1
|
Gao M, Zhang Z, Yao G, Zhang L, Duan A, Zhang Y, Wang Y, Zhao J, Zhang J. Design, synthesis, and biological evaluation of novel 2'-deoxy-2'-spirooxetane-7-deazapurine nucleoside analogs as anti-SARS-CoV-2 agents. Antiviral Res 2025; 234:106060. [PMID: 39743047 DOI: 10.1016/j.antiviral.2024.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global public health crisis and continues to pose grave threats to human health. The efficacy of current vaccines and therapeutics is likely limited for future emerging strains due to the highly mutative nature of the virus, underscoring an urgent need for the development of new, potent antiviral agents. In this study, we report the design and synthesis of a series of novel 2'-deoxy-2'-spirooxetane-7-deazapurine nucleoside analogs as potential inhibitors of SARS-CoV-2 replication. Some of these compounds demonstrate potent antiviral activity, offering a potential new weapon for therapeutic intervention against the ever-evolving SARS-CoV-2 virus. Among the tested compounds, nucleoside analog 11q exhibited the most potent antiviral activity against SARS-CoV-2 in Vero E6 cells, with IC50 values of 0.14 μM for the wild-type strain and 0.36 μM for the BA.5 strain. Notably, compound 11q exhibits up to nine times greater inhibitory activity against wild-type SARS-CoV-2 compared to Remdesivir and also possesses a superior selectivity index. These findings suggest that compound 11q is a highly promising lead candidate for future drug development aimed at combating SARS-CoV-2.
Collapse
Affiliation(s)
- Minli Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoqiang Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, China
| | - Lu Zhang
- State Key Laboratory of Respiratory Disease, Public Health Safety Center Laboratory of General Administration of Customs, Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Anna Duan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, China
| | - Yuanyuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, China; Guangzhou Henovcom Bioscience Inc, 11 Kaiyuan Rd, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Yan L, Cao R, Zhang H, Li Y, Li W, Li X, Fan S, Li S, Zhong W. Design, synthesis and evaluation of 2'-acetylene-7-deaza-adenosine phosphoamidate derivatives as anti-EV71 and anti-EV-D68 agents. Eur J Med Chem 2021; 226:113852. [PMID: 34560428 DOI: 10.1016/j.ejmech.2021.113852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
A series of phosphoamidate derivatives of nucleoside 2'-acetylene-7-deaza-adenosine (NITD008) were synthesized and evaluated for their in vitro antiviral activities against the enteroviruses EV71 and EV-D68. The phosphoamidate (15f) containing a hexyl ester of l-alanine exhibited the most promising activity against EV71 (IC50 = 0.13 ± 0.08 μM) and was 4-times more potent than NITD008. Meanwhile, the derivative containing a cyclohexyl ester of l-alanine (15l) exhibited the most potent activity with high selectivity index against both EV71 (IC50 = 0.19 ± 0.27 μM, SI = 117.00) and EV-D68 (IC50 = 0.17 ± 0.16 μM, SI = 130.76), which were both higher than that of NITD008. The results indicated that the phosphoamidate 15l was the most promising candidate for further development as antiviral agents for the treatment of both EV71 and EV-D68 infection.
Collapse
Affiliation(s)
- Linjie Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Hongjie Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Xiaoyuan Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China.
| |
Collapse
|
3
|
Liu Q, Knobloch G, Voorneveld J, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Ladurner AG, Filippov DV. Chemical synthesis of linear ADP-ribose oligomers up to pentamer and their binding to the oncogenic helicase ALC1. Chem Sci 2021; 12:12468-12475. [PMID: 34603678 PMCID: PMC8480336 DOI: 10.1039/d1sc02340c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
ADP-ribosylation is a pivotal post-translational modification that mediates various important cellular processes producing negatively charged biopolymer, poly (ADP-ribose), the functions of which need further elucidation. Toward this end, the availability of well-defined ADP-ribose (ADPr) oligomers in sufficient quantities is a necessity. In this work, we demonstrate the chemical synthesis of linear ADPr oligomers of defined, increasing length using a modified solid phase synthesis method. An advanced phosphoramidite building block temporarily protected with the base sensitive Fm-group was designed and implemented in the repeating pyrophosphate formation via a P(v)-P(iii) coupling procedure on Tentagel solid support. Linear ADPr oligomers up to a pentamer were successfully synthesized and their affinity for the poly-(ADP-ribose)-binding macrodomain of the human oncogenic helicase and chromatin remodeling enzyme ALC1 was determined. Our data reveal a length-dependent binding manner of the nucleic acid, with larger ADPr oligomers exhibiting higher binding enthalpies for ALC1, illustrating how the activity of this molecular machine is gated by PAR.
