1
|
Koli M, Gamre S, Ghosh R, Wadawale AP, Ghosh A, Ghanty TK, Mula S. BODIPY-Helicene Based Heavy-Atom-Free Photocatalyst for Oxidative Coupling of Amines and Photooxidation of Sulfides. Chem Asian J 2024:e202400975. [PMID: 39246097 DOI: 10.1002/asia.202400975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024]
Abstract
To develop heavy-atom-free triplet photosensitizers (PSs) based photocatalysts, we designed and synthesized two BODIPY-helicene dyes by fusing the BODIPY core and modified [5]helicene structures. These BODIPY-helicenes structures are twisted and their twisting angles are increased by the developed synthetic method. The BODIPY-helicenes have broad absorption bands over UV-visible region with high triplet conversions and long triplet lifetimes as compared to planar BODIPY dye, PM567. Consequently, these dyes are also highly efficient in generating 1O2 by transferring their triplet energy to 3O2. All these are confirmed by dye-sensitised photooxidation reaction, nanosecond transient absorption spectroscopy study, phosphorescence measurement and DFT calculations. Finally, photocatalytic activity of the highest 1O2 generating BODIPY-helicene (4 b) was checked. 4 b is highly efficient in photocatalytic oxidative coupling of differently substituted amines through aerobatic oxidation using 1O2 generated by its photosensitization. It is also highly efficient photocatalyst for aerobatic oxidation of sulfides to sulfoxides. Importantly, the photocatalyst could be quantitatively recovered and reused for several cycles. All these results confirmed the potential use of the BODIPY-helicenes as PSs for photocatalytic organic reactions and the design strategy will be useful for the future development of heavy-atom-free photocatalyst.
Collapse
Affiliation(s)
- Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajib Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Body N, Lefebvre C, Eeckhout S, Léonard AS, Troian-Gautier L, Hermans S, Riant O. Structure-Activity Relationship of Benzophenazine Derivatives for Homogeneous and Heterogenized Photooxygenation Catalysis. Chemistry 2024; 30:e202400242. [PMID: 38805006 DOI: 10.1002/chem.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Singlet oxygen is a powerful oxidant used in various applications, such as organic synthesis, medicine, and environmental remediation. Organic and inorganic photosensitizers are commonly used to generate this reactive species through energy transfer with the triplet ground state of oxygen. We describe here a series of novel benzophenazine derivatives as a promising class of photosensitizers for singlet oxygen photosensitization. In this study, we investigated the structure-activity relationship of these benzophenazine derivatives. Akin to a molecular compass, the southern fragment was first functionalized with either aromatic tertiary amines, alkyl tertiary amines, aromatic sulfur groups, alkyl sulfur groups, or cyclic ethers. Enhanced photophysical properties (in terms of triplet excited-state lifetime, absorption wavelength, triplet state energy, and O2 quenching capabilities) were obtained with cyclic ether and sulfur groups. Conversely, the presence of an amine moiety was detrimental to the photocatalysts. The western and northern fragments were also investigated and slightly undesirable to negligible changes in photophysical properties were observed. The most promising candidate was then immobilized on silica nanoparticles and its photoactivity was evaluated in the citronellol photooxidation reaction. A high NMR yield of 97 % in desired product was obtained, with only a slight decrease over several recycling runs (85 % in the fourth run). These results provide insights into the design of efficient photosensitizers for singlet oxygen generation and the development of heterogeneous systems.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Sarah Eeckhout
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Anne-Sophie Léonard
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Yıldız Gül E, Aydin Karataş E, Aydin Doğan H, Yenilmez Çiftçi G, Tanrıverdi Eçik E. BODIPY precursors and their cyclotriphosphazene Derivatives: Synthesis, photochemical properties and their application in PDT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124006. [PMID: 38350411 DOI: 10.1016/j.saa.2024.124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Photodynamic therapy (PDT) is a treatment method consisting of common combination of oxygen, light energy and a light absorbing molecule called a photosensitizer. In this work, four new compounds consisting of BODIPY precursors and BODIPY-cyclotriphosphazene derivatives were synthesized to investigate the PDT effects. The chemical structures of the compounds were characterized and then their photophysical properties were determined by spectroscopic techniques. The precursor BODIPYs and their cyclotriphosphazene derivatives exhibited similar properties such as strong absorption intensity, high photostability and low fluorescence profile in the NIR region. Additionally, the singlet oxygen production capacities of these compounds were determined using the photobleaching technique of 1,3-diphenylisobenzofuran (DPBF) under light illumination. By introducing iodine atoms into the molecule, which are responsible for the intersystem transition (ISC) enhancement, a more efficient singlet oxygen production was achieved in both the iodinated-BODIPY and its cyclotriphosphazene derivative. Anticancer activities of the precursor BODIPYs and their cyclotriphosphazene derivatives in the absence and presence of light illumination were evaluated on cancerous cell lines (PC3 and DU145) and non-tumorigenic prostate epithelial PNT1a cell. The compounds triggered the death of cancer cell PC3 the more significantly in the presence of red light compared to the healthy cells (PNT1a).
