1
|
Kowalska J, Łukasik B, Frankowski S, Albrecht Ł. Hydrazone Activation in the Aminocatalytic Cascade Reaction for the Synthesis of Tetrahydroindolizines. Org Lett 2024; 26:814-818. [PMID: 38266767 PMCID: PMC10845150 DOI: 10.1021/acs.orglett.3c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In this Letter, we demonstrate the usefulness of hydrazone activation for the synthesis of biologically relevant tetrahydroindolizines. A pyrrol-derived hydrazone bearing a Michael acceptor moiety in the N-alkyl side chain has been designed with the aim of participating in the aminocatalytic cascade reaction leading to the annulation of the new six-membered heterocyclic scaffold. The application of (S)-(-)-α,α-diphenyl-2-pyrrolidinemethanol trimethylsilyl ether as the aminocatalyst allows for the iminium ion-enamine-mediated cascade to proceed in a fully stereoselective manner.
Collapse
Affiliation(s)
- Justyna Kowalska
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Beata Łukasik
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Sebastian Frankowski
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute
of Organic Chemistry, Lodz University of
Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
2
|
García-Ramírez J, González-Cortés LA, Miranda LD. A Modular Synthesis of the Rhazinilam Family of Alkaloids and Analogs Thereof. Org Lett 2022; 24:8093-8097. [PMID: 36095152 DOI: 10.1021/acs.orglett.2c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A short, modular strategy for synthesizing three representative alkaloids of the (±)-rhazinilam family and 10 non-natural analogs is described. The protocol involves a radical addition/cyclization cascade reaction that assembles the tetrahydroindolizine system decorated with appropriate groups for a subsequent Pd-mediated cyclization, which generates the nine-membered lactam.
Collapse
Affiliation(s)
- Jazmín García-Ramírez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Luis A González-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
3
|
Sirindil F, Weibel JM, Pale P, Blanc A. Rhazinilam-leuconolam family of natural products: a half century of total synthesis. Nat Prod Rep 2022; 39:1574-1590. [PMID: 35699109 DOI: 10.1039/d2np00026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1972 to 2021The rhazinilam family of natural products exhibits a main structure with a stereogenic quaternary carbon and a tetrahydroindolizine core imbedded within a 9-membered macrocycle, imposing axial chirality. This unique architecture combined with their taxol-like antimitotic activities have attracted various attention, especially from synthetic chemists, notably in the past decade. The present review describes the known total and formal syntheses of the members of the rhazinilam family (rhazinilam, rhazinal, leuconolam and kopsiyunnanines), according to the strategy developed.
Collapse
Affiliation(s)
- Fatih Sirindil
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Jean-Marc Weibel
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 - CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
4
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
5
|
Hang C, Ramirez A, Chan C, Hsiao Y, DelMonte AJ, Simmons EM. Mechanistic Studies of a Pd-Catalyzed Direct Arylation En Route to Beclabuvir: Dual Role of a Tetramethylammonium Cation and an Unusual Turnover-Limiting Step. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Hang
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Collin Chan
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yi Hsiao
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Albert J. DelMonte
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
6
|
Synthesis of leuconoxine, leuconodine B, and rhazinilam by transformation of melodinine E via 6-hydro-21-dehydroxyleuconolam. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Liu Y, He Y, Liu Y, Wei K, Guo W. Access to azonanes via Pd-catalyzed decarboxylative [5 + 4] cycloaddition with exclusive regioselectivity. Org Chem Front 2021. [DOI: 10.1039/d1qo01405f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient approach for the synthesis of azonanes via Pd-catalyzed decarboxylative [5 + 4] cycloaddition has been developed. The reactions feature wide functional group tolerance with exclusive regioselectivity.
Collapse
Affiliation(s)
- Yin Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| | - Yicheng He
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| | - Yang Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Ham JS, Park B, Son M, Roque JB, Jurczyk J, Yeung CS, Baik MH, Sarpong R. C-H/C-C Functionalization Approach to N-Fused Heterocycles from Saturated Azacycles. J Am Chem Soc 2020; 142:13041-13050. [PMID: 32627545 PMCID: PMC7773224 DOI: 10.1021/jacs.0c04278] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we report the synthesis of substituted indolizidines and related N-fused bicycles from simple saturated cyclic amines through sequential C-H and C-C bond functionalizations. Inspired by the Norrish-Yang Type II reaction, C-H functionalization of azacycles is achieved by forming α-hydroxy-β-lactams from precursor α-ketoamide derivatives under mild, visible light conditions. Selective cleavage of the distal C(sp2)-C(sp3) bond in α-hydroxy-β-lactams using a Rh-complex leads to α-acyl intermediates which undergo sequential Rh-catalyzed decarbonylation, 1,4-addition to an electrophile, and aldol cyclization, to afford N-fused bicycles including indolizidines. Computational studies provide mechanistic insight into the observed positional selectivity of C-C cleavage, which depends strongly on the groups bound to Rh trans to the phosphine ligand.
