1
|
Jiang HL, Zhang YY, Mao HY, Zhang Y, Cao YX, Yu HY, Dong XY, Tao L, Yang CS. Strophiofimbrins A and B: Two Rearranged Norditerpenoids with Novel Tricyclic Carbon Skeletons from Strophioblachia fimbricalyx. J Org Chem 2023; 88:5936-5943. [PMID: 37043752 DOI: 10.1021/acs.joc.3c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Two rearranged norditerpenoids with novel tricyclic carbon skeletons, strophiofimbrin A (1) and strophiofimbrin B (2), were isolated from Strophioblachia fimbricalyx. Their structures were established by 1D/2D NMR spectroscopy, HRESIMS, quantum chemistry calculations, and X-ray diffraction analyses. 1 and 2 represented the first examples of diterpenoids with unprecedented 5/6/7-fused ring systems. In the proposed biosynthetic pathway, they were suspected to derive from cleistanthane norditerpenoids via ring opening, expansion, cyclization, and rearrangement based on the existence of phenanthrenone and cleistanthane diterpenoids from Strophioblachia and Trigonostemon, two closely related genera of the Euphorbiaceae family. Furthermore, compounds 1 and 2 exhibited significant proliferation inhibition and obvious neuroprotective effects.
Collapse
Affiliation(s)
- Hou-Li Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225009, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, Jiangsu 225009, China
| | - Yan-Yan Zhang
- Testing Center, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao-Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yin-Xue Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hong-Yan Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao-Yun Dong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, Jiangsu 225009, China
| | - Chang-Shui Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu 225009, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
Yang CS, Jiang HL, Mao HY, Zhang Y, Zhang YY, Dong XY. Strophioblin, a novel rearranged dinor-diterpenoid from Strophioblachia fimbricalyx. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
4
|
Mastachi-Loza S, Ramírez-Candelero TI, Benítez-Puebla LJ, Fuentes-Benítes A, González-Romero C, Vázquez MA. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem Asian J 2022; 17:e202200706. [PMID: 35976743 DOI: 10.1002/asia.202200706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Chalcones are aromatic ketones found in nature as the central core of many biological compounds. They have a wide range of biological activity and are biogenetic precursors of other important molecules such as flavonoids. Their pharmacological relevance makes them a privileged scaffold, advantageous for seeking alternative therapies in medicinal chemistry. Due to their structural diversity and ease of synthesis, they are often employed as building blocks for chemical transformations. Chalcones have a carbonyl conjugated system with two electrophilic centers that are commonly used for nucleophilic additions, as described in numerous articles. They can also participate in Diels-Alder reactions, which are [4+2] cycloadditions between a diene and a dienophile. This microreview presents a chronological survey of studies on chalcones as dienes and dienophiles in Diels-Alder cycloadditions. Although these reactions occur in nature, isolation of chalcones from plants yields very small quantities. Contrarily, synthesis leads to large quantities at a low cost. Hence, novel methodologies have been developed for [4+2] cycloadditions, with chalcones serving as a 2π or 4π electron system.
