1
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
Li BJ, Ruan YL, Zhu L, Zhou J, Yu JS. Recent advances in catalytic enantioselective construction of monofluoromethyl-substituted stereocenters. Chem Commun (Camb) 2024; 60:12302-12314. [PMID: 39240236 DOI: 10.1039/d4cc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chiral organofluorine compounds featuring a monofluoromethyl (CH2F)-substituted stereocenter are often encountered in a number of drugs and bioactive molecules. Consequently, the development of catalytic asymmetric methods for the enantioselective construction of CH2F-substituted stereocenters has made great progress over the past two decades, and a variety of enantioselective transformations have been accordingly established. According to the types of fluorinated reagents or substrates employed, these protocols can be divided into the following major categories: (i) enantioselective ring opening of epoxides or azetidinium salts by fluoride anions; (ii) asymmetric monofluoromethylation with 1-fluorobis(phenylsulfonyl)methane; (iii) asymmetric fluorocyclization of functionalized alkenes with Selectfluor; and (iv) asymmetric transformations involving α-CH2F ketones, α-CH2F alkenes, or other CH2F-containing substrates. This feature article aims to summarize these recent advances and discusses the possible reaction mechanisms, advantages and limitations of each protocol and their applications. Synthetic opportunities still open for further development are illustrated as well. This review article will be an inspiration for researchers engaged in asymmetric catalysis, organofluorine chemistry, and medicinal chemistry.
Collapse
Affiliation(s)
- Bo-Jie Li
- Hubei Engineering University, Xiaogan, China.
| | - Yu-Long Ruan
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Lei Zhu
- Hubei Engineering University, Xiaogan, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
3
|
Jia L, Wang T, Chen J, Zhao H, Yao P, Fan B. B(C 6F 5) 3/Chiral Phosphoric Acid Promoted Asymmetric C-3 gem-Difluoroalkylation of Quinoxalin-2-ones with Difluoroenoxysilanes. Org Lett 2024; 26:6551-6555. [PMID: 39078262 DOI: 10.1021/acs.orglett.4c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The asymmetric Mannich-type reaction of quinoxalin-2-ones with difluoroenoxysilanes has been developed for the synthesis of chiral gem-difluoroalkylated quinoxalin-2-ones. The reaction worked in the presence of chiral phosphoric acid CPA 1 and B(C6F5)3 in THF at room temperature. The reaction exhibited a good substrate scope furnishing the products in good yields (up to 97%) with up to 96% ee.
Collapse
Affiliation(s)
- Li Jia
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Ting Wang
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Jingchao Chen
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Hongyan Zhao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Pengjie Yao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
| | - Baomin Fan
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming 650504, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| |
Collapse
|
4
|
Tian JS, Yi-Gong, Wu ZW, Yu JS, Zhou J. H-Bond Donor-Directed Switch of Diastereoselectivity in the Enantioselective Intramolecular Aza-Henry Reaction of Ketimines. Chemistry 2024:e202402488. [PMID: 39120485 DOI: 10.1002/chem.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20 : 1 dr and 99 % ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20 : 1 dr and 99 % ee.
Collapse
Affiliation(s)
- Jun-Song Tian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Wei Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Zhou Y, Wu Z, Xu J, Zhang Z, Zheng H, Zhu G. Fluorine-Effect-Enabled Photocatalytic 4-Exo-Trig Cyclization Cascade to Access Fluoroalkylated Cyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202405678. [PMID: 38739309 DOI: 10.1002/anie.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Cyclobutanes are popular structural units in bioactive compounds and versatile intermediates in synthetic chemistry, but their synthesis is challenging owing to high ring strain. In this study, a novel method for highly regio- and diastereoselective synthesis of fluoroalkylcyclobutanes bearing vicinal quaternary and tertiary stereocenters is realized by a photocatalytic 4-exo-trig cyclization cascade of thioalkynes or trifluoromethylalkenes. Density functional theory calculations reveal that a unique fluorine effect, arising from hyperconjugative π→σ*C-F interactions, accounts for the regio-reversed radical addition at the sterically hindered alkene carbon, which facilitates an unprecedented 4-exo-trig ring closure. This chemistry enables the direct and controllable construction of medicinally valuable quaternary-carbon-containing cyclobutanes from readily available raw materials, nicely complementing the existing methods.
