1
|
Weber P, Mészáros Z, Bojarová P, Ebner M, Fischer R, Křen V, Kulik N, Müller P, Vlachová M, Slámová K, Stütz AE, Thonhofer M, Torvisco A, Wrodnigg TM, Wolfsgruber A. Highly functionalized diaminocyclopentanes: A new route to potent and selective inhibitors of human O-GlcNAcase. Bioorg Chem 2023; 140:106819. [PMID: 37666109 DOI: 10.1016/j.bioorg.2023.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-β-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Zuzana Mészáros
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Manuel Ebner
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Roland Fischer
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Philipp Müller
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
2
|
Velueta-Viveros M, Martínez-Bailén M, Puerta A, Romero-Hernández LL, Křen V, Merino-Montiel P, Montiel-Smith S, Fernandes MX, Moreno-Vargas AJ, Padrón JM, López Ó, Fernández-Bolaños JG. Carbohydrate-derived bicyclic selenazolines as new dual inhibitors (cholinesterases/OGA) against Alzheimer’s disease. Bioorg Chem 2022; 127:105983. [DOI: 10.1016/j.bioorg.2022.105983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
3
|
Elbatrawy AA, Kim EJ, Nam G. O‐GlcNAcase: Emerging Mechanism, Substrate Recognition and Small‐Molecule Inhibitors. ChemMedChem 2020; 15:1244-1257. [DOI: 10.1002/cmdc.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed A. Elbatrawy
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| | - Eun Ju Kim
- Daegu University Department of Science Education-Chemistry Gyeongsan-si, Gyeongsangbuk-do Gyeongbuk 38453 (Republic of Korea
| | - Ghilsoo Nam
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| |
Collapse
|
4
|
Seo IK, Woo EH, Cecioni S, Vocadlo DJ. A divergent synthesis to generate targeted libraries of inhibitors for endo- N-acetylglucosaminidases. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell active inhibitors of glycoside processing enzymes are valuable research tools that help us understand the physiological roles of this diverse class of enzymes. endo-N-Acetylglucosaminidases have gained increased attention for their important roles in both mammals and human pathogens; however, metabolically stable cell active inhibitors of these enzymes are lacking. Here, we describe a divergent synthetic strategy involving elaboration of a thiazoline core scaffold. We illustrate the potential of this approach by using the copper catalysed azide-alkyne click (CuAAC) reaction, in combination with a suitable catalyst to avoid poisoning by the thiazoline moiety, to generate a targeted panel of candidate inhibitors of endo-N-acetylglucosaminidases and chitinases.
Collapse
Affiliation(s)
- Isaac K. Seo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Esther H. Woo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Synthesis of NAM-thiazoline derivatives as novel O-GlcNAcase inhibitors. Carbohydr Res 2016; 429:54-61. [DOI: 10.1016/j.carres.2016.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/08/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
|
7
|
Kong H, Chen W, Lu H, Yang Q, Dong Y, Wang D, Zhang J. Synthesis of NAG-thiazoline-derived inhibitors for β-N-acetyl-d-hexosaminidases. Carbohydr Res 2015; 413:135-44. [DOI: 10.1016/j.carres.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
8
|
Krejzová J, Kalachova L, Šimon P, Pelantová H, Slámová K, Křen V. Inhibition of microbial β-N-acetylhexosaminidases by 4-deoxy- and galacto-analogues of NAG-thiazoline. Bioorg Med Chem Lett 2014; 24:5321-3. [PMID: 25442323 DOI: 10.1016/j.bmcl.2014.09.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/24/2022]
Abstract
NAG-thiazoline is a well-established competitive inhibitor of two physiologically relevant glycosidase families-β-N-acetylhexosaminidases (GH20) and β-N-acetylglucosaminidases (GH84). Based on the different substrate flexibilities of these enzyme groups, we designed and synthesized the 4-deoxy derivative of NAG-thiazoline aiming at the selective inhibition of GH20 β-N-acetylhexosaminidases. One GH84 and two GH20 microbial glycosidases were employed as model enzymes for the inhibition assays. Surprisingly, the new compound 4-deoxy-thiazoline exhibited no activity inhibition with either of the enzyme families of interest. Unlike with the substrates, the 4-hydroxyl group of the inhibitor's sugar ring seems to be crucial for binding the inhibitor to the active sites of these enzymes.
Collapse
Affiliation(s)
- Jana Krejzová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 5, CZ 16628 Praha 6, Czech Republic
| | - Lubica Kalachova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic
| | - Petr Šimon
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic
| |
Collapse
|
9
|
Alonso J, Schimpl M, van Aalten DMF. O-GlcNAcase: promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? J Biol Chem 2014; 289:34433-9. [PMID: 25336650 PMCID: PMC4263850 DOI: 10.1074/jbc.r114.609198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA.