Collapse
Affiliation(s)
- Salvador Mastachi-Loza
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Tania I Ramírez-Candelero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Luis J Benítez-Puebla
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Aydee Fuentes-Benítes
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Carlos González-Romero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Miguel A Vázquez
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, CHEMISTRY, NORIA ALTA S/N, 36050, GUANAJUATO, MEXICO
| |
Collapse
|
5
|
He XF, Wu SL, Chen JJ, Hu J, Huang XY, Li TZ, Zhang XM, Guo YQ, Geng CA. New diarylheptanoid dimers as GLP-1 secretagogues and multiple-enzyme inhibitors from Alpinia katsumadai. Bioorg Chem 2022; 120:105653. [DOI: 10.1016/j.bioorg.2022.105653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
|
6
|
New cytochalasan alkaloids and cyclobutane dimer from an endophytic fungus Cytospora chrysosperma in Hippophae rhamnoides and their antimicrobial activities. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Oeser P, Edlová T, Čubiňák M, Tobrman T. Transition‐Metal‐Free Ring‐Opening Reaction of 2‐Halocyclobutanols through Ring Contraction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Petr Oeser
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tereza Edlová
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Marek Čubiňák
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
8
|
He X, Chen J, Li T, Hu J, Huang X, Zhang X, Guo Y, Geng C. Diarylheptanoid‐flavanone Hybrids as Multiple‐target Antidiabetic Agents from
Alpinia katsumadai. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| | - Ji‐Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| | - Xiao‐Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| | - Xue‐Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| | - Yuan‐Qiang Guo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300071 China
| | - Chang‐An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Yunnan 650201 China
| |
Collapse
|
9
|
Koudelka J, Tobrman T. Synthesis of 2‐Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jakub Koudelka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
10
|
|
11
|
Edlová T, Dvořáková H, Eigner V, Tobrman T. Substrate-Controlled Regioselective Bromination of 1,2-Disubstituted Cyclobutenes: An Application in the Synthesis of 2,3-Disubstituted Cyclobutenones. J Org Chem 2021; 86:5820-5831. [PMID: 33819050 DOI: 10.1021/acs.joc.1c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Easily available disubstituted cyclobutenes were regioselectively halogenated at the allylic position by means of a reaction with bromine. The regioselectivity of bromination is controlled by the presence of a carbocation-stabilizing group. The prepared disubstituted 3-bromocyclobutenes were converted into the corresponding disubstituted cyclobutenones. On the basis of the performed experiments, the mechanism behind the bromination reaction was also proposed.
Collapse
Affiliation(s)
- Tereza Edlová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
He XF, Chen JJ, Li TZ, Hu J, Zhang XM, Geng CA. Diarylheptanoid-chalcone hybrids with PTP1B and α-glucosidase dual inhibition from Alpinia katsumadai. Bioorg Chem 2021; 108:104683. [PMID: 33545534 DOI: 10.1016/j.bioorg.2021.104683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
The EtOH extracts of the dried seeds of Alpinia katsumadai were revealed with hypoglycemic effects on db/db mice at the concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 16 new diarylheptanoid-chalcone hybrids, katsumadainols A1-A16 (1-16), together with 13 known analogues (17-29), were isolated from A. katsumadai under the guidance of bioassay. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which compounds 1-3, 5-7, 11-14, 21-25, and 27 showed PTP1B/TCPTP selective inhibition with IC50 values ranging from 22.0 to 96.7 μM, which were 2-10 times more active than sodium orthovanadate (IC50, 215.7 μM). All compounds exhibited obvious inhibition against α-glucosidase with IC50 values of 2.9-29.5 μM, indicating 6-59 times more active than acarbose (IC50, 170.9 μM). Study of enzyme kinetics indicated compounds 1, 3, and 12 were PTP1B and α-glucosidase mixed-type inhibitors with Ki values of 13.1, 12.9, 21.6 μM, and 4.9, 7.4, 3.4 μM, respectively.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China.
| |
Collapse
|
13
|
Zhang ZJ, Wang C, Wu XD, Huang Y, Zhou WX, Zhao QS. Phlegmadine A: A Lycopodium Alkaloid with a Unique Cyclobutane Ring from Phlegmariurus phlegmaria. J Org Chem 2019; 84:11301-11305. [PMID: 31411034 DOI: 10.1021/acs.joc.9b01723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Chen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People’s Republic of China
| | - Xing-De Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Yan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People’s Republic of China
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People’s Republic of China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| |
Collapse
|
14
|
Tang JW, Xu HC, Wang WG, Hu K, Zhou YF, Chen R, Li XN, Du X, Sun HD, Puno PT. (+)- and (-)-Alternarilactone A: Enantiomers with a Diepoxy-Cage-like Scaffold from an Endophytic Alternaria sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:735-740. [PMID: 30767530 DOI: 10.1021/acs.jnatprod.8b00571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enantiomers (+)- and (-)-alternarilactone A (1), the first examples of dibenzo-α-pyrones bearing a diepoxy-cage-like moiety, were isolated from the endophytic fungus Alternaria sp. hh930. The deficiency in 1H-1H COSY and HMBC correlations caused by the highly oxidized caged system of 1 and the deceptive and ambiguous signals such as "W" couplings in NMR data increased the risk of structure misassignment of 1. By performing a quantum chemical calculation of the NMR chemical shifts together with a DP4+ probability analysis and single-crystal X-ray crystallographic experiment, their structures were unambiguously determined, and their absolute configurations were determined by ECD calculations.
