1
|
Gillard RM, Zhang J, Steel R, Wang J, Strull JL, Cai B, Chakraborty N, Boger DL. Aryl Annulation: A Powerful Simplifying Retrosynthetic Disconnection. SYNTHESIS-STUTTGART 2024; 56:118-133. [PMID: 38144170 PMCID: PMC10745204 DOI: 10.1055/a-1959-2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Retrosynthetic deconstruction of a core aromatic ring is an especially simplifying retrosynthetic step, reducing the complexity of the precursor synthetic target. Moreover, when implemented to provide a penultimate intermediate, it enables late-stage divergent aryl introductions, permitting deep-seated core aryl modifications ordinarily accessible only by independent synthesis. Herein, we highlight the use of a ketone carbonyl group as the functionality to direct such late-stage divergent aryl introductions onto a penultimate intermediate with a projected application in the total synthesis of vinblastine and its presently inaccessible analogs containing indole replacements. Although the studies highlight this presently unconventional strategy with an especially challenging target in mind, the increase in molecular complexity (intricacy) established by the synthetic implementation of the powerful retrosynthetic disconnection, the use of a ketone as the precursor enabling functionality, and with adoption of either conventional or new wave (hetero)aromatic annulations combine to define a general and powerful strategy suited for wide-spread implementation with near limitless scope in target diversification.
Collapse
Affiliation(s)
- Rachel M. Gillard
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianjun Zhang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Richard Steel
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jocelyn Wang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jessica L. Strull
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bin Cai
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nilanjana Chakraborty
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
3
|
De Angelis L, Haug GC, Rivera G, Biswas S, Al-Sayyed A, Arman H, Larionov O, Doyle MP. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J Am Chem Soc 2023; 145:13059-13068. [PMID: 37294869 PMCID: PMC10755600 DOI: 10.1021/jacs.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.
Collapse
Affiliation(s)
- Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Mexico
| | - Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Biswas S, De Angelis L, Rivera G, Arman H, Doyle MP. Inverse Electron Demand Diels-Alder-Type Heterocycle Syntheses with 1,2,3-Triazine 1-Oxides: Expanded Versatility. Org Lett 2023; 25:1104-1108. [PMID: 36787541 DOI: 10.1021/acs.orglett.2c04360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
1,2,3-Triazine 1-oxides are remarkably effective substrates for inverse electron demand Diels-Alder reactions. Formed from vinyldiazoacetates via reaction with tert-butyl nitrite, these stable heterocyclic compounds undergo clean nucleophilic addition with amidines to form pyrimidines, with β-ketocarbonyl compounds and related nitrile derivatives to form polysubstituted pyridines and with 3/5-aminopyrazoles to form pyrazolo[1,5-a]pyrimidines, in high yield. These practical reactions are rapid at room temperature, are base catalyzed, and offer a diversity of structural modifications.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
5
|
Zhu Z, Boger DL. Acyclic and Heterocyclic Azadiene Diels-Alder Reactions Promoted by Perfluoroalcohol Solvent Hydrogen Bonding: Comprehensive Examination of Scope. J Org Chem 2022; 87:14657-14672. [PMID: 36239452 PMCID: PMC9637783 DOI: 10.1021/acs.joc.2c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, the first use of perfluoroalcohol H-bonding in accelerating acyclic azadiene inverse electron demand cycloaddition reactions is described, and its use in the promotion of heterocyclic azadiene cycloaddition reactions is generalized through examination of a complete range of azadienes. The scope of dienophiles was comprehensively explored; relative reactivity trends and solvent compatibilities were established with respect to the dienophile as well as azadiene; H-bonding solvent effects that lead to rate enhancements, yield improvements, and their impact on regioselectivity and mode of cycloaddition are defined; new viable diene/dienophile reaction partners in the cycloaddition reactions are disclosed; and key comparison rate constants are reported. The perfluoroalcohol effectiveness at accelerating an inverse electron demand Diels-Alder cycloaddition is directly correlated with its H-bond potential (pKa). Not only are the reactions of electron-rich dienophiles accelerated but those of strained and even unactivated alkenes and alkynes are improved, including representative bioorthogonal click reactions.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical-Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Anjirwala SN, Parmar PS, Patel SK. Synthetic protocols for non-fused pyrimidines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2137682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Parnas S. Parmar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Saurabh K. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
7
|
Chan CK, Chung YH, Wang CC. Acid-controlled multicomponent selective synthesis of 2,4,6-triaryl pyridines and pyrimidines by using hexamethyldisilazane as a nitrogen source under microwave irradiation. RSC Adv 2022; 12:27281-27291. [PMID: 36276015 PMCID: PMC9513438 DOI: 10.1039/d2ra04739j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
An efficient and general protocol for the synthesis of functionalized 2,4,6-triaryl pyridines and pyrimidines was developed from commercially available aromatic ketones, aldehydes and hexamethyldisilazane (HMDS) as a nitrogen source under microwave irradiation. In this multicomponent synthetic route, Lewis acids play an important role in selectively synthesizing six-membered heterocycles, including pyridines (1N) and pyrimidines (2N), by involving [2 + 1 + 2 + 1] or [2 + 1 + 1 + 1 + 1] annulated processes.
