1
|
Schneider F, Pan L, Ottenbruch M, List T, Gaich T. The Chemistry of Nonclassical Taxane Diterpene. Acc Chem Res 2021; 54:2347-2360. [PMID: 33942612 DOI: 10.1021/acs.accounts.0c00873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The taxane diterpenes are a pharmaceutically vital family of natural products, consisting of more than 550 congeners. All taxane diterpenes are isolated from slow growing evergreen shrubs (genus Taxus) commonly known as "yews" and have a history of over 50 years as potent anticancer compounds. The most prominent congener, taxol (paclitaxel = PTX), has been used in clinics for more than 25 years and is one of the top-selling anticancer drugs worldwide, with annual sales reaching 1.5 billion USD in 1999. Within the taxane diterpene family 11 different scaffolds originating from rearrangements, fragmentations, or transannular C-C bond formations of the "classical taxane core" are known. Among them, five different scaffolds alone belong to the so-called complex or cyclotaxane subfamily, their signature structural feature bearing different types and numbers of transannular C-C bonds across the classical taxane backbone. For synthetic chemists, these five scaffolds represent by far the most challenging of all and have thus evaded total synthesis as well as detailed pharmaceutical evaluation-the latter due to extremely poor sourcing from natural producers. The cousinship of complex taxanes to taxol renders them potentially interesting compounds for drug research in the fight against cancer.This Account specifically summarizes the work on nonclassical taxanes from a biosynthetic, as well as a synthetic, point and provides a synthetic perspective on complex taxanes. Special attention is given to the biosynthetic relationship of complex taxanes and their biological emergence from classical taxanes. The transannular C-C bond forming events in the biosynthesis leading to the five individual scaffolds within this subfamily are structured on the basis of the exact type and number of these specific C-C bond formations. Since functionalization of the classical taxane core in the "oxidase phase" of the biosynthesis precedes the formation of complex taxanes, and is in part prerequisite for these transannular cyclization events, a detailed discussion of these oxidations of the classical taxane backbone is provided. Synthetic efforts toward nonclassical taxanes are scarce in literature and are thus presented in a comprehensive manner for abeotaxanes and complex taxanes. The last part of this Account deals with a synthetic perspective on the synthesis of complex taxanes (cyclotaxanes) and how these most intricate scaffolds can potentially be obtained via a deconvolution strategy. This discussion involves in part unpublished results by our group and is based upon synthetic studies in the literature. The deconvolution strategy we advocate aims for selective fragmentations of the signature transannular C-C bonds of the most intricate scaffold represented by the natural product canataxpropellane, which has recently been synthesized by our group. This strategy represents the converse process of the biosynthesis of complex taxanes (e.g., transannular cyclizations) and is enabled and feasible due to our approach to the canataxpropellane scaffold. We show that, by following this deconvolution strategy, all five scaffolds of complex taxanes can thereby be accessed.
Collapse
Affiliation(s)
- Fabian Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lu Pan
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Moritz Ottenbruch
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tatjana List
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tanja Gaich
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Bebbington MWP. Natural product analogues: towards a blueprint for analogue-focused synthesis. Chem Soc Rev 2017; 46:5059-5109. [DOI: 10.1039/c6cs00842a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A review of approaches to natural product analogues leads to the suggestion of new methods for the generation of biologically active natural product-like scaffolds.
