1
|
Taechalertpaisarn J, Ono S, Okada O, Johnstone TC, Scott Lokey R. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. J Med Chem 2022; 65:5072-5084. [PMID: 35275623 PMCID: PMC10681114 DOI: 10.1021/acs.jmedchem.2c00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the notoriously poor membrane permeability of peptides, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of "undruggable" intracellular targets. A major impediment to the design of cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. While several strategies have been proposed to mitigate this deleterious effect, only few studies have used polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinylglutamine (Pye), whose side chain contains a powerful hydrogen-bond-accepting C═O amide group but no hydrogen-bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Therefore, this approach offers a complementary tool for improving membrane permeability and solubility in cyclic peptides.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Satoshi Ono
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Okimasa Okada
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Timothy C. Johnstone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
2
|
Garcia-Marin J, Griera-Merino M, Matamoros-Recio A, de Frutos S, Rodríguez-Puyol M, Alajarín R, Vaquero JJ, Rodríguez-Puyol D. Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein-Protein Interaction with α-Parvin. ACS Med Chem Lett 2021; 12:1656-1662. [PMID: 34790291 PMCID: PMC8591738 DOI: 10.1021/acsmedchemlett.1c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
![]()
Integrin-linked
kinase (ILK) has emerged as a controversial pseudokinase
protein that plays a crucial role in the signaling process initiated
by integrin-mediated signaling. However, ILK also exhibits a scaffolding
protein function inside cells, controlling cytoskeletal dynamics,
and has been related to non-neoplastic diseases such as chronic kidney
disease (CKD). Although this protein always acts as a heterotrimeric
complex bound to PINCH and parvin adaptor proteins, the role of parvin
proteins is currently not well understood. Using in silico approaches
for the design, we have generated and prepared a set of new tripeptides
mimicking an α-parvin segment. These derivatives exhibit activity
in phenotypic assays in an ILK-dependent manner without altering kinase
activity, thus allowing the generation of new chemical probes and
drug candidates with interesting ILK-modulating activities.
Collapse
Affiliation(s)
- Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Mercedes Griera-Merino
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Graphenano Medical Care, S.L, Yecla 30510, Spain
| | - Alejandra Matamoros-Recio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Sergio de Frutos
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Manuel Rodríguez-Puyol
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Diego Rodríguez-Puyol
- Fundación de Investigación Biomédica, Unidad de Nefrología del Hospital Príncipe de Asturias y Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| |
Collapse
|
3
|
Arbour CA, Mendoza LG, Stockdill JL. Recent advances in the synthesis of C-terminally modified peptides. Org Biomol Chem 2020; 18:7253-7272. [PMID: 32914156 PMCID: PMC9508648 DOI: 10.1039/d0ob01417f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
C-Terminally modified peptides are important for the development and delivery of peptide-based pharmaceuticals because they impact peptide activity, stability, hydrophobicity, and membrane permeability. Additionally, the vulnerability of C-terminal esters to cleavage by endogenous esterases makes them excellent pro-drugs. Methods for post-SPPS C-terminal functionalization potentially enable access to libraries of modified peptides, facilitating tailoring of their solubility, potency, toxicity, and uptake pathway. Apparently minor structural changes can significantly impact the binding, folding, and pharmacokinetics of the peptide. This review summarizes developments in chemical methods for C-terminal modification of peptides published since the last review on this topic in 2003.
Collapse
Affiliation(s)
- Christine A Arbour
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | - Lawrence G Mendoza
- Wayne State University, Department of Chemistry, Detroit, Michigan, USA.
| | | |
Collapse
|
4
|
Baghery S, Zarei M, Zolfigol MA, Mallakpour S, Behranvand V. Application of trityl moieties in chemical processes: part I. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Lear S, Munshi T, Hudson AS, Hatton C, Clardy J, Mosely JA, Bull TJ, Sit CS, Cobb SL. Total chemical synthesis of lassomycin and lassomycin-amide. Org Biomol Chem 2018; 14:4534-41. [PMID: 27101411 DOI: 10.1039/c6ob00631k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein we report a practical synthetic route to the lasso peptide lassomycin () and C-terminal variant lassomycin-amide (). The biological evaluation of peptides and against Mycobacterium tuberculosis revealed that neither had any activity against this bacterium. This lack of biological activity has led us to propose that naturally occurring lassomycin may actually exhibit a standard lasso peptide threaded conformation rather than the previously reported unthreaded structure.
Collapse
Affiliation(s)
- S Lear
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - T Munshi
- St. George's University of London, London, SW17 0RE, UK
| | - A S Hudson
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - C Hatton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - J Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - J A Mosely
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - T J Bull
- St. George's University of London, London, SW17 0RE, UK
| | - C S Sit
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - S L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Arbour CA, Kondasinghe TD, Saraha HY, Vorlicek TL, Stockdill JL. Epimerization-free access to C-terminal cysteine peptide acids, carboxamides, secondary amides, and esters via complimentary strategies. Chem Sci 2017; 9:350-355. [PMID: 29629104 PMCID: PMC5868297 DOI: 10.1039/c7sc03553e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
We present a convenient method for the diversification of peptides bearing cysteine at the C-terminus that proceeds to form a variety of carboxylic acid, carboxamide, 2° amide, and ester terminated peptides without any detectable epimerization of the α-stereocenter.