Collapse
Affiliation(s)
- Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Yi-Hsiu Chung
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| | | |
Collapse
|
8
|
Wu ZC, Houk KN, Boger DL, Svatunek D. Mechanistic Insights into the Reaction of Amidines with 1,2,3-Triazines and 1,2,3,5-Tetrazines. J Am Chem Soc 2022; 144:10921-10928. [PMID: 35666564 PMCID: PMC9228069 DOI: 10.1021/jacs.2c03726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1,2,3-Triazines and 1,2,3,5-tetrazines react rapidly, efficiently, and selectively with amidines to form pyrimidines/1,3,5-triazines, exhibiting an orthogonal reactivity with 1,2,4,5-tetrazine-based conjugation chemistry. Whereas the mechanism of the reaction of the isomeric 1,2,4-triazines and 1,2,4,5-tetrazines with alkenes is well understood, the mechanism of the 1,2,3-triazine/1,2,3,5-tetrazine-amidine reaction as well as its intrinsic reactivity remains underexplored. By using 15N-labeling, kinetic investigations, and kinetic isotope effect studies, complemented by extensive computational investigations, we show that this reaction proceeds through an addition/N2 elimination/cyclization pathway, rather than the generally expected concerted or stepwise Diels-Alder/retro Diels-Alder sequence. The rate-limiting step in this transformation is the initial nucleophilic attack of an amidine on azine C4, with a subsequent energetically favored N2 elimination step compared with a disfavored stepwise formation of a Diels-Alder cycloadduct. The proposed reaction mechanism is in agreement with experimental and computational results, which explains the observed reactivity of 1,2,3-triazines and 1,2,3,5-tetrazines with amidines.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dale L Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, California 92037, United States
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
9
|
Ou Yang CH, Liu WH, Yang S, Chiang YY, Shie JJ. Copper‐Mediated Synthesis of (E)‐β‐Aminoacrylonitriles from 1,2,3‐Triazine and Secondary Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Sheng Yang
- Academia Sinica Institute of Chemistry TAIWAN
| | | | - Jiun-Jie Shie
- Academia Sinica Institute of Chemistry 128 Academia Road, Section 2, Nankang 11529 Taipei TAIWAN
| |
Collapse
|
10
|
Luo H, Li Y, Zhang Y, Lu Q, An Q, Xu M, Li S, Li J, Li B. Nucleophilic Aromatic Substitution of 5-Bromo-1,2,3-triazines with Phenols. J Org Chem 2022; 87:2590-2600. [PMID: 35166528 DOI: 10.1021/acs.joc.1c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleophilic aromatic substitution (SNAr) reaction in classic textbook is a stepwise mechanism, and few examples of concerted reactions have been reported. Herein, we developed a concerted SNAr reaction of 5-bromo-1,2,3-triazines with phenols in which the nonclassic mechanism of this reaction could be revealed by calculation. Furthermore, the resulting 5-aryloxy-1,2,3-triazines could be used as convenient precursors to access biologically important 3-aryloxy-pyridines in one-pot manner.
Collapse
Affiliation(s)
- Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Yuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Qixing Lu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Qiaoyu An
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Mingchuan Xu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Shanshan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| |
Collapse
|
11
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
12
|
Quiñones RE, Wu ZC, Boger DL. Reaction Scope of Methyl 1,2,3-Triazine-5-carboxylate with Amidines and the Impact of C4/C6 Substitution. J Org Chem 2021; 86:13465-13474. [PMID: 34499494 DOI: 10.1021/acs.joc.1c01553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive study of the reaction scope of methyl 1,2,3-triazine-5-carboxylate (3a) with alkyl and aryl amidines is disclosed, reacting at room temperature at remarkable rates (<5 min, 0.1 M in CH3CN) nearly 10000-fold faster than that of unsubstituted 1,2,3-triazine and providing the product pyrimidines in high yields. C4 Methyl substitution of the 1,2,3-triazine (3b) had little effect on the rate of the reaction, whereas C4/C6 dimethyl substitution (3c) slowed the room-temperature reaction (<24 h, 0.25 M) but displayed an unaltered scope, providing the product pyrimidines in similarly high yields. Measured second-order rate constants of the reaction of 3a-c, the corresponding nitriles 3e and 3f, and 1,2,3-triazine itself (3d) with benzamidine and substituted derivatives quantitated the remarkable reactivity of 3a and 3e, verified the inverse electron demand nature of the reaction (Hammett ρ = -1.50 for substituted amidines, ρ = +7.9 for 5-substituted 1,2,3-triazine), and provided a quantitative measure of the impact of 4-methyl and 4,6-dimethyl substitution on the reactivity of the methyl 1,2,3-triazine-5-carboxylate and 5-cyano-1,2,3-triazine core heterocycles.