Collapse
Affiliation(s)
- Yulu Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jinming Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
6
|
Yurino T, Wu Z, Suzuki K, Nitta R, Sakaguchi Y, Ohkuma T. Asymmetric Cyanation of α-Ketimino Ester Derivatives with Chiral Ru-Li Combined Catalysts. Org Lett 2024; 26:900-905. [PMID: 38251826 DOI: 10.1021/acs.orglett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Asymmetric cyanation of α-ketimino esters catalyzed by combined systems of amino acid/BINAP derivative/Ru(II) complexes and lithium compounds was examined. The use of an appropriate combination of amino acid and BINAP ligands achieved high enantioselectivity for a variety of α-alkynyl (Val/XylBINAP/Ru), α-alkenyl (Val/TolBINAP/Ru), and α-aryl imino esters (Val/XylBINAP/Ru) as well as an isatin-derived cyclic imino amide (t-Leu/BINAP/Ru) to afford the α-cyano-α-amino esters and the amide with an α-nitrogen-substituted quaternary chiral center with up to 98% ee.
Collapse
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Zhen Wu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuaki Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Rino Nitta
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Sakaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
7
|
Zhao Y, Luo Y, Liu J, Zheng C, Zhao G. Multiple Hydrogen-Bonding Catalysts Enhance the Asymmetric Cyanation of Ketimines and Aldimines. Chemistry 2023; 29:e202302061. [PMID: 37463871 DOI: 10.1002/chem.202302061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
A highly enantioselective cyanation of imines (up to >99 % ee) has been developed using well-designed C2 -symmetric hydrogen bonding catalysts. The catalytic strategy was characterized with low catalyst loading (0.1-1 mol %), easily accessible catalysts with diverse functional groups, and catalytic base additives. A wide range of imines, including the challenging N-Boc and N-Cbz protected ketimines and aldimines, as well as fluoroalkylated ketimines, were investigated under mild conditions to afford the products with good to excellent yields (up to 99 % yield) and high enantioselectivity (up to >99 % ee). Control experiments revealed that the multiple hydrogen bonding catalysts enhanced the reactivity and enantioselectivity of the Strecker reaction initiated by the base.
Collapse
Affiliation(s)
- Yunhui Zhao
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Yueyang Luo
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
8
|
Sanz-Marco A, Esperilla D, Montesinos-Magraner M, Vila C, Muñoz MC, Pedro JR, Blay G. A Cu-BOX catalysed enantioselective Mukaiyama-aldol reaction with difluorinated silyl enol ethers and acylpyridine N-oxides. Org Biomol Chem 2023; 21:345-350. [PMID: 36484719 DOI: 10.1039/d2ob01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Cu(II)/BOX complex catalyses the enantioselective addition of difluorinated silyl enol ethers to acylpyridine N-oxides. The reaction provides difluorinated chiral tertiary alcohols of great interest in medicinal chemistry. These compounds are obtained in moderate to excellent yields and with high enantioselectivities. The stereochemical outcome of the reaction has been explained by DFT calculations.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Daniel Esperilla
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Marc Montesinos-Magraner
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Carlos Vila
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - M Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, C/Cami de Vera s/n, 46022-València, Spain
| | - José R Pedro
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Gonzalo Blay
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| |
Collapse
|
9
|
Multicomponent reactions of ethyl trifluoroacetoacetate with carbonyl and nucleophilic reagents as a promising tool for organic synthesis. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Mu B, Gao Y, Yang F, Wu W, Zhang Y, Wang X, Yu J, Zhou J. The Bifunctional Silyl Reagent Me