Collapse
|
3
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
4
|
Kingston DGI, Snyder JP. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent. Acc Chem Res 2014; 47:2682-91. [PMID: 25052294 PMCID: PMC4139185 DOI: 10.1021/ar500203h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Paclitaxel (PTX), introduced into the clinic in 1991, has revealed itself as an effective antimicrotubule drug for treatment of a range of otherwise intractable cancers. Along with docetaxel (DTX) and in combination with other agents such as cisplatin, it has proven to be a first-line therapy. Unfortunately, PTX and DTX carry severe liabilities such as debilitating side effects, rapid onset of resistance, and rather complex molecular structures offering substantial challenges to ease of synthetic manipulation. Consequently, the past 15 years has witnessed many efforts to synthesize and test highly modified analogs based on intuitive structural similarity relationships with the PTX molecular skeleton, as well as efforts to mimic the conformational profile of the ligand observed in the macromolecular tubulin-PTX complex. Highly successful improvements in potency, up to 50-fold increases in IC50, have been achieved by constructing bridges between distal centers in PTX that imitate the conformer of the electron crystallographic binding pose. Much less successful have been numerous attempts to truncate PTX by replacing the baccatin core with simpler moieties to achieve PTX-like potencies and applying a wide range of flexible synthesis-based chemistries. Reported efforts, characterized by a fascinating array of baccatin substitutes, have failed to surpass the bioactivities of PTX in both microtubule disassembly assays and cytotoxicity measurements against a range of cell types. Most of the structures retain the main elements of the PTX C13 side chain, while seeking a smaller rigid bicycle as a baccatin replacement adorned with substituents to mimic the C2 benzoyl moiety and the oxetane ring. We surmise that past studies have been handicapped by solubility and membrane permeability issues, but primarily by the existence of an expansive taxane binding pocket and the discrepancy in molecular size between PTX and the pruned analogs. A number of these molecules offer molecular volumes 50-60% that of PTX, fewer contacts with the tubulin protein, severe mismatches with the PTX pharmacophore, lessened capacity to dispel binding site waters contributing to ΔGbind, and unanticipated binding poses. The latter is a critical drawback if molecular designs of simpler PTX structures are based on a perceived or known PTX binding conformation. We conclude that design and synthesis of a highly cytotoxic tubulin-assembly agent based on the paclitaxel pharmacophore remains an unsolved challenge, but one that can be overcome by focus on the architecture of the taxane binding site independent of the effective, but not unique, hand-in-glove match represented by the PTX-tubulin complex.
Collapse
Affiliation(s)
- David G. I. Kingston
- Department
of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061 United States
| | - James P. Snyder
- Department
of Chemistry, Emory University, Atlanta, Georgia, 30322 United States
| |
Collapse
|
5
|
Zhao Y, Su J, Goto M, Morris-Natschke SL, Li Y, Zhao QS, Yao ZJ, Lee KH. Dual-functional abeo-taxane derivatives destabilizing microtubule equilibrium and inhibiting NF-κB activation. J Med Chem 2013; 56:4749-57. [PMID: 23725535 DOI: 10.1021/jm400479p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taxchinin A, with a 11(15→1)-abeo-taxane skeleton, is a major, but inactive taxoid contained in leaves of Taxus chinensis . In our design of dual-functional antitumor abeo-taxane derivatives, two fragments from antitumor agents with different molecular targets (the N-acyl-3'-phenylisoserine side chain from the antimitotic agent paclitaxel and an α,β-unsaturated carbonyl system from NF-κB inhibitors) were incorporated into the scaffold of taxchinin A. The resulting compounds displayed broad inhibitory effects against proliferation of tumor cell lines, with notable selectivity toward colon cancer, melanoma, and renal cancer, when evaluated in the NCI-60 human tumor cell line screening panel. On the basis of the NCI-60 assay data, structure-activity relationship (SAR) correlations were elucidated. Mechanistic studies indicated that this new compound type can both destabilize microtubules and inhibit NF-κB activation, thereby inducing tumor cell apoptosis. This first report of the dual-functional taxoid-core compounds thus provides new opportunities for future drug development based on natural axoid scaffolds.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kingston DGI, Tamarkin L, Paciotti GF. Conformationally Constrained and Nanoparticle Targeted Paclitaxels. PURE APPL CHEM 2012; 84:1455-1467. [PMID: 25598555 PMCID: PMC4295212 DOI: 10.1351/pac-con-11-09-02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paclitaxel (Taxol®) is one of the most important anticancer agents developed over the last 30 years. Its primary mechanism of action is by interaction with the cellular protein tubulin, causing irreversible polymerization to microtubules. A detailed knowledge of this crucial interaction is thus of paramount importance in the design and development of highly potent analogs and also for the potential development of "non-taxane" tubulin polymerization agents. This review briefly describes the discovery and development of taxol, and then describes our work on delineating the tubulin-binding conformation of paclitaxel by a combination of REDOR NMR and molecular modeling. The resulting "T-taxol" conformation was validated by the synthesis of conformationally constrained paclitaxel analogs, which had bioactivities up to twenty-fold higher than those of paclitaxel. The review concludes with recent work on the development of a gold nanoparticle derivative of paclitaxel. This delivery method has the potential to lower the dosage of paclitaxel needed while maintaining or increasing its effectiveness, thus significantly improving the benefits of this important chemotherapeutic agent.