Collapse
Affiliation(s)
- Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hou-Chao Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuan-Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Rong Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , Yunnan , People's Republic of China
| |
Collapse
|
15
|
Seconoriridone A: A C16-seco-noriridal derivative with a 5/5/7 tricyclic skeleton from Belamcanda chinensis. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Pilli RA, de Toledo I, Meirelles MA, Grigolo TA. Goniothalamin-Related Styryl Lactones: Isolation, Synthesis, Biological Activity and Mode of Action. Curr Med Chem 2018; 26:7372-7451. [PMID: 30306856 DOI: 10.2174/0929867325666181009161439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
This review covers the chemistry and biological aspects of goniothalamin-related styryl lactones isolated from natural sources. This family of secondary metabolites has been reported to display diverse uses in folk medicine, but only a limited number of these compounds have been throughly investigated regarding their biological profile. Herein, we cover the goniothalamin-related styryl lactones having a C6-C3-C4 framework which appeared in the literature for the first time in the period 2000-2017, and the reports on the synthesis, biological activity and mechanism of action which were published from 2007-2017.
Collapse
Affiliation(s)
- Ronaldo Aloise Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | | | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Yuan Y, Yang JX, Nie LH, Li BL, Qin XB, Wu JW, Qiu SX. Three new kavalactone dimers from Piper methysticum (kava). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:837-843. [PMID: 28868919 DOI: 10.1080/10286020.2017.1367768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Three new dimeric kavalactones, designated as diyangonins A-C (1-3), along with two known analogs were isolated from the roots of Piper methysticum. Their structures were elucidated by means of extensive analysis of their 1D, 2D NMR, and mass spectroscopic data. All these dimers possess a skeleton featuring a cyclobutane ring connecting two kavalactone units in head-to-tail or head-to-head mode. Compounds 1-5 were evaluated for their cytotoxic activities against human tumor cell lines.
Collapse
Affiliation(s)
- Yao Yuan
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian-Xiang Yang
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| | - Ling-Hui Nie
- c College of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| | - Bai-Lin Li
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Bing Qin
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jie-Wei Wu
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| | - Sheng-Xiang Qiu
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| |
Collapse
|
18
|
Li SG, Huang XJ, Li MM, Liu Q, Liu H, Wang Y, Ye WC. Multiflorumisides A-G, Dimeric Stilbene Glucosides with Rare Coupling Patterns from the Roots of Polygonum multiflorum. JOURNAL OF NATURAL PRODUCTS 2018; 81:254-263. [PMID: 29359942 DOI: 10.1021/acs.jnatprod.7b00540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiflorumisides A-G (1-7), seven new dimeric stilbene glucosides with two rare coupling patterns, were isolated from the roots of Polygonum multiflorum. The structures of these new dimeric stilbene glucosides were elucidated through comprehensive spectroscopic and chemical analyses. The absolute configurations of 3 and 5-7 were established by comparing their experimental and quantum-chemical ECD data. Putative biosynthetic pathways toward the dimers and their suppressive effects against nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells are also discussed.