Collapse
Affiliation(s)
- Qiang Liu
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Gunnar Knobloch
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine LMU Munich 82152 Planegg-Martinsried Germany
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Nico J Meeuwenoord
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | | | - Andreas G Ladurner
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine LMU Munich 82152 Planegg-Martinsried Germany
- Eisbach Bio GmbH Am Klopferspitz 19, Planegg-Martinsried 82152 Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
4
|
5-Bromoisoxazolidines: synthesis, reactivity and NMR study. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li Q, Groaz E, Rocha-Pereira J, Neyts J, Herdewijn P. Anti-norovirus activity of C7-modified 4-amino-pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. Eur J Med Chem 2020; 195:112198. [PMID: 32294613 DOI: 10.1016/j.ejmech.2020.112198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Synthetic nucleoside analogues characterized by a C-C anomeric linkage form a family of promising therapeutics against infectious and malignant diseases. Herein, C-nucleosides comprising structural variations at the sugar and nucleobase moieties were examined for their ability to inhibit both murine and human norovirus RNA-dependent RNA polymerase (RdRp). We have found that the combination of 4-amino-pyrrolo[2,1-f][1,2,4]triazine and its 7-halogenated congeners with either a d-ribose or 2'-C-methyl-d-ribose unit resulted in analogues with good antiviral activity against murine norovirus (MNV), albeit coupled with a significant cytotoxicity. Among this series, 4-aza-7,9-dideazaadenosine notably retained a strong antiviral effect in a human norovirus (HuNoV) replicon assay with an EC50 = 0.015 μM. This study demonstrates that C-nucleosides can be used as viable starting scaffolds for further optimization towards the development of nucleoside-based inhibitors of norovirus replication.
Collapse
Affiliation(s)
- Qingfeng Li
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium
| | - Elisabetta Groaz
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium.
| | - Joana Rocha-Pereira
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1041, Leuven, 3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Herestraat 49 - Box 1041, Leuven, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - Box 1041, Leuven, 3000, Belgium.
| |
Collapse
|
6
|
Bartolo ND, Read JA, Valentín EM, Woerpel KA. Reactions of Allylmagnesium Reagents with Carbonyl Compounds and Compounds with C═N Double Bonds: Their Diastereoselectivities Generally Cannot Be Analyzed Using the Felkin-Anh and Chelation-Control Models. Chem Rev 2020; 120:1513-1619. [PMID: 31904936 PMCID: PMC7018623 DOI: 10.1021/acs.chemrev.9b00414] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review describes the additions of allylmagnesium reagents to carbonyl compounds and to imines, focusing on the differences in reactivity between allylmagnesium halides and other Grignard reagents. In many cases, allylmagnesium reagents either react with low stereoselectivity when other Grignard reagents react with high selectivity, or allylmagnesium reagents react with the opposite stereoselectivity. This review collects hundreds of examples, discusses the origins of stereoselectivities or the lack of stereoselectivity, and evaluates why selectivity may not occur and when it will likely occur.