Collapse
|
13
|
Carrillo Vallejo NA, Scheerer JR. Application of 1,4-Oxazinone Precursors to the Construction of Pyridine Derivatives by Tandem Intermolecular Cycloaddition/Cycloreversion. J Org Chem 2021; 86:5863-5869. [PMID: 33797249 DOI: 10.1021/acs.joc.1c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reveals a new method for the preparation of 1,4-oxazinone derivatives by Staudinger reductive cyclization of functionalized vinyl azide precursors. The resulting oxazinone derivatives prepared in this manner were intercepted with terminal alkyne substrates through an intermolecular cycloaddition/cycloreversion sequence to afford polysubstituted pyridine products. Alkyne substrates bearing propargyl oxygen substitution showed good regioselectivity in the cycloaddition operation selectively affording 2,4,6-substituted pyridines. Application of this chemistry to the synthesis of an ErbB4 receptor inhibitor is also described.
Collapse
Affiliation(s)
- Nicole A Carrillo Vallejo
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R Scheerer
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
14
|
Zhang Y, Luo H, Lu Q, An Q, Li Y, Li S, Tang Z, Li B. Access to pyridines via cascade nucleophilic addition reaction of 1,2,3-triazines with activated ketones or acetonitriles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Shen J, Meng X. Selective synthesis of pyrimidines from cinnamyl alcohols and amidines using the heterogeneous OMS-2 catalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Osano M, Jhaveri DP, Wipf P. Formation of 6-Azaindoles by Intramolecular Diels-Alder Reaction of Oxazoles and Total Synthesis of Marinoquinoline A. Org Lett 2020; 22:2215-2219. [PMID: 32105087 DOI: 10.1021/acs.orglett.0c00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new variant of the intramolecular Diels-Alder oxazole (IMDAO) cycloaddition that provides direct access to 6-azaindoles was developed. The IMDAO reaction was applied in a total synthesis of the aminophenylpyrrole-derived alkaloid marinoquinoline A, also featuring the use of a Curtius reaction for preparation of a 5-aminooxazole, a propargylic C,H-bond insertion, an in situ alkyne-allene isomerization, and a ruthenium-catalyzed cycloisomerization for benzene ring annulation to the 6-azaindole.
Collapse
Affiliation(s)
- Mana Osano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Dishit P Jhaveri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Chen FJ, Lin Y, Xu M, Xia Y, Wink DJ, Lee D. C-H Insertion by Alkylidene Carbenes To Form 1,2,3-Triazines and Anionic [3 + 2] Dipolar Cycloadditions To Form Tetrazoles: Crucial Roles of Stereoelectronic and Steric Effects. Org Lett 2020; 22:718-723. [PMID: 31909625 DOI: 10.1021/acs.orglett.9b04548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis of 1,2,3-triazines and bicyclic tetrazoles from α-azido ketones is described. The common intermediate generated from lithiated trimethylsilyldiazomethane and α-azido ketones diverges depending on the steric bulk of the substituents. The formation of 1,2,3-triazines via a C-H insertion of alkylidene carbene to form 3-azidocyclopropene, followed by its rearrangement, is supported by density functional theory calculations. Tetrazole formation proceeds via a facile anionic [3 + 2] dipolar cycloaddition between a lithiated diazo moiety and an azido group facilitated by the chelation of a lithium ion.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| | - Yongjia Lin
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Man Xu
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang Province 325035 , P. R. China
| | - Donald J Wink
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| | - Daesung Lee
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| |
Collapse
|
18
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Yi F, Fu C, Sun Q, Wei H, Yu G, Yi W. Direct intramolecular double cross-dehydrogentive-coupling (CDC) cyclization of N-(2-pyridyl)amidines under metal-free conditions. RSC Adv 2019; 9:42172-42182. [PMID: 35542831 PMCID: PMC9076575 DOI: 10.1039/c9ra09265j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
A facile transition-metal-free protocol to form 2-iminoimidazo[1, 2-a]-pyridines bearing a -CHBr2 group and an aza-quaternary carbon center at the 3 position from N-(2-pyridyl)amidines substrates, in which the new heterocyclic skeletons constructed from amidines via radical reactions or nucleophilic substitution reactions are promoted only by CBr4 under mild conditions, is demonstrated. The reactions were realized by intramolecular CDC reaction involving C-N and C-C bond formation via the sequential C(sp3)-H bifunctionalization mode on the same carbon atom under mild conditions. Moreover, this work also provides an excellent and representative example for CBr4 as an efficient reagent to initiate radical reactions under initiator-free conditions or to give rise to nucleophilic substitution reactions only by base.