Collapse
Affiliation(s)
- Shuo-Guo Li
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Qing Liu
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hui Liu
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, and §JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|
19
|
Antonsen S, Østby RB, Stenstrøm Y. Naturally Occurring Cyclobutanes: Their Biological Significance and Synthesis. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00001-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Zhang C, Lei JL, Zhang H, Xia YZ, Yu P, Yang L, Kong LY. Calyxin Y sensitizes cisplatin-sensitive and resistant hepatocellular carcinoma cells to cisplatin through apoptotic and autophagic cell death via SCF βTrCP-mediated eEF2K degradation. Oncotarget 2017; 8:70595-70616. [PMID: 29050305 PMCID: PMC5642580 DOI: 10.18632/oncotarget.19883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
The down-regulation of eukaryotic elongation factor-2 kinase (eEF2K) is associated with an enhancement in the sensitivity of malignant cells to chemotherapeutic agents. In this study, we found that the silencing of eEF2K enhanced cisplatin (CDDP)-induced cytotoxicity in CDDP-sensitive (HepG2) and resistant (HepG2/CDDP) cells. Calyxin Y, a unique chalcone diarylheptanoid adduct, down-regulated eEF2K by promoting Skp1-Cul1-F-box protein (SCF) β-transducin repeat-containing protein (βTrCP)-mediated protein degradation and synergistically enhanced the cytotoxicity of CDDP. Subsequently, we identified a potential mechanism of this cooperative interaction by showing that the combination of calyxin Y and CDDP enhanced apoptotic cell death via mitochondrial dysfunction. In addition, the combination induced autophagy, which contributed to the synergistic cytotoxic effect. Further research revealed that calyxin Y synergistically sensitized HepG2 and HepG2/CDDP cells to CDDP through enhanced apoptotic and autophagic cell death via the SCF βTrCP-eEF2K pathway. Finally, in vivo studies demonstrated that calyxin Y could enhance the response of HepG2/CDDP cells to CDDP in xenograft models with low systemic toxicity. Thus, the combination of calyxin Y and CDDP might represent an attractive therapeutic strategy for the treatment of chemotherapy-sensitive and resistant hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Sang XN, Chen SF, Tang MX, Wang HF, An X, Lu XJ, Zhao D, Wang YB, Bai J, Hua HM, Chen G, Pei YH. α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 2017; 27:3723-3725. [PMID: 28697923 DOI: 10.1016/j.bmcl.2017.06.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/18/2017] [Accepted: 06/29/2017] [Indexed: 02/01/2023]
Abstract
Four new α-pyrone derivatives phomones C-F (1-4) together with four known compounds (5-8) were isolated from the endophytic fungus Phoma sp. YN02-P-3. Compound 1 is the first example of 6-α,β-unsaturated ester-2-pyrone dimers via intermolecular symmetrical [2+2] cycloaddition. The chemical structures of these compounds were determined from spectroscopic data (1D/2D NMR, MS and IR). The acetylated product (9) of 1 along with compounds 1-8 were then tested for their cytotoxicity against HL-60, PC-3 and HCT-116 cell lines. Compounds 2, 3, 5 and 9 with acetyl groups showed significant inhibitory activities against the three cell lines with IC50 values in the range 0.52-9.85μM. while compounds 1, 4 and 6-8 that possess no acetyl group showed no inhibitory activity (IC50>50μM), indicating that the acetyl group at 10- or 12- are essential for their cytotoxic activities. The structure-activity relationships of these phomones were also reported.
Collapse
Affiliation(s)
- Xia-Nan Sang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Fei Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming-Xu Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hai-Feng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao An
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Jie Lu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Bo Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yue-Hu Pei
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
22
|
Wang XB, Yang CS, Luo JG, Zhang C, Luo J, Yang MH, Kong LY. Experimental and theoretical calculation studies on the structure elucidation and absolute configuration of calyxins from Alpinia katsumadai. Fitoterapia 2017; 119:121-129. [PMID: 28456555 DOI: 10.1016/j.fitote.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Abstract
Six novel calyxins, named calyxin T-W, ent-calyxin T and ent-calyxin U were isolated from the seeds of Alpinia katsumadai Hayata. Their relative configurations were elucidated by means of detailed UV, IR, NMR and MS spectroscopic data. Their absolute configurations were assigned by collaborative studies on single crystal X-ray diffraction analysis, Mosher's method, electronic circular dichroism (ECD), optical rotation and theoretical calculations. These compounds are Friedel-Cranft alkylation adducts composed of coexisted diarylheptanoids and flavanone from the seeds of Alpinia katsumadai. The antiproliferative activity of the six compounds against NCI-H460, HeLa, SMMC-7721 and HCT-116 cell lines was also reported, and most of them showed moderate to strong activities.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chang-Shui Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Medical school, Yangzhou University, 11 Huaihai Ave.,Yangzhou 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Ave., Yangzhou 225009, PR China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Sang XN, Chen SF, Chen G, An X, Li SG, Lu XJ, Zhao D, Bai J, Wang HF, Pei YH. Two pairs of enantiomeric α-pyrone dimers from the endophytic fungus Phoma sp. YN02-P-3. RSC Adv 2017. [DOI: 10.1039/c6ra26319d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(±) Phomones A (1) and B (2), two pairs of novel enantiomeric α-pyrone dimers from the endophytic fungus Phoma sp. YN02-P-3 are reported.