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Elanur Aydin Karataş
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hatice Aydin Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|
4
|
Fu X, Man Y, Yu C, Sun Y, Hao E, Wu Q, Hu A, Li G, Wang CC, Li J. Unsymmetrical Benzothieno-Fused BODIPYs as Efficient NIR Heavy-Atom-Free Photosensitizers. J Org Chem 2024; 89:4826-4839. [PMID: 38471124 DOI: 10.1021/acs.joc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Heavy-atom-free photosensitizers are potentially suitable for use in photodynamic therapy (PDT). In this contribution, a new family of unsymmetrical benzothieno-fused BODIPYs with reactive oxygen efficiency up to 50% in air-saturated toluene was reported. Their efficient intersystem crossing (ISC) resulted in the generation of both 1O2 and O2-• under irradiation. More importantly, the PDT efficacy of a respective 4-methoxystyryl-modified benzothieno-fused BODIPY in living cells exhibited an extremely high phototoxicity with an ultralow IC50 value of 2.78 nM. The results revealed that the incorporation of an electron-donating group at the α-position of the unsymmetrical benzothieno-fused BODIPY platform might be an effective approach for developing long-wavelength absorbing heavy-atom-free photosensitizers for precision cancer therapy.
Collapse
Affiliation(s)
- Xiaofan Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yingxiu Man
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anzhi Hu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guangyao Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chang-Cheng Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Zhao M, Xu S, He C, Zhou Y. Synthesis, Structures and Photophysical Properties of Asymmetric Fulvene-[b]-fused BODIPYs. Chemistry 2024; 30:e202303930. [PMID: 38117253 DOI: 10.1002/chem.202303930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Herein, we developed a one-pot procedure to synthesize novel fulvene-[b]-fused BODIPYs from α-(2-alkynylphenyl)-pyrrole and acylpyrrole, using 5-exo cyclization as the key transformation. Compared to benzene-[b]-fused BODIPYs, although they have similar chemical compositions, their structures and properties significantly differ from each other, which can be attributed to the less aromaticity of the fulvene linker than benzene. Notably, fulvene-[b]-fused BODIPY 1 b exhibits helical-twisted core skeleton, intensified red-shifted absorption, and peak fluorescence. In addition, the pathway of this one-pot reaction and the mechanism of POCl3 mediated 5-exo cyclization have been proposed by a combining experimental and computational study.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shaoyu Xu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd Dongyang, Zhejiang, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Alcázar JJ. Thiophene Stability in Photodynamic Therapy: A Mathematical Model Approach. Int J Mol Sci 2024; 25:2528. [PMID: 38473777 DOI: 10.3390/ijms25052528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Thiophene-containing photosensitizers are gaining recognition for their role in photodynamic therapy (PDT). However, the inherent reactivity of the thiophene moiety toward singlet oxygen threatens the stability and efficiency of these photosensitizers. This study presents a novel mathematical model capable of predicting the reactivity of thiophene toward singlet oxygen in PDT, using Conceptual Density Functional Theory (CDFT) and genetic programming. The research combines advanced computational methods, including various DFT techniques and symbolic regression, and is validated with experimental data. The findings underscore the capacity of the model to classify photosensitizers based on their photodynamic efficiency and safety, particularly noting that photosensitizers with a constant rate 1000 times lower than that of unmodified thiophene retain their photodynamic performance without substantial singlet oxygen quenching. Additionally, the research offers insights into the impact of electronic effects on thiophene reactivity. Finally, this study significantly advances thiophene-based photosensitizer design, paving the way for therapeutic agents that achieve a desirable balance between efficiency and safety in PDT.
Collapse
Affiliation(s)
- Jackson J Alcázar
- Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
7
|
Cao N, Jiang Y, Song ZB, Namulinda T, Liang HY, Yan YJ, Qiu Y, Chen ZL. Synthesis and photodynamic activity of novel thieno[3,2-b]thiophene fused BODIPYs with good bio-solubility and anti-aggregation effect. Bioorg Chem 2024; 143:107097. [PMID: 38190797 DOI: 10.1016/j.bioorg.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
To discover new photosensitizers with long wavelength UV-visible absorption, high efficiency, and low side effects for photodynamic therapy, here, a series of novel thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. These compounds had a distinct absorption band at 640-680 nm, fluorescence emission at 650-760 nm, and good solubility with anti-aggregation effects. These new compounds possessed obvious singlet oxygen generation ability and photodynamic anti-Eca-109 cancer cells activities in vitro. Among them, compound II4 could be well uptaked by Eca-109 cells, and result in the apoptosis after laser irradiation, and have outstanding photodynamic efficiency both in vitro and in vivo. Therefore, II4 could be considered as a potential photosensitizer drug candidate for PDT and photo-imaging.
Collapse
Affiliation(s)
- Ning Cao
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Ying Jiang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Hong-Yu Liang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China.