Collapse
Affiliation(s)
- Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Chao Fu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Qihui Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Huazhen Wei
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 P. R. China
| |
Collapse
|
20
|
Synthesis of Pyrimidines with Ammonium Acetate as Nitrogen Source Under Solvent‐Free Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Ahles S, Ruhl J, Strauss MA, Wegner HA. Combining Bidentate Lewis Acid Catalysis and Photochemistry: Formal Insertion of o-Xylene into an Enamine Double Bond. Org Lett 2019; 21:3927-3930. [PMID: 31079462 DOI: 10.1021/acs.orglett.9b01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bidentate Lewis acid catalyzed domino inverse-electron-demand Diels-Alder reaction combined with a photoinduced ring opening formally inserts o-xylene moieties into enamine double bonds. After reduction, phenethylamines were obtained in good yields. The scope of the reaction was determined by variation of all three starting compounds: phthalazines, aldehydes, and amines.
Collapse
Affiliation(s)
- Sebastian Ahles
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Julia Ruhl
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Marcel A Strauss
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
22
|
Yi F, Sun Q, Sun J, Fu C, Yi W. Terminal Alkyne-Assisted One-Pot Synthesis of Arylamidines: Carbon Source of the Amidine Group from Oxime Chlorides. J Org Chem 2019; 84:6780-6787. [PMID: 31074281 DOI: 10.1021/acs.joc.9b00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A terminal alkyne-assisted protocol for the one-pot formation of a diverse range of arylamidines from a novel cascade reaction of in situ generated nitrile oxides, sulfonyl azides, terminal alkynes, and water by [3 + 2] cycloaddition and ring opening sequence was developed. The use of aryl oxime chlorides as the carbon source of the amidine group and the addition of water proved to be critical for the reaction. Moreover, terminal alkynes, which can lead to high yields of products by employing a less amount, may play a catalytic role in the reaction. A broader range of substrates was investigated.
Collapse
Affiliation(s)
- Fengping Yi
- School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
| | - Qihui Sun
- School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
| | - Jing Sun
- School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
| | - Chao Fu
- School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
| |
Collapse
|
23
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
24
|
Tejedor D, Díaz-Díaz A, Diana-Rivero R, Delgado-Hernández S, García-Tellado F. Synthesis and Utility of 2,2-Dimethyl-2 H-pyrans: Dienes for Sequential Diels-Alder/Retro-Diels-Alder Reactions. Org Lett 2018; 20:7987-7990. [PMID: 30525705 DOI: 10.1021/acs.orglett.8b03558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The practical use of 2,2-dimethyl-2 H-pyrans as electron-rich dienes in sequential Diels-Alder/retro-Diels-Alder (DA/rDA) domino processes to generate aromatic platforms has been demonstrated. Different polysubstituted alkyl 2-naphthoates have been synthesized by the DA/rDA reaction of benzynes and 2,2-dimethyl-2 H-pyrans. The use of other activated alkynes allows the access of substituted alkyl benzoate derivatives.
Collapse
Affiliation(s)
- David Tejedor
- Instituto de Productos Naturales y Agrobiología , Consejo Superior de Investigaciones Científicas , Avda. Astrofísico Francisco Sánchez 3 , 38206 La Laguna , Canary Islands , Spain
| | - Abián Díaz-Díaz
- Instituto de Productos Naturales y Agrobiología , Consejo Superior de Investigaciones Científicas , Avda. Astrofísico Francisco Sánchez 3 , 38206 La Laguna , Canary Islands , Spain
| | - Raquel Diana-Rivero
- Instituto de Productos Naturales y Agrobiología , Consejo Superior de Investigaciones Científicas , Avda. Astrofísico Francisco Sánchez 3 , 38206 La Laguna , Canary Islands , Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología , Consejo Superior de Investigaciones Científicas , Avda. Astrofísico Francisco Sánchez 3 , 38206 La Laguna , Canary Islands , Spain
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología , Consejo Superior de Investigaciones Científicas , Avda. Astrofísico Francisco Sánchez 3 , 38206 La Laguna , Canary Islands , Spain
| |
Collapse
|
25
|
Ahles S, Götz S, Schweighauser L, Brodsky M, Kessler SN, Heindl AH, Wegner HA. An Amine Group Transfer Reaction Driven by Aromaticity. Org Lett 2018; 20:7034-7038. [PMID: 30362764 DOI: 10.1021/acs.orglett.8b02967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective domino inverse electron-demand Diels-Alder/amine group transfer reaction catalyzed by a bidentate Lewis acid provides 1-amino-1,2-dihydronaphthalenes, a core structure in many bioactive compounds. A concerted mechanism is proposed based on experimental studies as well as DFT computations demonstrating a new general reactivity scheme. The broad scope of the reaction was evaluated by variation of all three starting compounds, phthalazines, aldehydes, and amines. Scalability was demonstrated by a gram scale reaction without diminished yield.