Collapse
|
24
|
Li QM, Luo JG, Zhang YM, Zhao HJ, Yang MH, Kong LY. Cadinane-type sesquiterpenoids from Stahlianthus involucratus and their absolute configurations. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Long H, Cheng Z, Huang W, Wu Q, Li X, Cui J, Proksch P, Lin W. Diasteltoxins A-C, Asteltoxin-Based Dimers from a Mutant of the Sponge-Associated Emericella variecolor Fungus. Org Lett 2016; 18:4678-81. [PMID: 27571434 DOI: 10.1021/acs.orglett.6b02313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three novel asteltoxin-bearing dimers namely diasteltoxins A-C (1-3) along with asteltoxin were isolated from a mutated strain of a sponge-derived fungus Emericella variecolor XSA-07-2. Their structures were determined by extensive spectroscopic analyses including the computed electronic circular dichroism (ECD) data for the configurational assignment. The biogenetic formation of the dimers through [2 + 2] cycloaddition of asteltoxin was postulated. Diasteltoxins 1-3 exerted inhibitory effects against the tumor cell lines H1299 and MCF7 and exhibited significant inhibition against thioredoxin reductase (TrxR).
Collapse
Affiliation(s)
- Hailin Long
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Zhongbin Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Wei Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Qi Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Xiaodan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Jingrong Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University , 40225 Duesseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, P. R. China
| |
Collapse
|
26
|
Fan YY, Gao XH, Yue JM. Attractive natural products with strained cyclopropane and/or cyclobutane ring systems. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0233-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Zhang JL, Wang WJ, Xu XM, Li DY, Hua HM, Ma EL, Li ZL. From macrocyclic to linear and further: naturally degradable polyesters from the fungus Ascotricha sp. ZJ-M-5. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Involucratusins A-H: Unusual Cadinane Dimers from Stahlianthus involucratus with Multidrug Resistance Reversal Activity. Sci Rep 2016; 6:29744. [PMID: 27406627 PMCID: PMC4942826 DOI: 10.1038/srep29744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022] Open
Abstract
Three novel cadinane dimers, involucratusins A–C (1–3), five unique nor-cadinane-dimers, involucratusins D–H (4–8), together with a known compound (9) were isolated from the rhizomes of Stahlianthus involucratus. Their challenging structures and absolute configurations were determined by spectroscopic data, CD experimentation, chemical conversions and single-crystal X-ray diffraction. Compounds 1–3 are unusual cadinane dimers with new connection and novel cores. Compound 4 is a unique nor-cadinane-dimer, and 5 and 6 are two pairs of hemiketal racemates with novel dinor-cadinane-dimer backbone. Compounds 7 and 8 represent unusual dodecanor-cadinane-dimer and tetradecanor-cadinane-dimer carbon skeletons, respectively. The possible biogenetic pathways of 1–8 were proposed, involving nucleophilic addition, SN2 nucleophilic displacement, [3 + 3] benzannulation, oxidative cleavage, decarboxylation, and oxidative phenol coupling reactions. Multidrug resistance (MDR) reversal activity assay of the isolates were evaluated in doxorubicin-resistant human breast cancer cells (MCF-7/DOX). The combined use of these novel cadinane dimers at a concentration of 10 μM increased the cytotoxicity of doxorubicin by 2.2–5.8-fold. It is the first report about the MDR reversal activity of cadinane dimers.