2
(CH
2
Cl)SiCF
3
Enables Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022; 61:e202208861. [DOI: 10.1002/anie.202208861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Bo‐Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Fu‐Ming Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Wen‐Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry CAS Shanghai 200032 China
| |
Collapse
|
11
|
Yang J, Ponra S, Li X, Peters BBC, Massaro L, Zhou T, Andersson PG. Catalytic enantioselective synthesis of fluoromethylated stereocenters by asymmetric hydrogenation. Chem Sci 2022; 13:8590-8596. [PMID: 35974749 PMCID: PMC9337738 DOI: 10.1039/d2sc02685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fluoromethyl groups possess specific steric and electronic properties and serve as a bioisostere of alcohol, thiol, nitro, and other functional groups, which are important in an assortment of molecular recognition processes. Herein we report a catalytic method for the asymmetric synthesis of a variety of enantioenriched products bearing fluoromethylated stereocenters with excellent yields and enantioselectivities. Various N,P-ligands were designed and applied in the hydrogenation of fluoromethylated olefins and vinyl fluorides.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Xingzhen Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
12
|
Mu BS, Gao Y, Yang FM, Wu WB, Zhang Y, Wang X, Yu JS, Zhou J. The Bifunctional Silyl Reagent Me2(CH2Cl)SiCF3 Enabled Highly Enantioselective Ketone Trifluoromethylation and Related Tandem Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo-Shuai Mu
- East China Normal University Department of chemistry CHINA
| | - Yang Gao
- East China Normal University Department of chemistry CHINA
| | - Fu-Ming Yang
- East China Normal University Department of chemistry CHINA
| | - Wen-Biao Wu
- East China Normal University Department of chemistry CHINA
| | - Ying Zhang
- East China Normal University Department of chemistry CHINA
| | - Xin Wang
- Sichuan University College of Chemistry CHINA
| | - Jin-Sheng Yu
- East China Normal University Department of chemistry CHINA
| | - Jian Zhou
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road, , 200062 Shanghai CHINA
| |
Collapse
|
13
|
Catalyst-free nitration of the aliphatic C-H bonds of tertiary β-keto esters with tert-butyl nitrite: access to α-quaternary α-amino acid precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Modern Approaches to Synthetic Design of Chiral α-Tertiary Amines Based on Trifluoromethylcontaining Ketimines: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ohmatsu K, Morita Y, Kiyokawa M, Hoshino K, Ooi T. Catalytic Asymmetric Strecker Reaction of Ketoimines with Potassium Cyanide. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Yusuke Morita
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Kimihiro Hoshino
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
16
|
Xu PW, Cui XY, Chen C, Zhou F, Yu JS, Ao YF, Zhou J. Enantioselective Synthesis of C α-Tetrasubstituted N-Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me 2(CH 2Cl)SiCN. Org Lett 2021; 23:8471-8476. [PMID: 34644098 DOI: 10.1021/acs.orglett.1c03176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report an unprecedented catalytic enantioselective cyanation of ketonitrones enabled by the bifunctional cyanating reagent Me2(CH2Cl)SiCN. This approach allows facile access to optically active N-hydroxyl-α-amino nitriles that are of high synthetic value but difficult to acquire by other methods. The use of bifunctional cyanating reagent Me2(CH2Cl)SiCN not only achieves an enantioselectivity higher than that with TMSCN but also enables various diversification reactions of the resulting silylated adducts. This represents the first enantioselective catalytic nucleophilic addition reaction of unactivated ketone-derived nitrones, exhibiting the potential of such tetrasubstituted C═N bonds for asymmetric synthesis of N-hydroxy α-amino acids and other N-hydroxy tertiary amines.