Collapse
Affiliation(s)
- Nicole D. Bartolo
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| | - Jacquelyne A. Read
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, UT 84112, USA
| | - Elizabeth M. Valentín
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
- Department of Chemistry, Susquehanna University, 514
University Avenue, Selinsgrove, PA 17870, USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100
Washington Square East, New York, NY 10003, USA
| |
Collapse
|
7
|
Dialer CR, Stazzoni S, Drexler DJ, Müller FM, Veth S, Pichler A, Okamura H, Witte G, Hopfner KP, Carell T. A Click-Chemistry Linked 2'3'-cGAMP Analogue. Chemistry 2019; 25:2089-2095. [PMID: 30536650 DOI: 10.1002/chem.201805409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/09/2022]
Abstract
2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3'-5' and a unique 2'-5' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogues with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, the synthesis of a cGAMP analogue with one amide and one triazole linkage is reported. The molecule is best prepared via a first CuI -catalyzed click reaction, which establishes the triazole, while the cyclization is achieved by macrolactamization.
Collapse
Affiliation(s)
- Clemens Reto Dialer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Samuele Stazzoni
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - David Jan Drexler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Felix Moritz Müller
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Simon Veth
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Alexander Pichler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Hidenori Okamura
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Gregor Witte
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
8
|
Fan A, Chuah GK, Jaenicke S. A novel and environmental friendly synthetic route for hydroxypyrrolidines using zeolites. Carbohydr Res 2019; 472:103-114. [PMID: 30544044 DOI: 10.1016/j.carres.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
A critical step in the synthesis of the hydroxypyrrolidines, 1,4-dideoxy-1,4-imino-l-lyxitol and 1,4-dideoxy-1,4-imino-d-lyxitol, from the corresponding d-sugars is the synthesis of O-methyl 2,3-O-isopropylidenepentofuranoses. Instead of applying homogeneous catalysis process with conventional inorganic acid catalysts like HCl and HClO4, it was found that heterogeneous catalysis using zeolites could be used for the one-pot synthesis of O-methyl 2,3-O-isopropylidenepentofuranoses directly from d-sugars, MeOH and acetone at mild condition. The best catalyst was H-beta zeolite containing a Si/Al molar ratio of 150, where a yield of >83% was obtained. The overall yields of the five-step procedure to 1,4-dideoxy-1,4-imino-l-lyxitol and 1,4-dideoxy-1,4-imino-d-lyxitol were 57% and 50%, respectively. This synthetic procedure has several advantages such as competitive overall yield, reduced number of steps, and mild reaction conditions. Furthermore, the zeolite catalyst can be easily recovered from the reaction mixture and reused with no loss of activity.
Collapse
Affiliation(s)
- A Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - G K Chuah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Stephan Jaenicke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
9
|
Shirinfar B, Ahmed N. Chemical Glycosylations for the Synthesis of Building Units of Post-Translational Modifications. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bahareh Shirinfar
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
- Organic Chemistry Institute; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Nisar Ahmed
- School of Chemistry; University of Bristol; Bristol BS8 1TS United Kingdom
- Organic Chemistry Institute; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
- School of Chemistry; Cardiff University; Cardiff CF10 3AT United Kingdom
| |
Collapse
|
10
|
Grélaud S, Lusseau J, Landais Y. Acyl Radical Addition to Activated Olefins: A Stereocontrolled Route to Polysubstituted Tetrahydrofurans and Lactones, and Application to the Total Synthesis of (+)-No. 2106 A. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Simon Grélaud
- Institute of Molecular Sciences, UMR-CNRS-5255; University of Bordeaux; 351 cours de la libération 33405 Talence CEDEX France
| | - Jonathan Lusseau
- Institute of Molecular Sciences, UMR-CNRS-5255; University of Bordeaux; 351 cours de la libération 33405 Talence CEDEX France
| | - Yannick Landais
- Institute of Molecular Sciences, UMR-CNRS-5255; University of Bordeaux; 351 cours de la libération 33405 Talence CEDEX France
| |
Collapse
|
11
|
Soueidan OM, Trayner BJ, Grant TN, Henderson JR, Wuest F, West FG, Cheeseman CI. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5. Org Biomol Chem 2015; 13:6511-21. [DOI: 10.1039/c5ob00314h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two fluorinated fructose analogs are taken up by tumor cells in culture. Their high affinity for the transporter protein GLUT5 provides information on the structural demands of its binding site, and suggests approaches towards new molecular imaging probes.