Collapse
Affiliation(s)
- Sebastian Ahles
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Silas Götz
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Luca Schweighauser
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Mirko Brodsky
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Simon N Kessler
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Andreas H Heindl
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
26
|
Angello NH, Wiley RE, Elmore TG, Perry RS, Scheerer JR. Domino Reaction Sequence for the Synthesis of [2.2.2]Diazabicycloalkenes and Base-Promoted Cycloreversion to 2-Pyridone Alkaloids. Org Lett 2018; 20:5203-5207. [PMID: 30095269 PMCID: PMC6220673 DOI: 10.1021/acs.orglett.8b02145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new domino reaction sequence for the construction of 2-pyridone structures is reported. The reaction sequence begins with diacetyldiketopiperazine and proceeds via aldol condensation, alkene isomerization, and intramolecular Diels-Alder cycloaddition. The intermediate [2.2.2]diazabicycloalkene cycloadducts can be isolated or can engage in a base-accelerated extrusion of one lactam bridge to provide the 2-pyridone cycloreversion products. The operation leading to pyridone products can occur in one reaction vessel and proceeds at convenient temperatures.
Collapse
Affiliation(s)
- Nicholas H. Angello
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Robert E. Wiley
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Tristan G. Elmore
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Ryan S. Perry
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R. Scheerer
- Department of Chemistry, The College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
27
|
Siegl SJ, Vrabel M. Probing the Scope of the Amidine-1,2,3-triazine Cycloaddition as a Prospective Click Ligation Method. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian J. Siegl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
28
|
Sugimura H, Takeuchi R, Ichikawa S, Nagayama E, Sasaki I. Synthesis of 1,2,3-Triazines Using the Base-Mediated Cyclization of ( Z)-2,4-Diazido-2-alkenoates. Org Lett 2018; 20:3434-3437. [PMID: 29790769 DOI: 10.1021/acs.orglett.8b01445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient and convenient method for the synthesis of 6-aryl-1,2,3-triazine-4-carboxylate esters has been developed using readily accessible ( Z)-4-aryl-2,4-diazido-2-alkenoates. This reaction is performed under mildly basic conditions without the assistance of any transition metals or strong acid.
Collapse
Affiliation(s)
- Hideyuki Sugimura
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Reika Takeuchi
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Shiori Ichikawa
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Eri Nagayama
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| |
Collapse
|
29
|
Glinkerman CM, Boger DL. Synthesis, Characterization, and Rapid Cycloadditions of 5-Nitro-1,2,3-triazine. Org Lett 2018; 20:2628-2631. [PMID: 29659291 DOI: 10.1021/acs.orglett.8b00825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, characterization, and a study of the cycloaddition reactions of 5-nitro-1,2,3-triazine (3) are reported. The electron-deficient nature of 3 permits rapid cycloaddition with a variety of electron-rich dienophiles, including amidines, enamines, enol ethers, ynamines, and ketene acetals in high to moderate yields. 1H NMR studies of a representative cycloaddition reaction between 3 and an amidine revealed a remarkable reaction rate and efficiency (1 mM, <60 s, CD3CN, 23 °C, >95%).
Collapse
Affiliation(s)
- Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
30
|
Osipov DV, Osyanin VA, Khaysanova GD, Masterova ER, Krasnikov PE, Klimochkin YN. An Inverse Electron Demand Azo-Diels–Alder Reaction of o-Quinone Methides and Imino Ethers: Synthesis of Benzocondensed 1,3-Oxazines. J Org Chem 2018; 83:4775-4785. [DOI: 10.1021/acs.joc.8b00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry V. Osipov
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| | - Vitaly A. Osyanin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| | - Guzel’ D. Khaysanova
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| | - Elvira R. Masterova
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| | - Pavel E. Krasnikov
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| | - Yuri N. Klimochkin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya Street, Samara 443100, Russian Federation
| |
Collapse
|
31
|
Yang YF, Yu P, Houk KN. Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels-Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents. J Am Chem Soc 2017; 139:18213-18221. [PMID: 29161031 PMCID: PMC6314813 DOI: 10.1021/jacs.7b08325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanisms of Diels-Alder reactions between 1,2,3-triazines and enamines have been explored with density functional theory computations. The focus of this work is on the origins of the different reactivities and mechanisms induced by substituents and by hexafluoroisopropanol (HFIP) solvent. These inverse electron-demand Diels-Alder reactions of triazines have wide applications in bioorthogonal chemistry and natural product synthesis. Both concerted and stepwise cycloadditions are predicted, depending on the nature of substituents and solvents. The nature of zwitterionic intermediates and the mechanism by which HFIP accelerates cycloadditions with enamines are characterized. Our results show the delicate nature of the concerted versus stepwise mechanism of inverse electron-demand Diels-Alder reactions of 1,2,3-triazines, and that these mechanisms can be altered by electron-withdrawing substituents and hydrogen-bonding solvents.