Collapse
Affiliation(s)
- Jana Alonso
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and
| | - Marianne Schimpl
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and
| | - Daan M F van Aalten
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and Division of Molecular Microbiology, College of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| |
Collapse
|
10
|
Inhibition of GlcNAc-processing glycosidases by C-6-azido-NAG-thiazoline and its derivatives. Molecules 2014; 19:3471-88. [PMID: 24658571 PMCID: PMC6271965 DOI: 10.3390/molecules19033471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 01/13/2023] Open
Abstract
NAG-thiazoline is a strong competitive inhibitor of GH20 β-N-acetyl- hexosaminidases and GH84 β-N-acetylglucosaminidases. Here, we focused on the design, synthesis and inhibition potency of a series of new derivatives of NAG-thiazoline modified at the C-6 position. Dimerization of NAG-thiazoline via C-6 attached triazole linkers prepared by click chemistry was employed to make use of multivalency in the inhibition. Novel compounds were tested as potential inhibitors of β-N-acetylhexosaminidases from Talaromyces flavus, Streptomyces plicatus (both GH20) and β-N-acetylglucosaminidases from Bacteroides thetaiotaomicron and humans (both GH84). From the set of newly prepared NAG-thiazoline derivatives, only C-6-azido-NAG-thiazoline displayed inhibition activity towards these enzymes; C-6 triazole-substituted NAG-thiazolines lacked inhibition activity against the enzymes used. Docking of C-6-azido-NAG-thiazoline into the active site of the tested enzymes was performed. Moreover, a stability study with GlcNAc-thiazoline confirmed its decomposition at pH < 6 yielding 2-acetamido-2-deoxy-1-thio-α/β-D-glucopyranoses, which presumably dimerize oxidatively into S-S linked dimers; decomposition products of NAG-thiazoline are void of inhibitory activity.
Collapse
|
11
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
12
|
Krejzová J, Šimon P, Vavříková E, Slámová K, Pelantová H, Riva S, Spiwok V, Křen V. Enzymatic synthesis of new C-6-acylated derivatives of NAG-thiazoline and evaluation of their inhibitor activities towards fungal β-N-acetylhexosaminidase. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Lima VV, Rigsby CS, Hardy DM, Webb RC, Tostes RC. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension. ACTA ACUST UNITED AC 2012; 3:374-87. [PMID: 20409980 DOI: 10.1016/j.jash.2009.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 12/21/2022]
Abstract
O-Linked attachment of beta-N-acetyl-glucosamine (O-GlcNAc) on serine and threonine residues of nuclear and cytoplasmic proteins is a highly dynamic posttranslational modification that plays a key role in signal transduction pathways. Preliminary data show that O-GlcNAcylation may represent a key regulatory mechanism in the vasculature, modulating contractile and relaxant responses. Proteins with an important role in vascular function, such as endothelial nitric oxide synthase, sarcoplasmic reticulum Ca(2+)-ATPase, protein kinase C, mitogen-activated protein kinases, and proteins involved in cytoskeleton regulation and microtubule assembly are targets for O-GlcNAcylation, indicating that this posttranslational modification may play an important role in vascular reactivity. Here, we will focus on a few specific pathways that contribute to vascular function and cardiovascular disease-associated vascular dysfunction, and the implications of their modification by O-GlcNAc. New chemical tools have been developed to detect and study O-GlcNAcylation, including inhibitors of O-GlcNAc enzymes, chemoenzymatic tagging methods, and quantitative proteomics strategies; these will also be briefly addressed. An exciting challenge in the future will be to better understand the cellular dynamics of this posttranslational modification, as well as the signaling pathways and mechanisms by which O-GlcNAc is regulated on specific proteins in the vasculature in health and disease.