Collapse
Affiliation(s)
- Peng-Wei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiao-Yuan Cui
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
17
|
Wang J, Li L, Chai M, Ding S, Li J, Shang Y, Zhao H, Li D, Zhu Q. Enantioselective Construction of 1 H-Isoindoles Containing Tri- and Difluoromethylated Quaternary Stereogenic Centers via Palladium-Catalyzed C–H Bond Imidoylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Wang Y, Wang S, Qiu P, Fang L, Wang K, Zhang Y, Zhang C, Zhao T. Asymmetric α-electrophilic difluoromethylation of β-keto esters by phase transfer catalysis. Org Biomol Chem 2021; 19:4788-4795. [PMID: 33982742 DOI: 10.1039/d1ob00511a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient and enantioselective α-electrophilic difluoromethylation of β-keto esters has been achieved by phase-transfer catalysis. This procedure is applicable to different kinds of β-keto esters with a series of cinchona-derived C-2' aryl-substituted phase-transfer catalysts. The reaction gives the corresponding products in good enantioselectivities (up to 83% ee) and yields (up to 92%) with high C/O regioselectivities (up to 98 : 2). Moreover, the C/O selectivity of β-keto esters could be easily reversed and controlled. This asymmetric difluoromethylation provided a novel and efficient way for introducing chiral C-CF2H groups.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Shuaifei Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Peiyong Qiu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Ke Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Yawei Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Conghui Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| | - Ting Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
| |
Collapse
|
19
|
Gao F, Guo Y, Sun M, Wang Y, Yang C, Wang Y, Wang K, Yan W. Catalytic Asymmetric Construction of Tertiary Carbon Centers Featuring an α-Difluoromethyl Group with CF 2H-CH 2-NH 2 as the "Building Block". Org Lett 2021; 23:2584-2589. [PMID: 33740843 DOI: 10.1021/acs.orglett.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here for the first time a novel difluoromethylated ketimine building block condensed by thioisatin and difluoroethylamine, offering efficient access to a broad range of enantioenriched products bearing difluoroethylamine units (27 examples, ≤98% yield, >99% ee) in the presence of quinine-derived squaramide. Further transformation of the intermediate would generate a variety of versatile functional blocks like α-difluoromethyl amines, β-amino acid, and β-diamine with retention of the enantiomeric excess at the difluoromethyl-bound carbon.
Collapse
Affiliation(s)
- Fengyun Gao
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yifei Guo
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Sun
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yalan Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Changyan Yang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuqiang Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjin Yan
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Gao F, Li B, Wang Y, Chen Q, Li Y, Wang K, Yan W. Stereoselective synthetic strategies of stereogenic carbon centers featuring a difluoromethyl group. Org Chem Front 2021. [DOI: 10.1039/d1qo00032b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scope of this review is to summarize routine asymmetric synthetic methods which enable the effective and selective introduction of difluoromethyl groups into the desired compounds, providing a general introduction to this important research area.
Collapse
Affiliation(s)
- Fengyun Gao
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Boyu Li
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Yalan Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Qushuo Chen
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Yongzhen Li
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Kairong Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Wenjin Yan
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
21
|
Wang Y, Cobo AA, Franz AK. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00220a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalytic asymmetric MCCRs for enantioselective synthesis of spirooxindoles by using chiral phosphoric acids, amines, bifunctional thiourea/squaramides and metal-based reagents as catalysts.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education
- Yunnan Normal University
- Kunming 650092
- P. R. China
| | - Angel A. Cobo
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
22
|
Goryaeva MV, Kushch SO, Khudina OG, Burgart YV, Ezhikova MA, Kodess MI, Slepukhin PA, Volobueva AS, Slita AV, Esaulkova IL, Misiurina MA, Zarubaev VV, Saloutin VI. New multicomponent approach to polyfluoroalkylated pyrido[1,2-a]pyrimidine derivatives and bis-cyclohexenones. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zhang XJ, Cheng YM, Zhao XW, Cao ZY, Xiao X, Xu Y. Catalytic asymmetric synthesis of monofluoroalkenes and gem-difluoroalkenes: advances and perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01630f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The latest achievements in the catalytic asymmetric synthesis of both monofluoro- and gem-difluoroalkenes are discussed.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Ya-Min Cheng