| | - Yan Qiu
- Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Tamuly P, Moorthy JN. De Novo Synthesis of Acridone-Based Zn-Metal-Organic Framework (Zn-MOF) as a Photocatalyst: Application for Visible Light-Mediated Oxidation of Sulfides and Enaminones. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3348-3358. [PMID: 38193378 DOI: 10.1021/acsami.3c15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Acridone, a cyclic analogue of benzophenone that undergoes efficient intersystem crossing (ISC) to the triplet-excited state with near-unity quantum yield, was elaborated as a 3-connecting triacid linker, i.e., H3AcTA, to develop a photocatalytic metal-organic framework (MOF) for energy transfer applications; the triacid linker inherently features concave shapes, an attribute that is important for the construction of MOFs with significant porosity. Metal ion (Zn2+)-assisted self-assembly of the triacid yielded a Zn-MOF, i.e., Zn-AcTA, with a solvent-accessible volume of ca. 31%. The protection of the acridone chromophore in the MOF in conjunction with a wider cross-section of its absorption in the visible region renders the MOF an excellent heterogeneous photosensitizer for singlet oxygen (1O2) generation by energy transfer to the ground-state triplet oxygen (3O2). It is shown that the Zn-MOF can be applied as a photosensitizing catalyst for visible light-mediated oxidation of various sulfides to sulfoxides and enaminones to amino-esters via 1,2-acyl migration. It is further demonstrated that the photocatalyst can be easily recycled without any loss of catalytic activity and structural integrity. Based on mechanistic investigations, 1O2 is established as the reactive oxygen species in photocatalytic oxidation reactions. The results constitute the first demonstration of rational development of a photocatalytic MOF based on acridone for heterogeneous oxidations mediated by 1O2.
Collapse
Affiliation(s)
- Parag Tamuly
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
- School of Chemistry, Indian Institute of Science and Education Research, Thiruvananthrapuram, Trivandrum 695551, India
| |
Collapse
|
9
|
Doležel J, Poryvai A, Slanina T, Filgas J, Slavíček P. Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores. Chemistry 2024; 30:e202303154. [PMID: 37905588 DOI: 10.1002/chem.202303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.
Collapse
Affiliation(s)
- Jiří Doležel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Anna Poryvai
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
10
|
Cao N, Jiang Y, Song ZB, Chen D, Wu D, Chen ZL, Yan YJ. Synthesis and evaluation of novel meso-substitutedphenyl dithieno[3,2-b]thiophene-fused BODIPY derivatives as efficient photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 264:116012. [PMID: 38056302 DOI: 10.1016/j.ejmech.2023.116012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The discovery of new photosensitizer drugs with long wavelength Uv-vis absorption, high efficiency and low side-effects is still a challenge in photodynamic therapy. Here a series of novel meso-substitutedphenyl thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. All these compounds have strong absorption at 640-680 nm and obvious fluorescence emission at 650-760 nm. They exhibited high singlet oxygen generation ability and significant photodynamic efficiency against Eca-109 cancer cells. Compounds II4, II6, II9, II10 and II13 could generate intracellular ROS and induce cell apoptosis after laser irradiation, which displayed superior photodynamic efficiency against Eca-109 cells than Temoporfin in vitro and in vivo. Among them, compound II4 specifically exhibited excellent anti-tumor efficacy, and could be selected as a new drug candidate for PDT.
Collapse
Affiliation(s)
- Ning Cao
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Ying Jiang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW72AZ, UK
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons, 123 St Stephen's Green, Dublin, 2, Ireland
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| |
Collapse
|
11
|
Koli M, Gupta S, Chakraborty S, Ghosh A, Ghosh R, Wadawale AP, Ghanty TK, Patro BS, Mula S. Design and Synthesis of BODIPY-Hetero[5]helicenes as Heavy-Atom-Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. Chemistry 2023; 29:e202301605. [PMID: 37314387 DOI: 10.1002/chem.202301605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Designing heavy-atom-free triplet photosensitizers (PSs) is a challenge for the efficient photodynamic therapy (PDT) of cancer. Helicenes are twisted polycyclic aromatic hydrocarbons (PAHs) with an efficient intersystem crossing (ISC) that is proportional to their twisting angle. But their difficult syntheses and weak absorption profile in the visible spectral region restrict their use as heavy-atom-free triplet PSs for PDT. On the other hand, boron-containing PAHs, BODIPYs are highly recognized for their outstanding optical properties. However, planar BODIPY dyes has low ISC and thus they are not very effective as PDT agents. We have designed and synthesized fused compounds containing both BODIPY and hetero[5]helicene structures to develop red-shifted chromophores with efficient ISC. One of the pyrrole units of the BODIPY core was also replaced by a thiazole unit to further enhance the triplet conversion. All the fused compounds have helical structure, and their twisting angles are also increased by substitutions at the boron centre. The helical structures of the BODIPY-hetero[5]helicenes were confirmed by X-ray crystallography and DFT structure optimization. The designed BODIPY-hetero[5]helicenes showed superior optical properties and high ISC with respect to [5]helicene. Interestingly their ISC efficiencies increase proportionally with their twisting angles. This is the first report on the relationship between the twisting angle and the ISC efficiency in twisted BODIPY-based compounds. Theoretical calculations showed that energy gap of the S1 and T1 states decreases in BODIPY-hetero[5]helicene as compared to planar BODIPY. This enhances the ISC rate in BODIPY-hetero[5]helicene, which is responsible for their high generation of singlet oxygen. Finally, their potential applications as PDT agents were investigated, and one BODIPY-hetero[5]helicene showed efficient cancer cell killing upon photo-exposure. This new design strategy will be very useful for the future development of heavy-atom-free PDT agents.