Collapse
Affiliation(s)
- Jin Su Ham
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mina Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jose B Roque
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Charles S Yeung
- Disruptive Chemistry Fellow, Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Choury M, Basilio Lopes A, Blond G, Gulea M. Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. Molecules 2020; 25:E3147. [PMID: 32660105 PMCID: PMC7397130 DOI: 10.3390/molecules25143147] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Medium-sized heterocycles (with 8 to 11 atoms) constitute important structural components of several biologically active natural compounds and represent promising scaffolds in medicinal chemistry. However, they are under-represented in the screening of chemical libraries as a consequence of being difficult to access. In particular, methods involving intramolecular bond formation are challenging due to unfavorable enthalpic and entropic factors, such as transannular interactions and conformational constraints. The present review focuses on the synthesis of medium-sized heterocycles by transition-metal-catalyzed intramolecular cyclization, which despite its drawbacks remains a straightforward and attractive synthesis strategy. The obtained heterocycles differ in their nature, number of heteroatoms, and ring size. The methods are classified according to the metal used (palladium, copper, gold, silver), then subdivided according to the type of bond formed, namely carbon-carbon or carbon-heteroatom.
Collapse
Affiliation(s)
| | | | | | - Mihaela Gulea
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France; (M.C.); (A.B.L.); (G.B.)
| |
Collapse
|
10
|
Vargas DF, Larghi EL, Kaufman TS. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat Prod Rep 2019; 36:354-401. [PMID: 30090891 DOI: 10.1039/c8np00014j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2006 to 2018 The application of the 6π-azaelectrocyclization of azatrienes as a key strategy for the synthesis of natural products, their analogs and related bioactive or biomedically-relevant compounds (from 2006 to date) is comprehensively reviewed. Details about reaction optimization studies, relevant reaction mechanisms and conditions are also discussed.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
11
|
Abstract
Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.
Collapse
Affiliation(s)
- Siegfried R Waldvogel
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| | - Sebastian Lips
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Maximilian Selt
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany
| | - Barbara Riehl
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Christopher J Kampf
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| |
Collapse
|
12
|
Affiliation(s)
| | - Giuseppe Zanoni
- Dipartimento di Chimica; Università di Pavia; Viale Taramelli 10 27100 Pavia Italy
| | - Debabrata Maiti
- Department of Chemistry; IIT Bombay; Powai Mumbai 400076 India
- Dipartimento di Chimica; Università di Pavia; Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
13
|
Zwick CR, Renata H. Evolution of Biocatalytic and Chemocatalytic C–H Functionalization Strategy in the Synthesis of Manzacidin C. J Org Chem 2018; 83:7407-7415. [DOI: 10.1021/acs.joc.8b00248] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christian R. Zwick
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 809] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
15
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
16
|
Advances in Enantioselective C–H Activation/Mizoroki-Heck Reaction and Suzuki Reaction. Catalysts 2018. [DOI: 10.3390/catal8020090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 2018; 14:6611-37. [PMID: 27282396 DOI: 10.1039/c6ob00936k] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.
Collapse
Affiliation(s)
- Alexandria P Taylor
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Ralph P Robinson
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Yvette M Fobian
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - David C Blakemore
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Lyn H Jones
- Worldwide Medicinal Chemistry, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Olugbeminiyi Fadeyi
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
18
|
Olivier WJ, Smith JA, Bissember AC. Methods for the synthesis of annulated pyrroles via cyclisation strategies. Org Biomol Chem 2018; 16:1216-1226. [DOI: 10.1039/c7ob03144k] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this report, we review the methods that have been employed to synthesise annulated pyrroles.