C-Terminal cysteine peptide acids are difficult to access without epimerization of the cysteine α-stereocenter. Diversification of the C-terminus after solid-phase peptide synthesis poses an even greater challenge because of the proclivity of the cysteine α-stereocenter to undergo deprotonation upon activation of the C-terminal carboxylic acid. We present herein two general strategies to access C-terminal cysteine peptide derivatives without detectable epimerization, diketopiperazine formation, or piperidinylalanine side products.
Collapse
Affiliation(s)
- Christine A Arbour
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | | | - Hasina Y Saraha
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | - Teanna L Vorlicek
- Wayne State University , Department of Chemistry , Detroit , MI , USA 48202 .
| | | |
Collapse
|
7
|
Arbour CA, Saraha HY, McMillan TF, Stockdill JL. Exploiting the MeDbz Linker To Generate Protected or Unprotected C-Terminally Modified Peptides. Chemistry 2017; 23:12484-12488. [PMID: 28741313 PMCID: PMC5674808 DOI: 10.1002/chem.201703380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 12/15/2022]
Abstract
C-terminally modified peptides are important targets for pharmaceutical and biochemical applications. Known methods for C-terminal diversification are limited mainly in terms of the scope of accessible modifications or by epimerization of the C-terminal amino acid. In this work, we present a broadly applicable approach that enables access to a variety of C-terminally functionalized peptides in either protected or unprotected form. This chemistry proceeds without epimerization of C-terminal Ala and tolerates nucleophiles of varying nucleophilicity. Finally, unprotected peptides bearing nucleophilic side chain groups can be selectively functionalized by strong nucleophiles, whereas macrocyclization is observed for weaker nucleophiles. The potential utility of this method is demonstrated through the divergent synthesis of the conotoxin conopressin G and GLP-1(7-36) and analogs.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Hasina Y Saraha
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Timothy F McMillan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | |
Collapse
|
8
|
Hansen J, Diness F, Meldal M. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles. Org Biomol Chem 2016; 14:3238-45. [PMID: 26924021 DOI: 10.1039/c6ob00213g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed.
Collapse
Affiliation(s)
- J Hansen
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - F Diness
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - M Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Diaz-Rodriguez V, Ganusova E, Rappe TM, Becker JM, Distefano MD. Synthesis of Peptides Containing C-Terminal Esters Using Trityl Side-Chain Anchoring: Applications to the Synthesis of C-Terminal Ester Analogs of the Saccharomyces cerevisiae Mating Pheromone a-Factor. J Org Chem 2015; 80:11266-74. [PMID: 26270598 PMCID: PMC5035043 DOI: 10.1021/acs.joc.5b01376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptides containing C-terminal esters are an important class of bioactive molecules that includes a-factor, a farnesylated dodecapeptide, involved in the mating of Saccharomyces cerevisiae. Here, results that expand the scope of solid-phase peptide synthetic methodology that uses trityl side-chain anchoring for the preparation of peptides with C-terminal cysteine alkyl esters are described. In this method, Fmoc-protected C-terminal cysteine esters are anchored to trityl chloride resin and extended by standard solid-phase procedures followed by acidolytic cleavage and HPLC purification. Analysis using a Gly-Phe-Cys-OMe model tripeptide revealed minimal epimerization of the C-terminal cysteine residue under basic conditions used for Fmoc deprotection. (1)H NMR analysis of the unfarnesylated a-factor precursor peptide confirmed the absence of epimerization. The side-chain anchoring method was used to produce wild-type a-factor that contains a C-terminal methyl ester along with ethyl-, isopropyl-, and benzyl-ester analogs in good yield. Activity assays using a yeast-mating assay demonstrate that while the ethyl and isopropyl esters manifest near-wild-type activity, the benzyl ester-containing analog is ca. 100-fold less active. This simple method opens the door to the synthesis of a variety of C-terminal ester-modified peptides that should be useful in studies of protein prenylation and other structurally related biological processes.
Collapse
Affiliation(s)
- Veronica Diaz-Rodriguez
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elena Ganusova
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Todd M. Rappe
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
von Gröning M, de Feijter I, Stuart MCA, Voets IK, Besenius P. Tuning the aqueous self-assembly of multistimuli-responsive polyanionic peptide nanorods. J Mater Chem B 2013; 1:2008-2012. [DOI: 10.1039/c3tb00051f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Diaz-Rodriguez V, Mullen DG, Ganusova E, Becker JM, Distefano MD. Synthesis of peptides containing C-terminal methyl esters using trityl side-chain anchoring: application to the synthesis of a-factor and a-factor analogs. Org Lett 2012; 14:5648-51. [PMID: 23121562 DOI: 10.1021/ol302592v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new cysteine anchoring method was developed for the synthesis of peptides containing C-terminal cysteine methyl esters. This method consists of attachment of Fmoc-Cys-OCH(3) to either 2-ClTrt-Cl or Trt-Cl resins (via the side-chain thiol) followed by preparation of the desired peptide using Fmoc-based SPPS. We applied this method to the synthesis of the mating pheromone a-factor and a 5-FAM labeled a-factor analog. The peptides were obtained with high yield and purity and were shown to be bioactive in a growth arrest assay.
Collapse
|