Collapse
Affiliation(s)
- Victor V Lima
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA; Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
14
|
Zhu X, Dere RT, Jiang J, Zhang L, Wang X. Synthesis of α-Glycosyl Thiols by Stereospecific Ring-Opening of 1,6-Anhydrosugars. J Org Chem 2011; 76:10187-97. [DOI: 10.1021/jo202069y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangming Zhu
- Centre for
Synthesis and Chemical Biology, UCD School of Chemistry and Chemical
Biology, University College Dublin, Belfield,
Dublin 4, Ireland
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ravindra T. Dere
- Centre for
Synthesis and Chemical Biology, UCD School of Chemistry and Chemical
Biology, University College Dublin, Belfield,
Dublin 4, Ireland
| | - Junyan Jiang
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Zhang
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxia Wang
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
15
|
Macauley MS, He Y, Gloster TM, Stubbs KA, Davies GJ, Vocadlo DJ. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. ACTA ACUST UNITED AC 2011; 17:937-48. [PMID: 20851343 PMCID: PMC2954295 DOI: 10.1016/j.chembiol.2010.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/08/2010] [Accepted: 07/13/2010] [Indexed: 01/12/2023]
Abstract
To probe increased O-GlcNAc levels as an independent mechanism governing insulin resistance in 3T3-L1 adipocytes, a new class of O-GlcNAcase (OGA) inhibitor was studied. 6-Acetamido-6-deoxy-castanospermine (6-Ac-Cas) is a potent inhibitor of OGA. The structure of 6-Ac-Cas bound in the active site of an OGA homolog reveals structural features contributing to its potency. Treatment of 3T3-L1 adipocytes with 6-Ac-Cas increases O-GlcNAc levels in a dose-dependent manner. These increases in O-GlcNAc levels do not induce insulin resistance functionally, measured using a 2-deoxyglucose (2-DOG) uptake assay, or at the molecular level, determined by evaluating levels of phosphorylated IRS-1 and Akt. These results, and others described, provide a structural blueprint for improved inhibitors and collectively suggest that increased O-GlcNAc levels, brought about by inhibition of OGA, does not by itself cause insulin resistance in 3T3-L1 adipocytes.
Collapse
|
16
|
Slámová K, Bojarová P, Petrásková L, Křen V. β-N-Acetylhexosaminidase: What's in a name…? Biotechnol Adv 2010; 28:682-93. [DOI: 10.1016/j.biotechadv.2010.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/17/2010] [Accepted: 04/24/2010] [Indexed: 01/28/2023]
|
17
|
Kim EJ, Love DC, Darout E, Abdo M, Rempel B, Withers SG, Rablen PR, Hanover JA, Knapp S. OGA inhibition by GlcNAc-selenazoline. Bioorg Med Chem 2010; 18:7058-64. [PMID: 20822912 DOI: 10.1016/j.bmc.2010.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/26/2022]
Abstract
The title compound, which differs from the powerful O-GlcNAcase (OGA) inhibitor GlcNAc-thiazoline only at the chalcogen atom (Se for S), is a much weaker inhibitor in a direct OGA assay. In human cells, however, the selenazoline shows comparable ability to induce hyper-O-GlcNAc-ylation, and the two show similar reduction of insulin-stimulated translocation of glucose transporter 4 in differentiated 3T3 adipocytes.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongbuk 712-714, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:96-106. [PMID: 19647786 PMCID: PMC2815129 DOI: 10.1016/j.bbagen.2009.07.018] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND Since its discovery in the early 1980s, O-linked-beta-N-acetylglucosamine (O-GlcNAc), a single sugar modification on the hydroxyl group of serine or threonine residues, has changed our views of protein glycosylation. While other forms of protein glycosylation modify proteins on the cell surface or within luminal compartments of the secretory machinery, O-GlcNAc modifies myriad nucleocytoplasmic proteins. GlcNAcylated proteins are involved in transcription, ubiquitination, cell cycle, and stress responses. GlcNAcylation is similar to protein phosphorylation in terms of stoichiometry, localization and cycling. To date, only two enzymes are known to regulate GlcNAcylation in mammals: O-GlcNAc transferase (OGT), which catalyzes the addition of O-GlcNAc, and beta-N-acetylglucosaminidase (O-GlcNAcase), a neutral hexosaminidase responsible for O-GlcNAc removal. OGT and O-GlcNAcase are regulated by RNA splicing, by nutrients, and by post-translational modifications. Their specificities are controlled by many transiently associated targeting subunits. As methods for detecting O-GlcNAc have improved our understanding of O-GlcNAc's functions has grown rapidly. SCOPE OF REVIEW In this review, the functions of GlcNAcylation in regulating cellular processes, its extensive crosstalk with protein phosphorylation, and regulation of OGT and O-GlcNAcase will be explored. MAJOR CONCLUSIONS GlcNAcylation rivals phosphorylation in terms of its abundance, protein distribution and its cycling on and off of proteins. GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling, transcription and the cytoskeleton in response to nutrients and stress. GENERAL SIGNIFICANCE Abnormal crosstalk between GlcNAcylation and phosphorylation underlies dysregulation in diabetes, including glucose toxicity, and defective GlcNAcylation is involved in neurodegenerative disease and cancer and most recently in AIDS.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
19
|
Castilla J, Marín I, Matheu MI, Díaz Y, Castillón S. Short and General Procedure for Synthesizing Cis-1,2-Fused 1,3-Oxathiolan-, 1,3-Oxaselenolan-, and 1,3-Oxazolidin-2-imine Carbohydrate Derivatives. J Org Chem 2009; 75:514-7. [DOI: 10.1021/jo9023649] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Castilla
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Irene Marín
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - M. Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Macauley MS, Vocadlo DJ. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase. Biochim Biophys Acta Gen Subj 2009; 1800:107-21. [PMID: 19664691 DOI: 10.1016/j.bbagen.2009.07.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
21
|
Knapp S, Fash D, Abdo M, Emge TJ, Rablen PR. GlcNAc-Thiazoline conformations. Bioorg Med Chem 2009; 17:1831-6. [PMID: 19223181 DOI: 10.1016/j.bmc.2009.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 11/25/2022]
Abstract
The title compound, a powerful inhibitor of retaining N-acetylhexosaminidases, can move freely among three pyranose solution conformations of similar energy-two twist boats and the (4)C(1) chair-as revealed by NMR, calculational, and crystallographic studies. It binds in the enzyme active site only in the pseudo-(4)C(1) conformation, however, in which it most closely resembles the hypothetical bound substrate transition state, a (4)E sofa that is approximately trigonal bipyramidal at the anomeric carbon.