Collapse
Affiliation(s)
- Wesley J. Olivier
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | - Jason A. Smith
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| | - Alex C. Bissember
- School of Physical Sciences – Chemistry
- University of Tasmania
- Hobart
- Australia
| |
Collapse
|
19
|
Shemet A, Carreira EM. Total Synthesis of (−)-Rhazinilam and Formal Synthesis of (+)-Eburenine and (+)-Aspidospermidine: Asymmetric Cu-Catalyzed Propargylic Substitution. Org Lett 2017; 19:5529-5532. [DOI: 10.1021/acs.orglett.7b02619] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrej Shemet
- ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | |
Collapse
|
20
|
Magné V, Lorton C, Marinetti A, Guinchard X, Voituriez A. Short Enantioselective Total Synthesis of (-)-Rhazinilam Using a Gold(I)-Catalyzed Cyclization. Org Lett 2017; 19:4794-4797. [PMID: 28876069 DOI: 10.1021/acs.orglett.7b02210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
(R)-(-)-Rhazinilam has been synthesized in nine steps and 20% overall yield. The key steps involve two metal-catalyzed processes: the enantioselective gold(I)-catalyzed cycloisomerization of an allene-functionalized pyrrole and the palladium-catalyzed hydrocarboxylation of a vinyl moiety with formate as a CO surrogate. This novel strategy represents the shortest and highest yielding enantioselective total synthesis of (-)-rhazinilam.
Collapse
Affiliation(s)
- Valentin Magné
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Charlotte Lorton
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Xavier Guinchard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Zhang Y, Xue Y, Luo T. An unexpected aziridination/rearrangement/oxidation tandem reaction leading to the total synthesis of (−)-mersicarpine. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Möhle S, Herold S, Richter F, Nefzger H, Waldvogel SR. Twofold Electrochemical Amination of Naphthalene and Related Arenes. ChemElectroChem 2017. [DOI: 10.1002/celc.201700476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Sebastian Herold
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Frank Richter
- Covestro Deutschland AG; Kaiser-Wilhelm-Allee 60 51365 Leverkusen Germany
| | - Hartmut Nefzger
- Covestro Deutschland AG; Kaiser-Wilhelm-Allee 60 51365 Leverkusen Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
23
|
Rafiee F. Synthesis of phenanthridine and phenanthridinone derivatives based on Pd-catalyzed C-H activation. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3820] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fatemeh Rafiee
- Department of Chemistry, Faculty of physic-chemistry; Alzahra University; Vanak Tehran Iran
| |
Collapse
|
24
|
Pfaffenbach M, Gaich T. The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:1-84. [DOI: 10.1016/bs.alkal.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Corrie TJA, Ball LT, Russell CA, Lloyd-Jones GC. Au-Catalyzed Biaryl Coupling To Generate 5- to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus π-Complexation. J Am Chem Soc 2016; 139:245-254. [DOI: 10.1021/jacs.6b10018] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tom J. A. Corrie
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Liam T. Ball
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
26
|
Zhao K, Xu S, Pan C, Sui X, Gu Z. Catalytically Asymmetric Pd/Norbornene Catalysis: Enantioselective Synthesis of (+)-Rhazinal, (+)-Rhazinilam, and (+)-Kopsiyunnanine C1–3. Org Lett 2016; 18:3782-5. [DOI: 10.1021/acs.orglett.6b01790] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Zhao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Shibo Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chongqing Pan
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xianwei Sui
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Hildebrandt S, Gansäuer A. Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sven Hildebrandt
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
28
|
Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2016; 55:9719-22. [DOI: 10.1002/anie.201603985] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/01/2016] [Indexed: 01/02/2023]
|
29
|
Herold S, Möhle S, Zirbes M, Richter F, Nefzger H, Waldvogel SR. Electrochemical Amination of Less-Activated Alkylated Arenes Using Boron-Doped Diamond Anodes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600048] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Dagoneau D, Xu Z, Wang Q, Zhu J. Enantioselective Total Syntheses of (−)-Rhazinilam, (−)-Leucomidine B, and (+)-Leuconodine F. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Dagoneau D, Xu Z, Wang Q, Zhu J. Enantioselective Total Syntheses of (−)-Rhazinilam, (−)-Leucomidine B, and (+)-Leuconodine F. Angew Chem Int Ed Engl 2015; 55:760-3. [DOI: 10.1002/anie.201508906] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/09/2022]
|
32
|
Pfaffenbach M, Gaich T. The Diaza[5.5.6.6]fenestrane Skeleton-Synthesis of Leuconoxine Alkaloids. Chemistry 2015; 22:3600-10. [DOI: 10.1002/chem.201502228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Magnus Pfaffenbach
- Institute of Organic Chemistry; Leibniz University of Hannover; Schneiderberg 1b 30167 Hannover Germany
| | - Tanja Gaich
- Institute of Organic Chemistry; Leibniz University of Hannover; Schneiderberg 1b 30167 Hannover Germany
| |
Collapse
|
33
|