Collapse
Affiliation(s)
- Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sonali Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajib Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
12
|
Heteroatom substitution for the development of near-IR lumiphores. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Application of meso-CF 3-Fluorophore BODIPY with Phenyl and Pyrazolyl Substituents for Lifetime Visualization of Lysosomes. Molecules 2022; 27:molecules27155018. [PMID: 35956971 PMCID: PMC9370186 DOI: 10.3390/molecules27155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
A bright far-red emitting unsymmetrical meso-CF3-BODIPY fluorescent dye with phenyl and pyrazolyl substituents was synthesized by condensation of trifluoropyrrolylethanol with pyrazolyl-pyrrole, with subsequent oxidation and complexation of the formed dipyrromethane. This BODIPY dye exhibits optical absorption at λab ≈ 610-620 nm and emission at λem ≈ 640-650 nm. The BODIPY was studied on Ehrlich carcinoma cells as a lysosome-specific fluorescent dye that allows intravital staining of cell structures with subsequent real-time monitoring of changes occurring in the cells. It was also shown that the rate of uptake by cells, the rate of intracellular transport into lysosomes, and the rate of saturation of cells with the dye depend on its concentration in the culture medium. A concentration of 5 μM was chosen as the most suitable BODIPY concentration for fluorescent staining of living cell lysosomes, while a concentration of 100 μM was found to be toxic to Ehrlich carcinoma cells.
Collapse
|
14
|
Luo S, Liang C, Zhang Q, Zhang P. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Ceugniet F, Huaulmé Q, Sutter A, Jacquemin D, Leclerc N, Ulrich G. Hetero‐Substituted αβ‐Fused BODIPY. Chemistry 2022; 28:e202200130. [DOI: 10.1002/chem.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fabien Ceugniet
- Institut de Chimie et Procédés pour l'Énergie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Quentin Huaulmé
- Institut de Chimie et Procédés pour l'Énergie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Alexandra Sutter
- Institut de Chimie et Procédés pour l'Énergie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS 44000 Nantes France
| | - Nicolas Leclerc
- Institut de Chimie et Procédés pour l'Énergie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Énergie l'Environnement et la Santé (ICPEES), UMR CNRS 7515 École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 Rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
16
|
Fluorinated N-quinoxaline-based boron complexes: Synthesis, photophysical properties, and selective DNA/BSA biointeraction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Karatay A, Yılmaz H, Yildiz EA, Sevinç G, Hayvali M, Boyacioglu B, Unver H, Elmali A. Two-photon absorption and triplet excited state quenching of near-IR region aza-BODIPY photosensitizers via a triphenylamine moiety despite heavy bromine atoms. Phys Chem Chem Phys 2022; 24:25495-25505. [DOI: 10.1039/d2cp02960j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aza-BODIPY compounds with methoxy groups at -3 and -5 positons and triphenylamine moieties at -1, -7 positions with and without heavy bromine atoms at -2, -6 positions have been designed and synthesized.
Collapse
Affiliation(s)
- Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Halil Yılmaz
- Department of Chemistry, Faculty of Science, Ankara University, Beşevler, 06100 Ankara, Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Gökhan Sevinç
- Department of Chemistry, Faculty of Science and Literature, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Mustafa Hayvali
- Department of Chemistry, Faculty of Science, Ankara University, Beşevler, 06100 Ankara, Turkey
| | - Bahadir Boyacioglu
- Vocational School of Health Services, Ankara University, 06290 Kecioren-Ankara, Turkey
| | - Huseyin Unver
- Department of Physics, Faculty of Science, Ankara University, 06100 Besevler-Ankara, Turkey
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey
| |
Collapse
|
18
|
Lin G, Hu M, Zhang R, Zhu Y, Gu K, Bai J, Li J, Dong X, Zhao W. Discovery of Meso-( meta-Pyridinium) BODIPY Photosensitizers: In Vitro and In Vivo Evaluations for Antimicrobial Photodynamic Therapy. J Med Chem 2021; 64:18143-18157. [PMID: 34881897 DOI: 10.1021/acs.jmedchem.1c01643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a novel and promising approach for the treatment of pathogenic microorganism infections. The efficacy of aPDT depends greatly on the behavior of the photosensitizer. Herein, we report the design, preparation, antimicrobial photodynamic activities, as well as structure-activity relationships of a series of photosensitizers modified at the meso position of a 1,3,5,7-tetramethyl BODIPY scaffold with various pyridinyl and pyridinium moieties. The photodynamic antimicrobial activities of all photosensitizers have been tested against Staphylococcus aureus, Escherichia coli, Candida albicans, and Methicillin-resistant S. aureus (MRSA). The methyl meso-(meta-pyridinium) BODIPY photosensitizer (3c) possessed the highest phototoxicity against these pathogens at minimal inhibitory concentrations (MIC) ranging from 0.63 to 1.25 μM with a light dose of 81 J/cm2. Furthermore, 3c exhibited an impressive antimicrobial efficacy in S. aureus-infected mice wounds. Taken together, these findings suggest that 3c is a promising candidate as the antimicrobial photosensitizer for combating pathogenic microorganism infections.