Collapse
|
29
|
Hu ZX, Shi YM, Wang WG, Tang JW, Zhou M, Du X, Zhang YH, Pu JX, Sun HD. Structural Characterization of Kadcoccinin A: A Sesquiterpenoid with a Tricyclo[4.4.0.03,10]decane Scaffold from Kadsura coccinea. Org Lett 2016; 18:2284-7. [PMID: 27091303 DOI: 10.1021/acs.orglett.6b00919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zheng-Xi Hu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Ming Shi
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Guang Wang
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Wei Tang
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Min Zhou
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue Du
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yong-Hui Zhang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Xin Pu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Han-Dong Sun
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
30
|
Li QM, Luo JG, Zhao HJ, Yu WY, Wang XB, Yang MH, Luo J, Sun HB, Chen YJ, Guo QL, Kong LY. Involudispirones A and B: Sesterterpenes Containing a Dispiro Ring fromStahlianthus involucratus. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang-Ming Li
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Hui-Jun Zhao
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Wen-Ying Yu
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Hong-Bin Sun
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Yi-Jun Chen
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines; Department of Natural Medicinal Chemistry; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 People's Republic of China
| |
Collapse
|
31
|
Li QM, Luo JG, Zhang YM, Li ZR, Wang XB, Yang MH, Luo J, Sun HB, Chen YJ, Kong LY. Involucratustones A-C: Unprecedented Sesquiterpene Dimers Containing Multiple Contiguous Quaternary Carbons from Stahlianthus involucratus. Chemistry 2015; 21:13206-9. [PMID: 26228004 DOI: 10.1002/chem.201502631] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Indexed: 01/04/2023]
Abstract
Involucratustones A-C (1-3), three cadinane dimers containing multiple contiguous quaternary carbons, were isolated from the rhizomes of Stahlianthus involucratus. Their structures were determined by a combination of NMR spectroscopy, chemical conversion, and X-ray diffraction analysis. Compounds 1 and 2 are rearranged homodimers of cadinane sesquiterpene fused with a unique fully substituted 1-oxaspiro[4.4]nonane core observed for the first time in natural products, and 3 is a novel 3',4'-seco-cadinane-dimer. Compounds 1 and 2 exhibited potent cytotoxic activities, and 3 showed notable anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiang-Ming Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Yang-Mei Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Zhong-Rui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Hong-Bin Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Yi-Jun Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China)
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (P. R. China).
| |
Collapse
|
32
|
Li QM, Luo JG, Yang MH, Kong LY. Terpenoids from Rhizomes ofAlpinia japonicaInhibiting Nitric Oxide Production. Chem Biodivers 2015; 12:388-96. [DOI: 10.1002/cbdv.201400103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 12/28/2022]
|
33
|
Wang XB, Yang CS, Zhang C, Luo J, Yang MH, Luo JG, Yu WY, Kong LY. Ten new calyxins from Alpinia katsumadai: a systematically studies on the stereochemistry of calyxins. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Parella R, Gopalakrishnan B, Babu SA. Direct Bis-Arylation of Cyclobutanecarboxamide via Double C–H Activation: An Auxiliary-Aided Diastereoselective Pd-Catalyzed Access to Trisubstituted Cyclobutane Scaffolds Having Three Contiguous Stereocenters and an All-cis Stereochemistry. J Org Chem 2013; 78:11911-34. [DOI: 10.1021/jo4019733] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| | - Bojan Gopalakrishnan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli
P.O., Sector 81, SAS Nagar, Mohali, Knowledge
City, Punjab 140306, India
| |
Collapse
|
35
|
Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human non-small cell lung cancer NCI-H460 cells. Cancer Lett 2013; 340:51-62. [DOI: 10.1016/j.canlet.2013.06.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 06/16/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023]
|
36
|
Wang Y, Bao R, Huang S, Tang Y. Bioinspired total synthesis of katsumadain A by organocatalytic enantioselective 1,4-conjugate addition. Beilstein J Org Chem 2013; 9:1601-6. [PMID: 23946860 PMCID: PMC3740603 DOI: 10.3762/bjoc.9.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/16/2013] [Indexed: 01/26/2023] Open
Abstract
Katsumadain A, a naturally occurring influenza virus neuraminidase (NA) inhibitor, was synthesized by using a bioinspired, organocatalytic enantioselective 1,4-conjugate addition of styryl-2-pyranone with cinnamaldehyde, followed by a tandem Horner–Wadsworth–Emmons/oxa Michael addition.
