1
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Stieglitz JT, Van Deventer JA. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. ACS Synth Biol 2022; 11:2284-2299. [PMID: 35793554 PMCID: PMC10065163 DOI: 10.1021/acssynbio.1c00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.
Collapse
Affiliation(s)
- Jessica T Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
6
|
Li Y, Kluger R. Increased efficiency in biomimetic Lewis acid–base pair catalyzed monoacylation of diols by acyl phosphate monoesters. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acyl phosphate monoesters are biomimetic acylation reagents that require coordination to metal ions to react with cis-diol substrates in water. With lanthanide catalysts, outcomes are compromised by (1) the competitive lanthanide-promoted hydrolysis of the acyl phosphate reagents as well as by (2) the high affinity of lanthanum ions for the phosphate monoester by-product. Based on analysis of the mechanism of the process, optimizing reaction conditions can selectively inhibit the lanthanum-promoted hydrolysis of acyl phosphate monoesters. Furthermore, using zinc salts and lead salts in place of lanthanides enhances the reactivity of the reactants and causes less complexation of the metal ion with the by-products.
Collapse
Affiliation(s)
- Yuyang Li
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Fu H, Yang T, Shang JQ, Zhou JL, Sun M, Li YM. Copper-catalyzed oxidative dehydrogenative coupling of carboxylic acids with H-phosphonates: an efficient and practical approach to acyl phosphate esters. Org Chem Front 2017. [DOI: 10.1039/c7qo00298j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A practical method through a copper-catalyzed dehydrogenative coupling of carboxylic acids with H-phosphonates to construct acyl phosphate esters has been developed.
Collapse
Affiliation(s)
- Hong Fu
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Tao Yang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Jia-Qi Shang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Jia-Li Zhou
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- P. R. China
| |
Collapse
|
8
|
Pal M, Bearne SL. Synthesis of coenzyme A thioesters using methyl acyl phosphates in an aqueous medium. Org Biomol Chem 2015; 12:9760-3. [PMID: 25355071 DOI: 10.1039/c4ob02079k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective S-acylation of coenzyme A (CoA) is achieved under aqueous conditions using various aliphatic and aromatic carboxylic acids activated as their methyl acyl phosphate monoesters. Unlike many hydrophobic activating groups, the anionic methyl acyl phosphate mixed anhydride is more compatible with aqueous solvents, making it useful for conducting acylation reactions in an aqueous medium.
Collapse
Affiliation(s)
- Mohan Pal
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | | |
Collapse
|
9
|
Abstract
Antibody conjugates are important in many areas of medicine and biological research, and antibody-drug conjugates (ADCs) are becoming an important next generation class of therapeutics for cancer treatment. Early conjugation technologies relied upon random conjugation to multiple amino acid side chains, resulting in heterogeneous mixtures of labeled antibody. Recent studies, however, strongly support the notion that site-specific conjugation produces a homogeneous population of antibody conjugates with improved pharmacologic properties over randomly coupled molecules. Genetically incorporated unnatural amino acids (uAAs) allow unique orthogonal coupling strategies compared to those used for the 20 naturally occurring amino acids. Thus, uAAs provide a novel paradigm for creation of next generation ADCs. Additionally, uAA-based site-specific conjugation could also empower creation of additional multifunctional conjugates important as biopharmaceuticals, diagnostics, or reagents.
Collapse
Affiliation(s)
- Trevor J Hallam
- †Sutro Biopharma, 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Erik Wold
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alan Wahl
- §Ambrx, Inc. 10975 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vaughn V Smider
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Abstract
Antibody-drug conjugates are an important and emerging drug class for the treatment of cancer. Recent evidence strongly suggests that site-specific drug conjugation results in a homogenous population of molecules with more favorable activity and pharmacokinetic properties than randomly conjugated antibodies. Unnatural amino acids (uAAs) can be incorporated in recombinant proteins to enable unique orthogonal chemistries in comparison to the side chains of the natural 20 amino acids. Thus, uAAs present a novel platform for which to create next-generation antibody-drug conjugates. Furthermore, site-specific conjugation through uAAs can also enpower unique small molecule, bispecific, multispecific and other conjugates that could be important constructs for therapeutics, diagnostics and research reagents. Here, we review the progress in uAA incorporation and conjugate construction through both cell-based and -free approaches.
Collapse
|
11
|
Dhiman RS, Wang A, Kluger R. Solid-phase lanthanum catalysis of monoacylation of diols in water by acyl phosphate monoesters. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lanthanide ions are readily bound to ion-exchange resins. The lanthanide-containing resins serve as immobilized catalysts for the biomimetic monoacylation of diols in water using acyl phosphate monoesters as acylation agents. This method provides an efficient route for recovering the catalyst in the process of modifying RNA derivatives and carbohydrates.