Collapse
Affiliation(s)
- Guangyu Lin
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Mei Hu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Rong Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yuanxing Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Kedan Gu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Junping Bai
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Jiyang Li
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.,Key Laboratory for Special Functional Materials of the Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
19
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 681] [Impact Index Per Article: 170.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
Su Y, Hu Q, Zhang D, Shen Y, Li S, Li R, Jiang XD, Du J. 1,7-Di-tert-butyl-Substituted aza-BODIPYs by Low-Barrier Rotation to Enhance a Photothermal-Photodynamic Effect. Chemistry 2021; 28:e202103571. [PMID: 34757667 DOI: 10.1002/chem.202103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/10/2023]
Abstract
1,7-Di-tert-butyl-substituted aza-BODIPYs (tBu-azaBDP) were successfully obtained for the first time. The structures of tBu-azaBDP and Ph-azaBDP were confirmed by X-ray crystal analysis, and tBu-azaBDP 2 is more twisted than Ph-azaBDP 5. tBu-azaBDPs have significant photo-stability and enhanced water solubility. tBu-azaBDPs possess excellent optical properties, such as high molar extinction coefficients, broad full width half maxima, and large Stokes shifts, which is comparable to those of the parent dye Ph-azaBDP. Although the low-barrier rotation of the distal -tBu groups in tBu-azaBDPs results in low quantum yield, photothermal conversion efficiency and singlet oxygen generation ability of tBu-azaBDPs are more effective than those of Ph-azaBDP, which is highly desirable for a photothermal-photodynamic therapy agent.
Collapse
Affiliation(s)
- Yajun Su
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Ran Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
21
|
Tian R, Wang C, Chi W, Fan J, Du J, Long S, Guo L, Liu X, Peng X. Emerging Design Principle of Near-Infrared Upconversion Sensitizer Based on Mitochondria-Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry 2021; 27:16707-16715. [PMID: 34648222 DOI: 10.1002/chem.202102866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 02/04/2023]
Abstract
Upconversion luminescent (UCL) triggered photodynamic therapy (PDT) affords superior outcome for cancer treatment. However, conventional UCL materials which all work by a multiphoton absorption (MPA) process inevitably need extremely high power density far over the maximum permissible exposure (MPE) to laser. Here, a one-photon absorption molecular upconversion sensitizer Cy5.5-Br based on frequency upconversion luminescent (FUCL) is designed for PDT. The unusual super heavy atom effect (SHAE) in Cy5.5-Br strongly enhances its spin-orbit coupling (0.23 cm-1 ), triplet quantum yield (11.1 %) and triplet state lifetime (18.8 μs) while the potential hot-band absorption of Cy5.5-Br is well maintained. Importantly, Cy5.5-Br can efficiently target the tumour site and kill cancer cells by destroying mitochondria under a biosafety MPE to 808 nm laser. The photostability and antitumor results are obviously superior to that of a Stokes process. This work provides a design criterion for FUCL dyes to realize effective PDT upon a biosafety optical density, possibly bringing more clinical benefits than conventional MPA materials.
Collapse
Affiliation(s)
- Ruisong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, 116044, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
22
|
Yang Z, Zhang Z, Sun Y, Lei Z, Wang D, Ma H, Tang BZ. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials 2021; 275:120934. [PMID: 34217019 DOI: 10.1016/j.biomaterials.2021.120934] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Intersystem crossing (ISC) is of great significance in photochemistry, and has a decisive influence on the properties of photosensitizers (PSs) for use in photodynamic therapy (PDT). However, the rationally design PSs with efficient ISC processes to implement superb reactive oxygen species (ROS) production is still a very challenging work. In this contribution, we described how a series of high-performance PSs were constructed through electron acceptor and donor engineering by integrating the smaller singlet-triplet energy gap (ΔEST) and larger spin-orbit coupling (SOC)-beneficial functional groups into the PS frameworks. Among the yielded various PSs, TaTIC was confirmed as the best candidate for application in PDT, which was due to its most outstanding ROS generation capability, bright near-infrared (NIR) fluorescence with peak over 840 nm, as well as desired aggregation-induced emission (AIE) features. Importantly, the ROS generation efficiency of TaTIC was even superior to that of some popularly used PSs, including the most reputable PS of Rose Bengal. In order to further extend therapeutic applications, TaTIC was encapsulated with biocompatible amphiphilic matrix and formulated into water-dispersed nanoparticles (NPs). More excitedly, the as-prepared TaTIC NPs gave wonderful PDT performance on tumor-bearing mouse model, actualizing complete tumor elimination outcomes. Coupled with excellent biosecurity, TaTIC NPs would be a promising theranostic agent for practical clinical application.