Collapse
Affiliation(s)
| | - Lawrence Tamarkin
- CytImmune Sciences, Inc. 105010 Broschart Rd, Rockville, MD 20850, USA
| | - Giulio F Paciotti
- CytImmune Sciences, Inc. 105010 Broschart Rd, Rockville, MD 20850, USA
| |
Collapse
|
7
|
Contini A, Cappelletti G, Cartelli D, Fontana G, Gelmi ML. Molecular dynamics and tubulin polymerization kinetics study on 1,14-heterofused taxanes: evidence of stabilization of the tubulin head-to-tail dimer–dimer interaction. MOLECULAR BIOSYSTEMS 2012; 8:3254-61. [DOI: 10.1039/c2mb25326g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wang Y, Bian F, Deng S, Shi Q, Ge M, Wang S, Zhang X, Xu S. The key residues of active sites on the catalytic fragment for paclitaxel interacting with poly (ADP-ribose) polymerase. J Biomol Struct Dyn 2011; 28:881-93. [PMID: 21469749 DOI: 10.1080/07391102.2011.10508615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is regarded as a target protein for paclitaxel (PTX) to bind. An important issue is to identify the key residues as active sites for PTX interacting with PARP, which will help to understand the potential drug activity of PTX against cancer cells. Using docking method and MD simulation, we have constructed a refined structure of PTX docked on the catalytic function domain of PARP (PDB code: 1A26). The residues Glu327(988), Tyr246(907), Lys242(903), His165(826), Asp105(766), Gln102(763) and Gln98(759) in PARP are identified as potential sites involved in interaction with PTX according to binding energy (E(b)) between PTX and single residue calculated with B3LYP/6-31G(d,p). These residues form an active binding pocket located on the surface of the catalytic fragment, possibly interacting with the required groups of PTX leading to its activity against cancer cells. It is noted that most of the active sites make conatct with the "southern hemisphere" of PTX except for one residue, Tyr246(907), which interacts with the "northern hemisphere" of PTX. The conformation of PTX in complex with the catalytic fragment is observed as being T-shaped, similar to that complexed with β-tubulin. The total Eb of -269.9 kJ/mol represents the potent interaction between PTX and the catalytic fragment, implying that PTX can readily bind to the active pocket. The tight association of PTX with the catalytic fragment would inhibit PARP activation, suggesting a potential application of PTX as an effective antineoplastic agent.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao Y, Zhang HB, Liu JK, Su J, Li Y, Yao ZJ, Zhao QS. Fragmentations of 13-oxo-taxyunnansin A and their application to preparation of abeo-paclitaxel and abeo-docetaxel analogues. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sun L, Simmerling C, Ojima I. Recent advances in the study of the bioactive conformation of taxol. ChemMedChem 2009; 4:719-31. [PMID: 19360801 DOI: 10.1002/cmdc.200900044] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Paclitaxel is one of the most important chemotherapeutic drugs in the fight against cancer. This minireview covers the recent advances in the study of the bioactive conformation of paclitaxel in tubulin/microtubules. The tubulin-bound structure of paclitaxel has been studied by means of photoaffinity labeling, cryo-electron microscopy, solid-state NMR, molecular modeling, MD simulations and the synthesis of conformationally restrained analogues and paclitaxel mimics. The bioactive conformation of paclitaxel is important since it could provide critical information that would allow the design of novel analogues with simpler structures and/or increased potency against cancer.