Collapse
Affiliation(s)
- Raj S. Dhiman
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Aizhou Wang
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
12
|
Padilla MS, Young DD. Photosensitive GFP mutants containing an azobenzene unnatural amino acid. Bioorg Med Chem Lett 2014; 25:470-3. [PMID: 25563892 DOI: 10.1016/j.bmcl.2014.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
Abstract
The incorporation of unnatural amino acids represents a unique mechanism for the modulation of protein function. This approach has been utilized to generate photoswitchable GFP mutants, capable of demonstrating modulated fluorescence upon exposure to UV irradiation. Overall these photosensitive GFP mutants can be employed in various biosensing and diagnostic techniques to better understand protein function and processing.
Collapse
Affiliation(s)
- Marshall S Padilla
- Department of Chemistry, College of William & Mary, Williamsburg, VA 23187, USA
| | - Douglas D Young
- Department of Chemistry, College of William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
13
|
Kwiatkowski M, Wang J, Forster AC. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug Chem 2014; 25:2086-91. [PMID: 25338217 DOI: 10.1021/bc500441b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical synthesis of N-acyl-aminoacyl-pdCpA and its ligation to tRNA(minus CA) is widely used for the preparation of unnatural aminoacyl-tRNA substrates for ribosomal translation. However, the presence of the unnatural deoxyribose can decrease incorporation yield in translation and there is no straightforward method for chemical synthesis of the natural ribo version. Here, we show that pCpA is surprisingly stable to treatment with strong organic bases provided that anhydrous conditions are used. This allowed development of a facile method for chemical aminoacylation of pCpA. Preparative synthesis of pCpA was also simplified by using t-butyl-dithiomethyl protecting group methodology, and a more reliable pCpA postpurification treatment method was developed. Such aminoacyl-pCpA analogues ligated to tRNA(minus CA) transcripts are highly active in a purified translation system, demonstrating utility of our synthetic method.
Collapse
Affiliation(s)
- Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, Uppsala 75124, Sweden
| | | | | |
Collapse
|
14
|
Raliski BK, Howard CA, Young DD. Site-Specific Protein Immobilization Using Unnatural Amino Acids. Bioconjug Chem 2014; 25:1916-20. [DOI: 10.1021/bc500443h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Benjamin K. Raliski
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Christina A. Howard
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Douglas D. Young
- Department of Chemistry, College of William & Mary P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
15
|
Dougherty DA, Van Arnam EB. In vivo incorporation of non-canonical amino acids by using the chemical aminoacylation strategy: a broadly applicable mechanistic tool. Chembiochem 2014; 15:1710-20. [PMID: 24990307 DOI: 10.1002/cbic.201402080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 01/05/2023]
Abstract
We describe a strategy for incorporating non-canonical amino acids site-specifically into proteins expressed in living cells, involving organic synthesis to chemically aminoacylate a suppressor tRNA, protein expression in Xenopus oocytes, and monitoring protein function, primarily by electrophysiology. With this protocol, a very wide range of non-canonical amino acids can be employed, allowing both systematic structure-function studies and the incorporation of reactive functionalities. Here, we present an overview of the methodology and examples meant to illustrate the versatility and power of the method as a tool for investigating protein structure and function.
Collapse
Affiliation(s)
- Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA).
| | | |
Collapse
|
16
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
17
|
Dhiman RS, Opinska LG, Kluger R. Biomimetic peptide bond formation in water with aminoacyl phosphate esters. Org Biomol Chem 2011; 9:5645-7. [DOI: 10.1039/c1ob05660c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Her S, Kluger R. Biomimetic protecting-group-free 2', 3'-selective aminoacylation of nucleosides and nucleotides. Org Biomol Chem 2010; 9:676-8. [PMID: 21132175 DOI: 10.1039/c0ob00795a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aminoacyl phosphate monoesters can be prepared free of an amino-protecting group and used directly in lanthanum-promoted selective monoacylation of either the 2' or 3'-hydroxyl of nucleosides and nucleotides. For example, phenylalanyl ethyl phosphate rapidly forms esters with either of the 2' or 3'-hydroxyls of ribonucleosides and nucleotides in the presence of lanthanum ions in aqueous buffer. Oligomerization of the aminoacyl phosphate is much slower than ester formation and is not a competitive process. Competing hydrolysis of the reagent is slow. By extension, this route should provide a simplified general route to synthetically aminoacylated derivatives of tRNA.
Collapse
Affiliation(s)
- Sohyoung Her
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | |
Collapse
|