Collapse
Affiliation(s)
- Zengming Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuqing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Hengchang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
23
|
Dong Y, Taddei M, Doria S, Bussotti L, Zhao J, Mazzone G, Di Donato M. Torsion-Induced Nonradiative Relaxation of the Singlet Excited State of meso-Thienyl Bodipy and Charge Separation, Charge Recombination-Induced Intersystem Crossing in Its Compact Electron Donor/Acceptor Dyads. J Phys Chem B 2021; 125:4779-4793. [PMID: 33929843 DOI: 10.1021/acs.jpcb.1c00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We prepared a series of meso-thienyl boron-dipyrromethene (Bodipy) derivatives to investigate the spin-orbit charge transfer intersystem crossing (SOCT-ISC). The photophysical properties of the compounds were studied by steady-state and femtosecond/nanosecond transient absorption spectroscopy, as well as density functional theory (DFT) computations. Different from the meso-phenyl Bodipy analogues, the meso-thienyl Bodipy are weakly fluorescent. Based on femtosecond transient absorption and DFT computations, we propose that the torsion of the thienyl group and the distortion of the Bodipy core (19.7 ps) in the S1 state lead to a conical intersection on the potential energy surface as an efficient nonradiative decay channel (408 ps), which is responsible for the observed weak fluorescence as compared to the meso-phenyl analogue. The increased fluorescence quantum yield (from 5.5 to 14.5%) in viscous solvents supports this hypothesis. With the electron donor 4'-hydroxylphenyl moiety attached to the meso-thienyl unit, the fast charge separation (CS, 15.3 ps) and charge recombination (CR, 238 ps) processes outcompete the torsion-induced nonradiative decay and induce fast ISC through the SOCT-ISC mechanism. The triplet quantum yield of the electron donor/acceptor dyad is highly dependent on solvent polarity (ΦT = 1.9-45%), which supports the SOCT-ISC mechanism, and the triplet-state lifetime is up to 247.3 μs. Using the electron donor-acceptor dyad showing SOCT-ISC as a triplet photosensitizer, efficient triplet-triplet annihilation (TTA) upconversion was observed with a quantum yield of up to 6.0%.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
24
|
Effects of Substituents on Photophysical and CO-Photoreleasing Properties of 2,6-Substituted meso-Carboxy BODIPY Derivatives. CHEMISTRY-SWITZERLAND 2021. [DOI: 10.3390/chemistry3010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon monoxide (CO) is an endogenously produced signaling molecule involved in the control of a vast array of physiological processes. One of the strategies to administer therapeutic amounts of CO is the precise spatial and temporal control over its release from photoactivatable CO-releasing molecules (photoCORMs). Here we present the synthesis and photophysical and photochemical properties of a small library of meso-carboxy BODIPY derivatives bearing different substituents at positions 2 and 6. We show that the nature of substituents has a major impact on both their photophysics and the efficiency of CO photorelease. CO was found to be efficiently released from π-extended 2,6-arylethynyl BODIPY derivatives possessing absorption spectra shifted to a more biologically desirable wavelength range. Selected photoCORMs were subjected to in vitro experiments that did not reveal any serious toxic effects, suggesting their potential for further biological research.
Collapse
|
25
|
Sun Y, Yu XA, Yang J, Gai L, Tian J, Sui X, Lu H. NIR halogenated thieno[3, 2-b]thiophene fused BODIPYs with photodynamic therapy properties in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119027. [PMID: 33068896 DOI: 10.1016/j.saa.2020.119027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Commonly, an efficient photosensitizer usually requires a number of excellent properties, such as a larger molar absorption coefficient in the tissue transparency window, a high intersystem spin-crossing (ISC) probability induced by heavy atom and low dark toxicity as well as high photostability. In this study, NIR tetra-bromo thieno[3,2-b]thiophene-fused BODIPYs derivatives 3 was prepared, and fully characterized. Their photophysical properties have been well investigated including absorption, fluorescence profiles and photostability. The novel BODIPYs 2-3 possess long wavelength absorptions of maximum up to 720 nm with large molar absorption coefficients due to extend the effect of π-conjugation system via fusion the thieno[3,2-b]thiophene group. Especially, BODIPY 3 containing heavy atoms (four bromine atoms) exhibits photocytotoxicity upon irradiation with light NIR laser based on the results of MTT assays and flow analyses in living HeLa cells, in the meanwhile, it features lower cytotoxic in the dark. The current research work will contribute to the development of functional dyes and new organic NIR photosensitizer agents.
Collapse
Affiliation(s)
- Yijuan Sun
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jie Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xinbing Sui
- College of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, PR China
| |
Collapse
|
26
|
Martin MI, Cai Q, Yap GPA, Rosenthal J. Synthesis, Redox, and Spectroscopic Properties of Pd(II) 10,10-Dimethylisocorrole Complexes Prepared via Bromination of Dimethylbiladiene Oligotetrapyrroles. Inorg Chem 2020; 59:18241-18252. [PMID: 33284618 PMCID: PMC8211382 DOI: 10.1021/acs.inorgchem.0c02721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two brominated 10,10-dimethylisocorrole (10-DMIC) derivatives containing Pd(II) centers have been prepared and characterized. These compounds were prepared via bromination of 10,10-dimethylbiladiene-based oligotetrapyrroles. Bromination of free base 10,10-dimethylbiladiene (DMBil1) followed by metalation with Pd(OAc)2, as well as bromination of the corresponding Pd(II) dimethylbiladiene complex (Pd[DMBil1]) provide routes to Pd(II) hexabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br6]) and Pd(II) octabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br8]). The solid-state structures of the two brominated isocorrole complexes are presented, as is that for a new decabrominated dimethylbiladiene derivative (DMBil-Br10). The electronic and spectroscopic properties of the brominated biladiene and isocorrole derivatives were probed using a combination of voltammetric methods and steady-state UV-vis absorption and emission experiments. Data obtained from these experiments allow the properties of the brominated biladiene and isocorrole derivatives to be compared to previously studied biladiene derivatives (i.e., DMBil1 and Pd[DMBil1]). CV and DPV experiments demonstrate that Pd[10-DMIC-Br6] and Pd[10-DMIC-Br8] support well-behaved multielectron redox chemistry, similar to that which has been observed for other nonaromatic tetrapyrroles containing sp3-hybridized meso-carbons. Spectroscopic experiments reveal that bromination of the dimethylbiladiene core shifts this system's UV-vis absorption profile to lower energy and that the dimethylisocorrole complexes support panchromatic absorption profiles that extend across the UV-vis and into the near-IR region. Photosensitization experiments demonstrate that unlike previously studied Pd(II) biladiene constructs, DMBil-Br10, Pd[10-DMIC-Br6], and Pd[10-DMIC-Br8] support limited triplet excited state chemistry with O2, indicating that the novel nonaromatic tetrapyrrole derivatives described in this work may be best suited for applications other than singlet oxygen sensitization.