Collapse
Affiliation(s)
- Olivier-Mohamad Soueidan
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
- Department of Physiology
| | | | - Tina N. Grant
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
- Department of Physiology
| | - Jeff R. Henderson
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Frank Wuest
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton
- Canada T6G 1Z2
| | - F. G. West
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
| | | |
Collapse
|
12
|
Wang C, Ma X, Zhang J, Tang Q, Jiao W, Shao H. Methanesulfonic-Acid-Catalysed Ring Opening and Glycosylation of 1,2-(Acetylcyclopropane)-AnnulatedD-Lyxofuranose. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Jonckers THM, Vandyck K, Vandekerckhove L, Hu L, Tahri A, Van Hoof S, Lin TI, Vijgen L, Berke JM, Lachau-Durand S, Stoops B, Leclercq L, Fanning G, Samuelsson B, Nilsson M, Rosenquist Å, Simmen K, Raboisson P. Nucleotide Prodrugs of 2′-Deoxy-2′-spirooxetane Ribonucleosides as Novel Inhibitors of the HCV NS5B Polymerase. J Med Chem 2014; 57:1836-44. [DOI: 10.1021/jm4015422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tim H. M. Jonckers
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Koen Vandyck
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Leen Vandekerckhove
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lili Hu
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Abdellah Tahri
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steven Van Hoof
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Tse-I Lin
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Leen Vijgen
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jan Martin Berke
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sophie Lachau-Durand
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Laurent Leclercq
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gregory Fanning
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | | - Kenny Simmen
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Janssen
Infectious Diseases − Diagnostics BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
14
|
Hu W, Yang Q, Wang S, Huang G, Zhang Y, Dong J, Kang J, Song C, Chang J. A new route for the synthesis of 4-amino-5-fluoro-7-(2'-deoxy-2'-fluoro-2'-C-methyl-β-D-ribofuranosyl)-1H-pyrrolo[2,3-d]pyrimidine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:389-95. [PMID: 23742063 DOI: 10.1080/15257770.2013.797994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new route for the synthesis of 4-amino-5-fluoro-7-(2'-deoxy-2'-fluoro-2'-C-methyl-β-D-ribofuranosyl)-1H-pyrrolo[2,3-d]pyrimidine 1, was developed.
Collapse
Affiliation(s)
- Weidong Hu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li NS, Piccirilli JA. Efficient synthesis of 2′-C-α-aminomethyl-2′-deoxynucleosides. Chem Commun (Camb) 2012; 48:8754-6. [DOI: 10.1039/c2cc34556k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zhang X, Mu T, Zhan F, Ma L, Liang G. Total Synthesis of (−)-Isatisine A. Angew Chem Int Ed Engl 2011; 50:6164-6. [DOI: 10.1002/anie.201101621] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Indexed: 11/06/2022]
|
17
|
|
18
|
Lou C, Xiao Q, Brennan L, Light ME, Vergara-Irigaray N, Atkinson EM, Holden-Dye LM, Fox KR, Brown T. Synthesis and properties of triplex-forming oligonucleotides containing 2'-O-(2-methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine. Bioorg Med Chem 2010; 18:6389-97. [PMID: 20674370 DOI: 10.1016/j.bmc.2010.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
2'-O-(2-Methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine phosphoramidite (MEPU) has been synthesized from d-ribose and 5-iodouracil and incorporated into triplex-forming oligonucleotides (TFOs) by automated solid-phase oligonucleotide synthesis. The TFOs gave very high triplex stability with their target duplexes as measured by ultraviolet/fluorescence melting and DNase I footprinting. The incorporation of MEPU into TFOs renders them resistant to degradation by serum nucleases.
Collapse
Affiliation(s)
- Chenguang Lou
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Greig IR. The analysis of enzymic free energy relationships using kinetic and computational models. Chem Soc Rev 2010; 39:2272-301. [DOI: 10.1039/b902741f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Xue JL, Cecioni S, He L, Vidal S, Praly JP. Variations on the SnCl4 and CF3CO2Ag-promoted glycosidation of sugar acetates: a direct, versatile and apparently simple method with either α or β stereocontrol. Carbohydr Res 2009; 344:1646-53. [DOI: 10.1016/j.carres.2009.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|