Collapse
Affiliation(s)
- Yun-Fang Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Tiwari AR, Nath SR, Joshi KA, Bhanage BM. iEDDA Reaction of the Molecular Iodine-Catalyzed Synthesis of 1,3,5-Triazines via Functionalization of the sp 3 C-H Bond of Acetophenones with Amidines: An Experimental Investigation and DFT Study. J Org Chem 2017; 82:13239-13249. [PMID: 29149566 DOI: 10.1021/acs.joc.7b02313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present work reports an inverse electron demand Diels-Alder (iEDDA)-type reaction to synthesize 1,3,5-trizines from acetophenones and amidines. The use of molecular iodine in a catalytic amount facilitates the functionalization of the sp3 C-H bond of acetophenones. This is a simple and efficient methodology for the synthesis of 1,3,5-triazines in good to excellent yields under transition-metal-free and peroxide-free conditions. The reaction is believed to take place via an in situ iodination-based oxidative elimination of formaldehyde. DFT calculations at the M062X/6-31+G(d,p) level were employed to investigate the reaction mechanism. Reaction barriers for the cycloaddition as well as a formaldehyde expulsion steps were computed, and a multistep mechanism starting with the nucleophilic attack by benzamidine on an in situ generated imine intermediate has been proposed. Both local and global reactivity descriptors were used to study the regioselectivity of the addition steps.
Collapse
Affiliation(s)
- Abhishek R Tiwari
- Department of Chemistry, Institute of Chemical Technology (ICT) , Matunga (East), Mumbai 400019, India
| | - Shilpa R Nath
- Department of Chemistry, Institute of Chemical Technology (ICT) , Matunga (East), Mumbai 400019, India
| | - Kaustubh A Joshi
- Department of Chemistry, Institute of Chemical Technology (ICT) , Matunga (East), Mumbai 400019, India
| | - Bhalchandra M Bhanage
- Department of Chemistry, Institute of Chemical Technology (ICT) , Matunga (East), Mumbai 400019, India
| |
Collapse
|
33
|
Rydfjord J, Skillinghaug B, Brandt P, Odell LR, Larhed M. Route to 3-Amidino Indoles via Pd(II)-Catalyzed C–H Bond Activation. Org Lett 2017; 19:4066-4069. [DOI: 10.1021/acs.orglett.7b01836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonas Rydfjord
- Organic
Pharmaceutical Chemistry, Department
of Medicinal Chemistry, and ‡Department of Medicinal Chemistry,
Science for Life Laboratory, Uppsala University, Box-574, SE-751 23 Uppsala, Sweden
| | - Bobo Skillinghaug
- Organic
Pharmaceutical Chemistry, Department
of Medicinal Chemistry, and ‡Department of Medicinal Chemistry,
Science for Life Laboratory, Uppsala University, Box-574, SE-751 23 Uppsala, Sweden
| | - Peter Brandt
- Organic
Pharmaceutical Chemistry, Department
of Medicinal Chemistry, and ‡Department of Medicinal Chemistry,
Science for Life Laboratory, Uppsala University, Box-574, SE-751 23 Uppsala, Sweden
| | - Luke R. Odell
- Organic
Pharmaceutical Chemistry, Department
of Medicinal Chemistry, and ‡Department of Medicinal Chemistry,
Science for Life Laboratory, Uppsala University, Box-574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Organic
Pharmaceutical Chemistry, Department
of Medicinal Chemistry, and ‡Department of Medicinal Chemistry,
Science for Life Laboratory, Uppsala University, Box-574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
34
|
Quiñones RE, Glinkerman CM, Zhu K, Boger DL. Direct Synthesis of β-Aminoenals through Reaction of 1,2,3-Triazine with Secondary Amines. Org Lett 2017; 19:3568-3571. [PMID: 28657329 DOI: 10.1021/acs.orglett.7b01543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple and direct nucleophilic addition of secondary amines, including imidazole, to 1,2,3-triazine under mild reaction conditions (THF, 25-65 °C, 12-48 h), requiring no additives, cleanly provides β-aminoenals 4 in good yields (21 examples, 31-79%). The reaction proceeds by amine nucleophilic addition to C4 of the 1,2,3-triazine, in situ loss of N2, and subsequent imine hydrolysis to provide 4.