Collapse
Affiliation(s)
- Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Yılmaz H, Sevinç G, Hayvalı M. 3, 3,5 and 2,6 Expanded Aza-BODIPYs Via Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions: Synthesis and Photophysical Properties. J Fluoresc 2020; 31:151-164. [PMID: 33170409 DOI: 10.1007/s10895-020-02646-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Novel symmetrical aza-borondipyrromethene (aza-BODIPY) compounds bearing 4-methoxyphenyl, 4-methoxybiphenyl, 2,4-dimethoxybipheny, 4-bromophenyl and N,N-diphenyl-4-biphenylamine groups on the 3, 3,5 and 2,6 positions of aza-BODIPY core were synthesized via Suzuki-Miyaura coupling reactions while unsymmetrical analogues were obtained from the starting mono Br-substituted aza-BODIPY material which was obtained from nitrosolated pyrrole derivative. The characterizations were performed by means of 1H-NMR, 13C-NMR, FTIR and HRMS-TOF-ESI techniques. The spectral properties of the aza-BODIPY derivatives were investigated using absorption and fluorescence spectroscopy. The novel compounds with extended conjugation have broadband absorption in near infrared region and show significant shifts on their absorption and fluorescence spectra compared to unsubstituted analogues. The highest bathochromic shifts were observed π-extended and strong electron donating groups at 3,5 positions of the aza-BODIPY scaffold. Depend on substitution positions of attached groups to the indacene core, the fluorescence quantum yields of chromophores were determined to be drastic changes. The singlet oxygen generation capability of the compounds were evaluated and 2,6-bromine substituted compounds AA1 and CC1 showed high singlet oxygen quantum yields (71% and 74%, respectively). Enhanced photophysical properties such as intense absorption, extended conjugation and singlet oxygen production make the investigated aza-BODIPYs promising candidates for photodynamic therapy applications and organic photovoltaic cells in NIR region.
Collapse
Affiliation(s)
- Halil Yılmaz
- Department of Chemistry, Faculty of Science, Ankara University, Anadolu, 06100, Ankara, Turkey
| | - Gökhan Sevinç
- Department of Chemistry, Faculty of Science and Literature, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Mustafa Hayvalı
- Department of Chemistry, Faculty of Science, Ankara University, Anadolu, 06100, Ankara, Turkey.
| |
Collapse
|
28
|
Rodat T, Krebs M, Döbber A, Jansen B, Steffen-Heins A, Schwarz K, Peifer C. Restricted suitability of BODIPY for caging in biological applications based on singlet oxygen generation. Photochem Photobiol Sci 2020; 19:1319-1325. [PMID: 32820789 DOI: 10.1039/d0pp00097c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies report the boron-dipyrromethene (BODIPY) moiety to be interesting for caging applications in photopharmacology based on its response to irradiation with wavelengths in the biooptical window. Thus, in a model study, we investigated the meso-methyl-BODIPY caged CDK2 inhibitor AZD5438 and aimed to assess the usability of BODIPY as a photoremovable protecting group in photoresponsive kinase inhibitor applications. Photochemical analysis and biological characterisation in vitro revealed significant limitations of the BODIPY-caged inhibitor concept regarding solubility and uncaging in aqueous solution. Notably, we provide evidence for BODIPY-caged compounds generating singlet oxygen/radicals upon irradiation, followed by photodegradation of the caged compound system. Consequently, instead of caging, a non-specific induction of necrosis in cells suggests the potential usage of BODIPY derivatives for photodynamic approaches.
Collapse
Affiliation(s)
- Theo Rodat
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Melanie Krebs
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Alexander Döbber
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Björn Jansen
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
29
|
Zhou L, Wei F, Xiang J, Li H, Li C, Zhang P, Liu C, Gong P, Cai L, Wong KMC. Enhancing the ROS generation ability of a rhodamine-decorated iridium(iii) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chem Sci 2020; 11:12212-12220. [PMID: 34094433 PMCID: PMC8162876 DOI: 10.1039/d0sc04751a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endoplasmic reticulum (ER) is a very important organelle responsible for crucial biosynthetic, sensing, and signalling functions in eukaryotic cells. In this work, we established a strategy of ligand regulation to enhance the singlet oxygen generation capacity and subcellular organelle localization ability of a rhodamine-decorated iridium(iii) complex by variation of the cyclometallating ligand. The resulting metal complex showed outstanding reactive oxygen species generation efficiency (1.6-fold higher than that of rose bengal in CH3CN) and highly specific ER localization ability, which demonstrated the promise of the metal-based photo-theranostic agent by simultaneously tuning the photochemical/physical and biological properties. Additionally, low dark cytotoxicity, high photostability and selective tumour cell uptake were featured by this complex to demonstrate it as a promising candidate in photodynamic therapy (PDT) applications. In vivo near infrared fluorescence (NIRF) imaging and tumour PDT were investigated and showed preferential accumulation at the tumour site and remarkable tumour growth suppression, respectively.
