studies have been made on the chemistry of myxomycetes. We studied spore germination experiments of hundreds of field-collected myxomycetes collected in Japan, and succeeded in laboratory culture of plasmodia of several myxomycetes in a practical scale for natural products chemistry studies. Pyrroloiminoquinones, polyene yellow pigments, and a peptide lactone were isolated from cultured plasmodia of myxomycetes, while new naphthoquinone pigments, cycloanthranilylprolines, tyrosine-kinase inhibitory bisindoles, a cytotoxic triterpenoid aldehyde lactone, a dibenzofuran glycoside, and sterols possessing an unprecedented 2,6-dioxabicyclo[2.2.2] octan-3-one ring system, were also isolated from field-collected fruit bodies of myxomycetes.
Collapse
Affiliation(s)
- Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|