Collapse
Affiliation(s)
- Liang Sun
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | |
Collapse
|
11
|
Fang WS, Wang SR. Structural studies of taxol analogues for drug discovery. Expert Opin Drug Discov 2008; 3:1109-22. [DOI: 10.1517/17460441.3.9.1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Abstract
![]()
Recent research on the chemistry of natural products from the author’s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies with the epothilones suggest that the current tubulin-binding model needs to be modified. Examples of natural products discovery and biodiversity conservation in Suriname and Madagascar are also presented, and it is concluded that natural products chemistry will continue to make significant contributions to drug discovery.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| |
Collapse
|
13
|
Kingston DGI. The shape of things to come: structural and synthetic studies of taxol and related compounds. PHYTOCHEMISTRY 2007; 68:1844-54. [PMID: 17184797 PMCID: PMC1979092 DOI: 10.1016/j.phytochem.2006.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/24/2006] [Accepted: 11/01/2006] [Indexed: 05/13/2023]
Abstract
The history of the development of Taxol (paclitaxel) as an anticancer drug is reviewed, and some aspects of the phytochemistry of Taxus species and of the medicinal chemistry of taxol are discussed. The nature of the taxol-tubulin interaction is then described, with an emphasis on studies that led to the discovery and experimental proof of the T-taxol conformation as the tubulin-binding conformation of taxol. The implications of this conformation for future drug development are also briefly covered.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA.
| |
Collapse
|
14
|
Wang L, Alcaraz AA, Matesanz R, Yang CG, Barasoain I, Díaz JF, Li YZ, Snyder JP, Fang WS. Synthesis, biological evaluations, and tubulin binding poses of C-2alpha sulfur linked taxol analogues. Bioorg Med Chem Lett 2007; 17:3191-4. [PMID: 17395465 DOI: 10.1016/j.bmcl.2007.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 11/29/2022]
Abstract
In combination with chemical modifications, bioassays, and computational simulation techniques, C-2 benzoylthio, and benzylthio taxoids were synthesized, biologically evaluated, and their binding conformations rationalized, in order to probe the interaction of taxane molecule with beta-tubulin.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ganesh T, Yang C, Norris A, Glass T, Bane S, Ravindra R, Banerjee A, Metaferia B, Thomas SL, Giannakakou P, Alcaraz AA, Lakdawala AS, Snyder JP, Kingston DGI. Evaluation of the tubulin-bound paclitaxel conformation: synthesis, biology, and SAR studies of C-4 to C-3' bridged paclitaxel analogues. J Med Chem 2007; 50:713-25. [PMID: 17263521 PMCID: PMC2585518 DOI: 10.1021/jm061071x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The important anticancer drug paclitaxel binds to the beta-subunit of the alphabeta-tubulin dimer in the microtubule in a stoichiometric ratio, promoting microtubule polymerization and stability. The conformation of microtubule-bound drug has been the subject of intense study, and various suggestions have been proposed. In previous work we presented experimental and theoretical evidence that paclitaxel adopts a T-shaped conformation when it is bound to tubulin. In this study we report additional experimental data and calculations that delineate the allowable parameters for effective paclitaxel-tubulin interactions.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Chao Yang
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Andrew Norris
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Tom Glass
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Susan Bane
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
- To whom correspondence should be addressed. Phone: 540-231-6570. Fax: 540-231-3255. E-mail:
| | - Rudravajhala Ravindra
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - Abhijit Banerjee
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
| | - Belhu Metaferia
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Shala L. Thomas
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Ana A. Alcaraz
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | | | - James P. Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322
- To whom correspondence should be addressed. Phone: 540-231-6570. Fax: 540-231-3255. E-mail:
| | - David G. I. Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- To whom correspondence should be addressed. Phone: 540-231-6570. Fax: 540-231-3255. E-mail:
| |
Collapse
|
16
|
|