Collapse
Affiliation(s)
- Spencer Knapp
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
22
|
Gaumont AC, Gulea M, Levillain J. Overview of the Chemistry of 2-Thiazolines. Chem Rev 2009; 109:1371-401. [DOI: 10.1021/cr800189z] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annie-Claude Gaumont
- Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN & Université de Caen, 14050 Caen, France
| | - Mihaela Gulea
- Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN & Université de Caen, 14050 Caen, France
| | - Jocelyne Levillain
- Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN & Université de Caen, 14050 Caen, France
| |
Collapse
|
23
|
Stubbs K, Macauley M, Vocadlo D. A Selective Inhibitor Gal-PUGNAc of Human Lysosomal β-Hexosaminidases Modulates Levels of the Ganglioside GM2 in Neuroblastoma Cells. Angew Chem Int Ed Engl 2009; 48:1300-3. [DOI: 10.1002/anie.200804583] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Stubbs K, Macauley M, Vocadlo D. A Selective Inhibitor Gal-PUGNAc of Human Lysosomal β-Hexosaminidases Modulates Levels of the Ganglioside GM2 in Neuroblastoma Cells. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
López Ó, Zafra E, Maya I, Fuentes J, Diánez MJ, Estrada MD, Pérez-Garrido S, Fernández-Bolaños JG. cis-Fused bicyclic sugar thiocarbamates. Reactivity towards amines. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Scaffidi A, Stubbs KA, Vocadlo DJ, Stick RV. The synthesis and biological evaluation of some carbocyclic analogues of PUGNAc. Carbohydr Res 2008; 343:2744-53. [DOI: 10.1016/j.carres.2008.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/04/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
|
27
|
Hesek D, Lee M, Yamaguchi T, Noll BC, Mobashery S. Facile preparation of a highly functionalized tetrahydropyran by catalytic hydrogenation of an oxazoline. J Org Chem 2008; 73:7349-52. [PMID: 18690743 DOI: 10.1021/jo801037z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Amino-1,5-anhydro-2-deoxy-D-glucitol, a highly functionalized tetrahydropyran, is a versatile building unit in many natural products. A facile route to this type of synthetic building unit from the corresponding 2-aminopyranoses, as exemplified by an application to D-glucosamine, is outlined. A simple catalytic hydrogenation at C-1 of an oxazoline constructed from the corresponding 2-aminopyranose results in the desired product.
Collapse
Affiliation(s)
- Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
28
|
Yoshimura Y, Ohara C, Imahori T, Saito Y, Kato A, Miyauchi S, Adachi I, Takahata H. Synthesis of both enantiomers of hydroxypipecolic acid derivatives equivalent to 5-azapyranuronic acids and evaluation of their inhibitory activities against glycosidases. Bioorg Med Chem 2008; 16:8273-86. [DOI: 10.1016/j.bmc.2008.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
29
|
A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 2008; 4:483-90. [DOI: 10.1038/nchembio.96] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/19/2008] [Indexed: 11/08/2022]
|
30
|
N-Acetylhexosaminidase inhibitory properties of C-1 homologated GlcNAc- and GalNAc-thiazolines. Bioorg Med Chem Lett 2008; 18:2944-7. [DOI: 10.1016/j.bmcl.2008.03.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 03/24/2008] [Indexed: 11/17/2022]
|
31
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
32
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
33
|
Dere RT, Wang Y, Zhu X. A direct and stereospecific approach to the synthesis of α-glycosyl thiols. Org Biomol Chem 2008; 6:2061-3. [DOI: 10.1039/b804536d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|