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao-Wei Zhao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Ying Xu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
- Engineering Research Center for Water Environment and Health of Henan
| |
Collapse
|
24
|
Onyeagusi CI, Malcolmson SJ. Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catal 2020; 10:12507-12536. [PMID: 34306806 PMCID: PMC8302206 DOI: 10.1021/acscatal.0c03569] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exploitation of the α-trifluoromethylamino group as an amide surrogate in peptidomimetics and drug candidates has been on the rise. In a large number of these cases, this moiety bears stereochemistry with the stereochemical identity having important consequences on numerous molecular properties, such as the potency of the compound. Yet, the majority of stereoselective syntheses of α-CF3 amines rely on diastereoselective couplings with chiral reagents. Concurrent with the rapid expansion of fluorine into pharmaceuticals has been the development of catalytic enantioselective means of preparing α-trifluoromethyl amines. In this work, we outline the strategies that have been employed for accessing these enantioenriched amines, including normal polarity approaches and several recent developments in imine umpolung transformations.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
25
|
Rong MY, Li JS, Zhou Y, Zhang FG, Ma JA. Catalytic Enantioselective Synthesis of Difluoromethylated Tetrasubstituted Stereocenters in Isoindolones Enabled by a Multiple-Fluorine System. Org Lett 2020; 22:9010-9015. [DOI: 10.1021/acs.orglett.0c03406] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meng-Yu Rong
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jin-Shan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yin Zhou
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, Binhai New City, P. R. China
| |
Collapse
|
26
|
Ding PG, Hu XS, Yu JS, Zhou J. Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Org Lett 2020; 22:8578-8583. [DOI: 10.1021/acs.orglett.0c03178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, People’s Republic of China
| |
Collapse
|
27
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
28
|
Feng S, Tang Y, Yang C, Shen C, Dong K. Synthesis of Enantioenriched α,α-Difluoro-β-arylbutanoic Esters by Pd-Catalyzed Asymmetric Hydrogenation. Org Lett 2020; 22:7508-7512. [PMID: 32945684 DOI: 10.1021/acs.orglett.0c02700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Synthesis of optically active gem-difluorinated organic molecules attracts a great deal of interest due to their unique properties in pharmaceutical and agrochemical areas. Herein, a series of enantioenriched α,α-difluoro-β-arylbutanoic esters were prepared in high yields (83-99%) with moderate to excellent enantioselectivities (≤97:3 er) by palladium-catalyzed asymmetric hydrogenation.
Collapse
Affiliation(s)
- Sitian Feng
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Yitian Tang
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chenjue Yang
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
29
|
Sun XS, Wang XH, Tao HY, Wei L, Wang CJ. Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives via umpolung allylation/2-aza-Cope rearrangement. Chem Sci 2020; 11:10984-10990. [PMID: 34094346 PMCID: PMC8162408 DOI: 10.1039/d0sc04685j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement of tertiary α-trifluoromethyl α-amino acid derivatives for the preparation of a variety of quaternary α-trifluoromethyl α-amino acids in high yields with excellent enantioselectivities. The umpolung reactivity empowered by the activation of the key isatin-ketoimine moiety obviates the intractable enantioselectivity control in Pd-catalyzed asymmetric linear α-allylation. In combination with quasi parallel kinetic resolution or kinetic resolution, the generality of this method is further demonstrated by the first preparation of enantioenriched quaternary trifluoromethyl β-, γ-, δ- and ε-amino acid derivatives.
Collapse
Affiliation(s)
- Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xing-Heng Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Saloutin VI, Goryaeva MV, Kushch SO, Khudina OG, Ezhikova MA, Kodess MI, Slepukhin PA, Burgart YV. Competitive ways for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and amino alcohols. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The competitive routes were found for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones with 3-amino alcohols. It was shown that the reactions with 3-aminopropanol in 1,4-dioxane predominantly lead to hexahydropyrido[2,1-b][1,3]oxazin-6-ones, and in ethanol to 3-hydroxypropylaminocyclohexenones. In contrast, cyclizations with 2-aminoethanol and its analogues, regardless of the reaction conditions, yield hexahydrooxazolo[3,2-a]pyridin-5-ones as the main products. The trans- and cis-diastereomeric structure of heterocycles was established using X-ray and 1H, 19F, 13C NMR spectroscopy, 2D 1H-13C HSQC and HMBC experiments. The mechanism is proposed for competitive transformations of polyfluoroalkyl-3-oxo esters, methyl ketones with 3-amino alcohols.