Collapse
Affiliation(s)
- Yongguang Wang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
37
|
Zhou M, Zhang HB, Wang WG, Gong NB, Zhan R, Li XN, Du X, Li LM, Li Y, Lu Y, Pu JX, Sun HD. Scopariusic Acid, a New Meroditerpenoid with a Unique Cyclobutane Ring Isolated from Isodon scoparius. Org Lett 2013; 15:4446-9. [PMID: 23944990 DOI: 10.1021/ol401991u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Hai-Bo Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Wei-Guang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Ning-Bo Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Rui Zhan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Xue Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Li-Mei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Yang Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Jian-Xin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, University of Chinese Academy of Sciences, Beijing 100039, P. R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China, and Research Center, Chengdu Medical College, Chengdu, P. R. China
| |
Collapse
|
38
|
Li QM, Luo JG, Wang XB, Yang MH, Kong LY. Sesquiterpenes from the rhizomes of Alpinia japonica and their inhibitory effects on nitric oxide production. Fitoterapia 2013; 86:29-34. [DOI: 10.1016/j.fitote.2013.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
39
|
Yin H, Luo JG, Shan SM, Wang XB, Luo J, Yang MH, Kong LY. Amomaxins A and B, Two Unprecedented Rearranged Labdane Norditerpenoids with a Nine-Membered Ring from Amomum maximum. Org Lett 2013; 15:1572-5. [DOI: 10.1021/ol400348a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Yin
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Si-Ming Shan
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| |
Collapse
|
40
|
WANG FL, LUO JG, WANG XB, KONG LY. A pair of sulfonated diarylheptanoid epimers from Kaempferia galanga. Chin J Nat Med 2013; 11:171-6. [DOI: 10.1016/s1875-5364(13)60045-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Indexed: 11/25/2022]
|
41
|
Yin H, Luo JG, Kong LY. Tetracyclic diterpenoids with isomerized isospongian skeleton and labdane diterpenoids from the fruits of Amomum kravanh. JOURNAL OF NATURAL PRODUCTS 2013; 76:237-242. [PMID: 23394284 DOI: 10.1021/np3007217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Four novel diterpenoids, including three tetracyclic diterpenes with isomerized isospongian skeletons, kravanhins A-C (1-3), and kravanhin D (4), and three new labdane diterpenes (5-7) were isolated from the fruits of Amomum kravanh. Compounds 1-4 had unprecedented isospongian diterpene skeletons with a trans-anti-cis fused tricyclic ring system. The structures of compounds 1-7 were established on the basis of extensive analysis of NMR spectra, CD, and X-ray crystallography. Compound 2 showed inhibitory activity on nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophages with an IC(50) value of 36.2 μM.
Collapse
Affiliation(s)
- Hong Yin
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, People's Republic of China
| | | | | |
Collapse
|
42
|
Liu D, Qu W, Liang JY. Flavonoids and other constituents from Alpinia sichuanensis Z.Y. Zhu. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2012.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang P, Wang Y, Bao R, Luo T, Yang Z, Tang Y. Enantioselective Biomimetic Total Syntheses of Katsumadain and Katsumadain C. Org Lett 2011; 14:162-5. [DOI: 10.1021/ol2029433] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pengtao Zhang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Yongguang Wang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Ruiyang Bao
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Tuoping Luo
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Zhen Yang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Yefeng Tang
- The Comprehensive AIDS Research Center, Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|