1
|
NMR-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022; 11:cells11213526. [DOI: 10.3390/cells11213526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Gaining structural information is a must to allow the unequivocal structural characterization of analytes from natural sources. In liquid state, NMR spectroscopy is almost the only possible alternative to HPLC-MS and hyphenating the effluent of an analyte separation device to the probe head of an NMR spectrometer has therefore been pursued for more than three decades. The purpose of this review article was to demonstrate that, while it is possible to use mass spectrometry and similar methods to differentiate, group, and often assign the differentiating variables to entities that can be recognized as single molecules, the structural characterization of these putative biomarkers usually requires the use of NMR spectroscopy.
Collapse
|
2
|
Ge H, Bian Y, He X, Xie XQ, Wang J. Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. J Comput Aided Mol Des 2019; 33:447-459. [PMID: 30840169 PMCID: PMC6768063 DOI: 10.1007/s10822-019-00194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/26/2022]
Abstract
Tetrahydroberberrubine (TU), an active tetrahydroprotoberberines (THPBs), is gaining increasing popularity as a potential candidate for treatment of anxiety and depression. One of its two enantiomers, l-TU, has been reported to be an antagonist of both D1 and D2 receptors, but the functional activity of the other enantiomer, d-TU, is still unknown. In this study, experiments were combined with in silico molecular simulations to (1) confirm and discover the functional activities of l-TU and d-TU, and (2) systematically evaluate the molecular mechanisms beyond the experimental observations. l-TU proved to be an antagonist of both D1 and D2 receptors (IC50 = 385 nM and 985 nM, respectively), while d-TU shows no affinity against either D1 or D2 receptor, based on the cAMP assay (D1 receptor) and calcium flux assay (D2 receptor). Results from both flexible-ligand docking studies and molecular dynamic (MD) simulations provided insights at the atomic level. The l-TU-bound structures predicted by MD (1) undergo an outward rotation of the extracellular helical bundles; (2) have an enlarged orthosteric binding pocket; and (3) have a central toggle switch that is prevented from rotating freely. These features are unique to the l-TU enantiomer and provide an explanation for its antagonistic behavior toward both D1 and D2 receptors. The present study provides new sight on the structural and functional relationships of l-TU and d-TU binding to dopamine receptors, and provides guidance to the rational design of novel molecules targeting these two dopamine receptors in the future.
Collapse
Affiliation(s)
- Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| | - Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- NIDA National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- NIDA National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
4
|
Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques--state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 2013; 30:970-87. [PMID: 23739842 DOI: 10.1039/c3np70015a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current natural product research is unthinkable without the use of high resolution separation techniques as high performance liquid chromatography or capillary electrophoresis (HPLC or CE respectively) combined with mass spectrometers (MS) or nuclear magnetic resonance (NMR) spectrometers. These hyphenated instrumental analysis platforms (CE-MS, HPLC-MS or HPLC-NMR) are valuable tools for natural product de novo identification, as well as the authentication, distribution, and quantification of constituents in biogenic raw materials, natural medicines and biological materials obtained from model organisms, animals and humans. Moreover, metabolic profiling and metabolic fingerprinting applications can be addressed as well as pharmacodynamic and pharmacokinetic issues. This review provides an overview of latest technological developments, discusses the assets and drawbacks of the available hyphenation techniques, and describes typical analytical workflows.
Collapse
Affiliation(s)
- Christoph Seger
- Institute of Pharmacy/Pharmacognosy, CCB-Centrum of Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
5
|
Sturm S, Seger C. Liquid chromatography-nuclear magnetic resonance coupling as alternative to liquid chromatography-mass spectrometry hyphenations: curious option or powerful and complementary routine tool? J Chromatogr A 2012; 1259:50-61. [PMID: 22658656 DOI: 10.1016/j.chroma.2012.05.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 01/22/2023]
Abstract
Combining the most powerful separation techniques, i.e. liquid chromatography (LC) or capillary electrophoresis (CE) with a information rich detection system - the mass spectrometer or the nuclear magnetic resonance (NMR) spectrometer - has been pursued for more than three decades. This compilation shall provide an overview of the advantages and limitations of the LC-NMR hyphenation in the light of its most valued application-the unequivocal analyte identification. Especially the post LC trapping of analytes with an in-line solid phase extraction (SPE) device prior to transferring the analyte of interest to the NMR spectrometer (LC-SPE-NMR) proved to be a robust installation allowing a significant cut-down of the amount of analyte needed for the generation of high quality heteronuclear NMR shift correlation data. Different available technical realizations will be discussed and typical application examples from natural product research and from industrial settings will be given.
Collapse
Affiliation(s)
- Sonja Sturm
- Institute of Pharmacy/Pharmacognosy, CCB - Center of Chemistry and Biomedicine, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
6
|
Farrow SC, Hagel JM, Facchini PJ. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. PHYTOCHEMISTRY 2012; 77:79-88. [PMID: 22424601 DOI: 10.1016/j.phytochem.2012.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/29/2011] [Accepted: 02/17/2012] [Indexed: 05/25/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.
Collapse
Affiliation(s)
- Scott C Farrow
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
7
|
Zhai H, Miller J, Sammis G. First enantioselective syntheses of the dopamine D1 and D2 receptor modulators, (+)- and (-)-govadine. Bioorg Med Chem Lett 2012; 22:1557-9. [PMID: 22284818 DOI: 10.1016/j.bmcl.2012.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
There is a pressing need to find and develop new antipsychotic agents for the treatment of schizophrenia. Current drugs primarily target dopamine D2 receptors and are only effective in the treatment of the positive symptoms of this indication. The tetrahydroprotoberberine natural product (±)-govadine has shown unique promise for the treatment of both the positive and negative symptoms of schizophrenia as it targets both dopamine D1 and D2 receptors. However, further clinical research has been hindered by the lack of availability of significant quantities of enantioenriched material. A new, enantioselective synthetic route has been developed that affords (-)-govadine in 39% overall yield over 5-steps from commercially available dopamine and homovanillic acid derivatives. Using only minor modifications in the synthetic route, (+)-govadine can be synthesized in comparable yields and enantioselectivities. The route is readily scalable as every intermediate was purified by crystallization and no flash column chromatography was necessary.
Collapse
Affiliation(s)
- Huimin Zhai
- University of British Columbia, Department of Chemistry, Vancouver, BC, Canada
| | | | | |
Collapse
|
8
|
Ge HX, Zhang J, Dong Y, Cui K, Yu BY. Unique biocatalytic resolution of racemic tetrahydroberberrubine via kinetic glycosylation and enantio-selective sulfation. Chem Commun (Camb) 2012; 48:6127-9. [DOI: 10.1039/c2cc32175k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Regio- and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides. Appl Microbiol Biotechnol 2011; 93:2357-64. [DOI: 10.1007/s00253-011-3795-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|