Collapse
Affiliation(s)
- Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Marina V. Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Svetlana O. Kushch
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Olga G. Khudina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences , Ekaterinburg , Russian Federation
| |
Collapse
|
31
|
Affiliation(s)
- Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, People’s Republic of China
| |
Collapse
|
32
|
Miller E, Kim S, Gibson K, Derrick JS, Toste FD. Regio- and Enantioselective Bromocyclization of Difluoroalkenes as a Strategy to Access Tetrasubstituted Difluoromethylene-Containing Stereocenters. J Am Chem Soc 2020; 142:8946-8952. [PMID: 32352775 PMCID: PMC7508160 DOI: 10.1021/jacs.0c02331] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoromethylene-containing compounds have attracted substantial research interest over the past decades for their ability to mimic biological functions of traditional functional groups while providing a wide variety of pharmacological benefits bestowed by the C-F bond. We report a novel strategy to access RCF2Br-containing heterocycles by regio- and enantioselective bromocyclization of difluoroalkenes enabled by chiral anion phase-transfer catalysis. The utility of this methodology was highlighted through a synthesis of an analogue of efavirenz, a drug used for treating HIV. Additionally, the synthetic versatility of the CF2Br intermediates was showcased through functionalization to a variety of enantioenriched α,α-difluoromethylene-containing products.
Collapse
Affiliation(s)
- Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Suhong Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katarina Gibson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Fager DC, Morrison RJ, Hoveyda AH. Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH 2 -Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst. Angew Chem Int Ed Engl 2020; 59:11448-11455. [PMID: 32219997 DOI: 10.1002/anie.202001184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Indexed: 12/20/2022]
Abstract
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2 -amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l-threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2 -amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.
Collapse
Affiliation(s)
- Diana C Fager
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
34
|
Fager DC, Morrison RJ, Hoveyda AH. Regio‐ and Enantioselective Synthesis of Trifluoromethyl‐Substituted Homoallylic α‐Tertiary NH
2
‐Amines by Reactions Facilitated by a Threonine‐Based Boron‐Containing Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Diana C. Fager
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ryan J. Morrison
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
35
|
Wang M, Zhou M, Zhang L, Zhang Z, Zhang W. A step-economic and one-pot access to chiral C α-tetrasubstituted α-amino acid derivatives via a bicyclic imidazole-catalyzed direct enantioselective C-acylation. Chem Sci 2020; 11:4801-4807. [PMID: 34122937 PMCID: PMC8159231 DOI: 10.1039/d0sc00808g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cα-Tetrasubstituted α-amino acids are ubiquitous and unique structural units in bioactive natural products and pharmaceutical compounds. The asymmetric synthesis of these molecules has attracted a lot of attention, but a more efficient method is still greatly desired. Here we describe the first sequential four-step acylation reaction for the efficient synthesis of chiral Cα-tetrasubstituted α-amino acid derivatives from simple N-acylated amino acids via an auto-tandem catalysis using a single nucleophilic catalyst. The synthetic efficiency is improved via a direct enantioselective C-acylation; the methodology affords the corresponding Cα-tetrasubstituted α-amino acid derivatives with excellent enantioselectivities (up to 99% ee). This step-economic, one-pot, and auto-tandem strategy provides facile access to important chiral building blocks, such as peptides, serines, and oxazolines, which are often used in medicinal and synthetic chemistry. The first four-step sequential reaction for the synthesis of Cα-tetrasubstituted chiral α-amino acid derivatives via auto-tandem catalysis has been developed.![]()
Collapse
Affiliation(s)
- Mo Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Muxing Zhou
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lu Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
36
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
37
|
Wu WB, Zeng XP, Zhou J. Carbonyl-Stabilized Phosphorus Ylide as an Organocatalyst for Cyanosilylation Reactions Using TMSCN. J Org Chem 2020; 85:14342-14350. [DOI: 10.1021/acs.joc.9b03347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China
| | - Xing-Ping Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
38
|
Chen C, Wu WB, Li YH, Zhao QH, Yu JS, Zhou J. Activation of Chiral (Salen)TiCl2 Complex by Phosphorane for the Highly Enantioselective Cyanation of Nitroolefins. Org Lett 2020; 22:2099-2104. [DOI: 10.1021/acs.orglett.0c00612] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
39
|
Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas-Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020; 25:E401. [PMID: 31963671 PMCID: PMC7024223 DOI: 10.3390/molecules25020401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023] Open
Abstract
For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.