Collapse
Affiliation(s)
- Ryan E Quiñones
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kaicheng Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Mahfoudh M, Abderrahim R, Leclerc E, Campagne JM. Recent Approaches to the Synthesis of Pyrimidine Derivatives. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mafakher Mahfoudh
- Institut Charles Gerhardt - UMR 5253 CNRS; Ecole Nationale Supérieur de Chimie de Montpellier; 8, rue de L'Ecole Normale 34296 Montpellier cedex 5 France
- Faculté des Sciences de Bizerte; Université de Carthage; 7021 Jarzouna Tunisie
| | - Raoudha Abderrahim
- Faculté des Sciences de Bizerte; Université de Carthage; 7021 Jarzouna Tunisie
| | - Eric Leclerc
- Institut Charles Gerhardt - UMR 5253 CNRS; Ecole Nationale Supérieur de Chimie de Montpellier; 8, rue de L'Ecole Normale 34296 Montpellier cedex 5 France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt - UMR 5253 CNRS; Ecole Nationale Supérieur de Chimie de Montpellier; 8, rue de L'Ecole Normale 34296 Montpellier cedex 5 France
| |
Collapse
|
36
|
Zhou Y, Tang Z, Song Q. Lewis Acid-Mediated [3+3] Annulation for the Construction of Substituted Pyrimidine and Pyridine Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601386] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| | - Zhonghe Tang
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation; College of Chemical Engineering at Huaqiao University; 668 Jimei Blvd Xiamen, Fujian 361021 People's Republic of China
| |
Collapse
|
37
|
Substituent Diversity-directed Synthesis of Nitropyridines and Nitroanilines by Three-component Ring Transformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.proeng.2017.01.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Zhan JL, Wu MW, Chen F, Han B. Cu-Catalyzed [3 + 3] Annulation for the Synthesis of Pyrimidines via β-C(sp3)–H Functionalization of Saturated Ketones. J Org Chem 2016; 81:11994-12000. [DOI: 10.1021/acs.joc.6b02181] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-Long Zhan
- State Key Laboratory
of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Meng-Wei Wu
- State Key Laboratory
of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fei Chen
- State Key Laboratory
of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory
of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
39
|
Glinkerman CM, Boger DL. Catalysis of Heterocyclic Azadiene Cycloaddition Reactions by Solvent Hydrogen Bonding: Concise Total Synthesis of Methoxatin. J Am Chem Soc 2016; 138:12408-13. [PMID: 27571404 DOI: 10.1021/jacs.6b05438] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although it has been examined for decades, no general approach to catalysis of the inverse electron demand Diels-Alder reactions of heterocyclic azadienes has been introduced. Typically, additives such as Lewis acids lead to nonproductive consumption of the electron-rich dienophiles without productive activation of the electron-deficient heterocyclic azadienes. Herein, we report the first general method for catalysis of such cycloaddition reactions by using solvent hydrogen bonding of non-nucleophilic perfluoroalcohols, including hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), to activate the electron-deficient heterocyclic azadienes. Its use in promoting the cycloaddition of 1,2,3-triazine 4 with enamine 3 as the key step of a concise total synthesis of methoxatin is described.
Collapse
Affiliation(s)
- Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Asahara H, Le ST, Nishiwaki N. Synthesis of Nitroarenes Using Three-Component Ring Transformation. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology
| |
Collapse
|
41
|
Ameta S, Becker J, Jäschke A. RNA-peptide conjugate synthesis by inverse-electron demand Diels-Alder reaction. Org Biomol Chem 2015; 12:4701-7. [PMID: 24871687 DOI: 10.1039/c4ob00076e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here we report an efficient method for the synthesis of RNA-peptide conjugates by inverse-electron demand Diels-Alder reaction. Various dienophiles were enzymatically incorporated into RNA and reacted with a chemically synthesized diene-modified peptide. The Diels-Alder reaction proceeds with near-quantitative yields in aqueous solution with stoichiometric amounts of reactants, even at low micromolar concentrations.
Collapse
Affiliation(s)
- Sandeep Ameta
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| | | | | |
Collapse
|
42
|
Lee K, Poudel YB, Glinkerman CM, Boger DL. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs. Tetrahedron 2015; 71:5897-5905. [PMID: 26273113 PMCID: PMC4528678 DOI: 10.1016/j.tet.2015.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N-methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.
Collapse
Affiliation(s)
- Kiyoun Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yam B. Poudel
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M. Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Glinkerman CM, Boger DL. Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis. Org Lett 2015; 17:4002-5. [PMID: 26172042 DOI: 10.1021/acs.orglett.5b01870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The examination of the cycloaddition reactions of 1,2,3-triazines 17-19, bearing electron-donating substituents at C5, are described. Despite the noncomplementary 1,2,3-triazine C5 substituents, amidines were found to undergo a powerful cycloaddition to provide 2,5-disubstituted pyrimidines in excellent yields (42-99%; EDG = SMe > OMe > NHAc). Even select ynamines and enamines were capable of cycloadditions with 17, but not 18 or 19, to provide trisubstituted pyridines in modest yields (37-40% and 33% respectively).