Crossley SWM, Shenvi RA. A Longitudinal Study of Alkaloid Synthesis Reveals Functional Group Interconversions as Bad Actors. Chem Rev 2015; 115:9465-531. [PMID: 26158529 DOI: 10.1021/acs.chemrev.5b00154] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Steven W M Crossley
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
34
|
Yamada Y, Ebata S, Hiyama T, Nakao Y. Synthesis of rhazinilam through intramolecular arylcyanation of alkenes catalyzed cooperatively by nickel/aluminum. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Sugimoto K, Miyakawa Y, Tokuyama H. Total synthesis of (−)-rhazinilam using 1,3-dipolar cycloaddition of optically active münchnone intermediate. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li Z, Geng Q, Lv Z, Pritchett BP, Baba K, Numajiri Y, Stoltz BM, Liang G. Selective syntheses of leuconolam, leuconoxine, and mersicarpine alkaloids from a common intermediate through regiocontrolled cyclizations by Staudinger reactions†Electronic supplementary information (ESI) available: Experimental details and procedures, compound characterization data, copies of 1H and 13C NMR spectra for new compounds. See DOI: 10.1039/c4qo00312hClick here for additional data file. Org Chem Front 2015; 2:236-240. [PMID: 25717379 PMCID: PMC4333676 DOI: 10.1039/c4qo00312h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022]
Abstract
Selective syntheses of leuconolam, leuconoxine, and mersicarpine alkaloids bearing distinctive core structures were achieved through Staudinger reactions using a common intermediate. In the key cyclization step, water functioned like a switch to control which core structure to produce. The chemistry allowed for selective syntheses of the group of alkaloids from a simple intermediate through straightforward chemical operations.
Collapse
Affiliation(s)
- Zining Li
- State Key Laboratory and Institute of Elemento-organic Chemistry , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| | - Qian Geng
- State Key Laboratory and Institute of Elemento-organic Chemistry , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| | - Zhe Lv
- State Key Laboratory and Institute of Elemento-organic Chemistry , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| | - Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Katsuaki Baba
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Yoshitaka Numajiri
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , USA .
| | - Guangxin Liang
- State Key Laboratory and Institute of Elemento-organic Chemistry , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| |
Collapse
|
37
|
Sailu M, Muley SS, Das A, Mainkar PS, Chandrasekhar S. Formal total synthesis of (±)-rhazinal and its B-ring carbamate analogue. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
|
39
|
Yang Y, Bai Y, Sun S, Dai M. Biosynthetically inspired divergent approach to monoterpene indole alkaloids: total synthesis of mersicarpine, leuconodines B and D, leuconoxine, melodinine E, leuconolam, and rhazinilam. Org Lett 2014; 16:6216-9. [PMID: 25412144 PMCID: PMC4260631 DOI: 10.1021/ol503150c] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 01/08/2023]
Abstract
Inspired by their potential biosynthesis, we have developed divergent total syntheses of seven monoterpene indole alkaloids including mersicarpine, leuconodines B and D, leuconoxine, melodinine E, leuconolam, and rhazinilam, and one unnatural analogue with an unprecedented structural skeleton. The key steps involve a Witkop-Winterfeldt oxidative indole cleavage followed by transannular cyclization. The transannular cyclization product was then converted to the corresponding structural skeletons by pairing its functional groups into different reaction modes.
Collapse
Affiliation(s)
| | | | - Siyuan Sun
- Department
of Chemistry and
Center for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department
of Chemistry and
Center for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Huang S, Qing J, Wang S, Wang H, Zhang L, Tang Y. Design and synthesis of imidazo[1,2-α][1,8]naphthyridine derivatives as anti-HCV agents via direct C-H arylation. Org Biomol Chem 2014; 12:2344-8. [PMID: 24595428 DOI: 10.1039/c3ob42525h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RO8191 represents a newly identified small-molecule IFN-α-substitute, which displays potent anti-HCV activity. In this communication, we reported the design and synthesis of two series of imidazo[1,2-α][1,8]naphthyridine derivatives, as RO8191 analogues, via a direct C-H arylation approach. Notably, by adjusting the reaction conditions, we could achieve the two series of analogues via regioselective single- and double-arylations, respectively. The anti-HCV activities of the synthesized compounds were evaluated within the HCV cell culture system, and the preliminary results showed that some of them displayed promising anti-HCV activities.
Collapse
Affiliation(s)
- Shengdian Huang
- The Comprehensive AIDS Research Center, and The Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Liniger M, McFadden RM, Roizen JL, Malette J, Reeves CM, Behenna DC, Seto M, Kim J, Mohr JT, Virgil SC, Stoltz BM. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation. Beilstein J Org Chem 2014; 10:2501-12. [PMID: 25383121 PMCID: PMC4222294 DOI: 10.3762/bjoc.10.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/09/2014] [Indexed: 12/28/2022] Open
Abstract
Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of "classic" natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge.