Collapse
Affiliation(s)
- Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383 Wrocław, Poland;
| |
Collapse
|
40
|
Du M, Yu L, Du T, Li Z, Luo Y, Meng X, Tian Z, Zheng C, Cao W, Zhao G. N-Protecting group tuning of the enantioselectivity in Strecker reactions of trifluoromethyl ketimines to synthesize quaternary α-trifluoromethyl amino nitriles by ion pair catalysis. Chem Commun (Camb) 2020; 56:1581-1584. [PMID: 31934692 DOI: 10.1039/c9cc09151c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective Strecker reaction to construct trifluoromethylated quaternary stereocenters with N-PMP and unexplored N-Boc trifluoromethyl ketimines catalyzed using an organophosphine dual-reagent catalyst has been developed. The enantioselectivities of the corresponding products with the same catalyst could be switched by using different N-protecting groups (N-PMP or N-Boc). The trifluoromethyl amino nitriles were obtained in high yield and high enantioselectivity in a short time and could be easily converted to a variety of useful trifluoromethyl-containing compounds.
Collapse
Affiliation(s)
- Mengyuan Du
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Ting Du
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhaokun Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Yueyang Luo
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Xiangyu Meng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Zhengtao Tian
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| |
Collapse
|
41
|
Sun XS, Ou-Yang Q, Xu SM, Wang XH, Tao HY, Chung LW, Wang CJ. Asymmetric synthesis of quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed allylation followed by kinetic resolution. Chem Commun (Camb) 2020; 56:3333-3336. [DOI: 10.1039/d0cc00845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facile access to quaternary α-trifluoromethyl α-amino acids has been developed. This sequential reaction involves an Ir-catalyzed asymmetric allylation of α-trifluoromethyl aldimine esters followed by an unprecedented kinetic resolution.
Collapse
Affiliation(s)
- Xi-Shang Sun
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| | - Qiu Ou-Yang
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xing-Heng Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
42
|
Wang X, Gao Y, Wei Z, Cao J, Liang D, Lin Y, Duan H. Enantioselective addition of thiols to trifluoromethyl ketimines: synthesis of N, S-ketals. Org Biomol Chem 2020; 18:7431-7436. [DOI: 10.1039/d0ob01725f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enantioselective addition of thiols to acyclic trifluoromethyl ketimines for the construction of trifluoromethylated N,S-ketals was performed successfully using a bifunctional squaramide catalyst.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuan Gao
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhonglin Wei
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jungang Cao
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dapeng Liang
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yingjie Lin
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Haifeng Duan
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
43
|
Zhou T, Ji X, Zhang J, Liu L. Phosphine-catalyzed conjugate cyanation of β-trifluoromethyl enones: access to α-trifluoromethyl γ-carbonyl nitriles. Org Chem Front 2020. [DOI: 10.1039/d0qo00582g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we developed an efficient conjugate cyanation of β-trifluoromethyl enones with TMSCN mediated by phosphine and methyl acrylate.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xin Ji
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
44
|
Wang YH, Tian JS, Tan PW, Cao Q, Zhang XX, Cao ZY, Zhou F, Wang X, Zhou J. Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angew Chem Int Ed Engl 2019; 59:1634-1643. [PMID: 31755631 DOI: 10.1002/anie.201910864] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Azacycles such as indoles and tetrahydroquinolines are privileged structures in drug development. Reported here is an unprecedented regiodivergent intramolecular nucleophilic addition reaction of imines as a flexible approach to access N-functionalized indoles and tetrahydroquinolines, by the control of reaction at the N-terminus and C-terminus, respectively. Using ketimines derived from 2-(2-nitroethyl)anilines with isatins or α-ketoesters, the regioselective N-attack reaction gives N-functionalized indoles, while the catalytic enantioselective C-attack reaction affords chiral tetrahydroquinolines featuring an α-tetrasubstituted stereocenter. Mechanistic studies reveal that hydrogen-bonding interactions may greatly facilitate such unusual N-attack reactions of imines. The utility of this protocol is highlighted by the catalytic enantioselective formal synthesis of (-)-psychotrimine, and the construction of various fused aza-heterocycles.