Collapse
Affiliation(s)
- Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
44
|
Le ST, Asahara H, Nishiwaki N. Tailor-Made Synthesis ofN,N,2,6-Tetrasubstituted 4-Nitroanilines by Three-Component Ring Transformation of Dinitropyridone. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Zhou N, Xie T, Li Z, Xie Z. CuII/TEMPO-Promoted One-Pot Synthesis of Highly Substituted Pyrimidines from Amino Acid Esters. Chemistry 2014; 20:17311-4. [DOI: 10.1002/chem.201405447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 11/10/2022]
|
46
|
Anderson ED, Duerfeldt AS, Zhu K, Glinkerman CM, Boger DL. Cycloadditions of noncomplementary substituted 1,2,3-triazines. Org Lett 2014; 16:5084-7. [PMID: 25222918 PMCID: PMC4184932 DOI: 10.1021/ol502436n] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The scope of the [4 + 2] cycloaddition
reactions of substituted
1,2,3-triazines, bearing noncomplementary substitution with electron-withdrawing
groups at C4 and/or C6, is described. The studies define key electronic
and steric effects of substituents impacting the reactivity, mode
(C4/N1 vs C5/N2), and regioselectivity of the cycloaddition reactions
of 1,2,3-triazines with amidines, enamines, and ynamines, providing
access to highly functionalized heterocycles.
Collapse
Affiliation(s)
- Erin D Anderson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
47
|
Abstract
Total syntheses of (-)-pyrimidoblamic acid and P-3A are disclosed. Central to the convergent approach is a powerful inverse electron demand Diels-Alder reaction between substituted electron-deficient 1,2,3-triazines and a highly functionalized and chiral primary amidine, which forms the pyrimidine cores and introduces all necessary stereochemistry in a single step. Intrinsic in the convergent approach is the potential it provides for the late stage divergent synthesis of modified analogs bearing deep-seated changes in either the pyrimidine cores or the highly functionalized C2 side chain common to both natural products. The examination of the key cycloaddition reaction revealed that the inherent 1,2,3-triazine mode of cycloaddition (C4/N1 vs C5/N2) as well as the amidine regioselectivity were unaffected by introduction of two electron-withdrawing groups (-CO2R) at C4 and C6 of the 1,2,3-triazine even if C5 is unsubstituted (Me or H), highlighting the synthetic potential of the powerful pyrimidine synthesis.
Collapse
Affiliation(s)
- Adam S Duerfeldt
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
48
|
Rydfjord J, Svensson F, Trejos A, Sjöberg PJR, Sköld C, Sävmarker J, Odell LR, Larhed M. Decarboxylative palladium(II)-catalyzed synthesis of aryl amidines from aryl carboxylic acids: development and mechanistic investigation. Chemistry 2013; 19:13803-10. [PMID: 23983102 PMCID: PMC3935511 DOI: 10.1002/chem.201301809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/07/2013] [Indexed: 01/09/2023]
Abstract
A fast and convenient synthesis of aryl amidines starting from carboxylic acids and cyanamides is reported. The reaction was achieved by palladium(II)-catalysis in a one-step microwave protocol using [Pd(O2CCF3)2], 6-methyl-2,2′-bipyridyl and trifluoroacetic acid (TFA) in N-methylpyrrolidinone (NMP), providing the corresponding aryl amidines in moderate to excellent yields. The protocol is very robust with regards to the cyanamide coupling partner but requires electron-rich ortho-substituted aryl carboxylic acids. Mechanistic insight was provided by a DFT investigation and direct ESI-MS studies of the reaction. The results of the DFT study correlated well with the experimental findings and, together with the ESI-MS study, support the suggested mechanism. Furthermore, a scale-out (scale-up) was performed with a non-resonant microwave continuous-flow system, achieving a maximum throughput of 11 mmol h−1 by using a glass reactor with an inner diameter of 3 mm at a flow rate of 1 mL min−1.
Collapse
Affiliation(s)
- Jonas Rydfjord
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box-574, 751 23 Uppsala (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lehmann J, Alzieu T, Martin RE, Britton R. The Kondrat'eva reaction in flow: direct access to annulated pyridines. Org Lett 2013; 15:3550-3. [PMID: 23805911 DOI: 10.1021/ol4013525] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A continuous flow inverse-electron-demand Kondrat'eva reaction has been developed that provides direct access to cycloalka[c]pyridines from unactivated oxazoles and cycloalkenes. Annulated pyridines obtained by this one-step process are valuable scaffolds for medicinal chemistry.
Collapse
Affiliation(s)
- Johannes Lehmann
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Small Molecule Research, Medicinal Chemistry, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Nishiwaki N, Sugimoto R, Saigo K, Kobiro K. Mechanistic aspect of ring transformations in the reaction of 5-nitro-4-pyrimidinone with acetophenone derivatives and cycloalkanones depending on the electron density/ring size of the ketone. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|