Collapse
Affiliation(s)
- Yiyang Liu
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Marc Liniger
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Ryan M McFadden
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Jenny L Roizen
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Jacquie Malette
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Corey M Reeves
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Douglas C Behenna
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Masaki Seto
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Jimin Kim
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Justin T Mohr
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Scott C Virgil
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA
| |
Collapse
|
42
|
Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. β-Selective C-H arylation of pyrroles leading to concise syntheses of lamellarins C and I. J Am Chem Soc 2014; 136:13226-32. [PMID: 25190257 DOI: 10.1021/ja508449y] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first general β-selective C-H arylation of pyrroles has been developed by using a rhodium catalyst. This C-H arylation reaction, which is retrosynthetically straightforward but results in unusual regioselectivity, could result in de novo syntheses of pyrrole-derived natural products and pharmaceuticals. As such, we have successfully synthesized polycyclic marine pyrrole alkaloids, lamellarins C and I, by using this β-selective arylation of pyrroles with aryl iodides (C-H/C-I coupling) and a new double C-H/C-H coupling as key steps.
Collapse
Affiliation(s)
- Kirika Ueda
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
43
|
Su Y, Zhou H, Chen J, Xu J, Wu X, Lin A, Yao H. Solvent-Controlled Switchable C–H Alkenylation of 4-Aryl-1H-pyrrole-3-carboxylates: Application to the Total Synthesis of (±)-Rhazinilam. Org Lett 2014; 16:4884-7. [DOI: 10.1021/ol5023933] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youla Su
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Haipin Zhou
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xiaoming Wu
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural
Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
44
|
Gualtierotti JB, Pasche D, Wang Q, Zhu J. Phosphoric Acid Catalyzed Desymmetrization of Bicyclic Bislactones Bearing an All-Carbon Stereogenic Center: Total Syntheses of (−)-Rhazinilam and (−)-Leucomidine B. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Gualtierotti JB, Pasche D, Wang Q, Zhu J. Phosphoric acid catalyzed desymmetrization of bicyclic bislactones bearing an all-carbon stereogenic center: total syntheses of (-)-rhazinilam and (-)-leucomidine B. Angew Chem Int Ed Engl 2014; 53:9926-30. [PMID: 25048385 DOI: 10.1002/anie.201405842] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/24/2014] [Indexed: 12/12/2022]
Abstract
In the presence of a catalytic amount of an imidodiphosphoric acid, enantioselective desymmetrization of bicyclic bislactones by reaction with alcohols took place smoothly to afford enantiomerically enriched monoacids having an all-carbon stereogenic center. Concise catalytic enantioselective syntheses of both (-)-rhazinilam and (-)-leucomidine B were subsequently developed using (S)-methyl 4-ethyl-4-formylpimelate monoacid as a common starting material.
Collapse
Affiliation(s)
- Jean-Baptiste Gualtierotti
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304. 1015 Lausanne (Switzerland) http://lspn.epfl.ch
| | | | | | | |
Collapse
|
46
|
Umehara A, Ueda H, Tokuyama H. Total Syntheses of Leuconoxine, Leuconodine B, and Melodinine E by Oxidative Cyclic Aminal Formation and Diastereoselective Ring-Closing Metathesis. Org Lett 2014; 16:2526-9. [DOI: 10.1021/ol500903e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Atsushi Umehara
- Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
47
|
Kaur N. Metal catalysts: applications in higher-membered N-heterocycles synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0451-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Coya E, Sotomayor N, Lete E. Intramolecular Direct Arylation and Heck Reactions in the Formation of Medium-Sized Rings: Selective Synthesis of Fused Indolizine, Pyrroloazepine and Pyrroloazocine Systems. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Sui X, Zhu R, Li G, Ma X, Gu Z. Pd-Catalyzed Chemoselective Catellani Ortho-Arylation of Iodopyrroles: Rapid Total Synthesis of Rhazinal. J Am Chem Soc 2013; 135:9318-21. [DOI: 10.1021/ja404494u] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xianwei Sui
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China
| | - Rui Zhu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China
| | - Gencheng Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China
| | - Xinna Ma
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui
230026, China
| |
Collapse
|
50
|
Sugimoto K, Toyoshima K, Nonaka S, Kotaki K, Ueda H, Tokuyama H. Protecting-Group-Free Total Synthesis of (−)-Rhazinilam and (−)-Rhazinicine using a Gold-Catalyzed Cascade Cyclization. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|