Collapse
Affiliation(s)
- Yu-Hui Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jun-Song Tian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Peng-Wei Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Qiang Cao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Yan Cao
- College of chemical engineering, Zhejiang university of technology, Chaowang road, 18N, Hangzhou, 310014, P. R. China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xin Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
45
|
Wang Y, Tian J, Tan P, Cao Q, Zhang X, Cao Z, Zhou F, Wang X, Zhou J. Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu‐Hui Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- Innovation Research Institute of Traditional Chinese Medicine (IRI) Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jun‐Song Tian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Peng‐Wei Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Qiang Cao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhong‐Yan Cao
- College of chemical engineering Zhejiang university of technology Chaowang road, 18N Hangzhou 310014 P. R. China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry Sichuan University Chengdu Sichuan 610064 P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
46
|
Winter M, Kim H, Waser M. Pd-Catalyzed Allylation of Imines to Access α-CF 3-Substituted α-Amino Acid Derivatives. European J Org Chem 2019; 2019:7122-7127. [PMID: 31798337 PMCID: PMC6887540 DOI: 10.1002/ejoc.201901272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/06/2023]
Abstract
We herein report a high yielding protocol for the direct α-allylation of easily accessible trifluoropyruvate-derived imines using Pd-catalysis. The reaction gives access to a variety of different α-allylated-α-CF3-amino acids in a straightforward manner, starting from commercially available trifluoropyruvate. We also provide a proof-of-concept for an enantioselective protocol (up to er = 75:25) by using chiral phosphane ligands.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Hyunwoo Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology291 Daehak‐ro34141DaejeonYuseong‐guRepublic of Korea
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
47
|
Hatano M, Nishio K, Mochizuki T, Nishikawa K, Ishihara K. Highly Active Chiral Dilithium(I) Binaphthyldisulfonate Catalysts for Enantio- and Chemoselective Strecker-Type Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manabu Hatano
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kosuke Nishio
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takuya Mochizuki
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Keisuke Nishikawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
48
|
Zeng X, Sun J, Liu C, Ji C, Peng Y. Catalytic Asymmetric Cyanation Reactions of Aldehydes and Ketones in Total Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Jun‐Chao Sun
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Chao Liu
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| | - Cong‐Bin Ji
- Jiangxi Provincial Research of Targeting Pharmaceutical Engineering TechnologyShangrao Normal University Shangrao Jiangxi 334001 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic MoleculeMinistry of EducationJiangxi Normal University Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
49
|
Wang XW, Chen MW, Wu B, Wang B, Zhou YG. Chiral Phosphoric Acid-Catalyzed Synthesis of Fluorinated 5,6-Dihydroindolo[1,2- c]quinazolines with Quaternary Stereocenters. J Org Chem 2019; 84:8300-8308. [PMID: 31132277 DOI: 10.1021/acs.joc.9b00985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chiral phosphoric acid-catalyzed enantioselective synthesis of fluorinated 5,6-dihydroindolo[1,2- c]quinazolines has been developed by a condensation/amine addition cascade from 2-(1 H-indolyl)anilines and fluorinated ketones, giving the fluorinated aminals with quaternary stereogenic centers with excellent yields and up to 97% ee. A series of the fluorinated aromatic, aliphatic ketones, and ethyl trifluoropyruvate are suitable.
Collapse
Affiliation(s)
- Xin-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
50
|
Gong Y, Yu J, Hao Y, Zhou Y, Zhou J. Catalytic Enantioselective Aldol‐Type Reaction Using α‐Fluorinated Enolates. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Gong
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
| | - Yong‐Jia Hao
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jian Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, CAS Shanghai 200032 China
| |
Collapse
|