Collapse
Affiliation(s)
- Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China .,School of Applied Biology, Shenzhen Institute of Technology No. 1 Jiangjunmao Shenzhen 518116 P. R. China
| | - Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Chunbin Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Chuangjun Liu
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China .,College of Chemistry and Pharmaceutical Engineering, Huanghuai University 463000 Zhumadian China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology 1088 Xueyuan Blvd. Shenzhen 518055 P. R. China
| |
Collapse
|
30
|
Khuong Mai D, Kang B, Pegarro Vales T, Badon IW, Cho S, Lee J, Kim E, Kim HJ. Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules 2020; 25:molecules25153340. [PMID: 32717858 PMCID: PMC7435441 DOI: 10.3390/molecules25153340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The synthesis of three water-soluble lactose-modified 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based photosensitizers with tumor-targeting capabilities is reported, including an investigation into their photodynamic therapeutic activity on three distinct cancer cell lines (human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines). The halogenated BODIPY dyes exhibited a decreased fluorescence quantum yield compared to their non-halogenated counterpart, and facilitated the efficient generation of singlet oxygen species. The synthesized dyes exhibited low cytotoxicities in the dark and high photodynamic therapeutic capabilities against the treated cancer cell lines following irradiation at 530 nm. Moreover, the incorporation of lactose moieties led to an enhanced cellular uptake of the BODIPY dyes. Collectively, the results presented herein provide promising insights for the development of photodynamic therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Duy Khuong Mai
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Byungman Kang
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea;
| | - Temmy Pegarro Vales
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Natural Sciences, Caraga State University, Butuan City 8600, Philippines
| | - Isabel Wen Badon
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
| | - Sung Cho
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Joomin Lee
- College of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| |
Collapse
|
31
|
Wang D, Malmberg R, Pernik I, Prasad SKK, Roemer M, Venkatesan K, Schmidt TW, Keaveney ST, Messerle BA. Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chem Sci 2020; 11:6256-6267. [PMID: 32953021 PMCID: PMC7480183 DOI: 10.1039/d0sc02703k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
While dual photocatalysis-transition metal catalysis strategies are extensively reported, the majority of systems feature two separate catalysts, limiting the potential for synergistic interactions between the catalytic centres. In this work we synthesised a series of tethered dual catalysts allowing us to investigate this underexplored area of dual catalysis. In particular, Ir(i) or Ir(iii) complexes were tethered to a BODIPY photocatalyst through different tethering modes. Extensive characterisation, including transient absorption spectroscopy, cyclic voltammetry and X-ray absorption spectroscopy, suggest that there are synergistic interactions between the catalysts. The tethered dual catalysts were more effective at promoting photocatalytic oxidation and Ir-catalysed dihydroalkoxylation, relative to the un-tethered species, highlighting that increases in both photocatalysis and Ir catalysis can be achieved. The potential of these catalysts was further demonstrated through novel sequential reactivity, and through switchable reactivity that is controlled by external stimuli (heat or light).
Collapse
Affiliation(s)
- Danfeng Wang
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Robert Malmberg
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Indrek Pernik
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Shyamal K K Prasad
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Max Roemer
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Koushik Venkatesan
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Timothy W Schmidt
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Sinead T Keaveney
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Barbara A Messerle
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| |
Collapse
|
32
|
Wang J, Gong Q, Wang L, Hao E, Jiao L. The main strategies for tuning BODIPY fluorophores into photosensitizers. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive technique for the treatment of target malignant tumors via the generation of highly reactive singlet oxygen species. PDT treatment of cancer/tumor tissues greatly relies on the development of suitable stable, highly specific and efficient photosensitizers. BODIPY (Boron dipyrromethene) derivatives, as a class of well-developed, versatile fluorescent dyes, has emerged as a new class of PDT agents over the past decade. Many elegant strategies have been developed to enhance the singlet oxygen generation efficiency and the cancer/tumor cell selectivity of BODIPY-based photosensitizers to improve the therapeutic outcomes as well as to minimize the side effects. Many of the currently reported BODIPY-based photosensitizers are valuable dual imaging and therapeutic agents, which can efficiently generate singlet oxygen for PDT and emit fluorescence for in vivo imaging. Although the currently approved PDT agents used for clinical trials do not feature BODIPYs, this situation is expected to change. In this review, we provide an overview of the various strategies that have been used to improve the singlet oxygen generation efficiency for tuning BODIPY fluorophores into photosensitizers and dual imaging/therapeutic agents. Their photophysical properties and photocytotoxic activity including the absorption/emission wavelengths, the singlet oxygen generation efficiency ([Formula: see text] and the half maximal inhibitory concentration [Formula: see text] of these currently reported photosensitizers are summarized. We believe these newly developed BODIPY-based photosensitizers will broaden current concepts of strategies for PDT agent design, and promise to make an important contribution to the diagnosis and therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
33
|
Zhang Z, Yuan D, Liu X, Kim MJ, Nashchadin A, Sharapov V, Yu L. BODIPY-Containing Polymers with Ultralow Band Gaps and Ambipolar Charge Mobilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhen Zhang
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Dafei Yuan
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xunshan Liu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mi-Jeong Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Limited, Seoul, South Korea
| | - Andriy Nashchadin
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Valerii Sharapov
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Xu W, Qi Y, Zhou K, Wang Z, Wang G, He G, Fang Y. A new spirofluorene-based nonplanar PBI-dyad and its utilization in the film-based photo-production of singlet oxygen. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9676-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Tanaka S, Enoki T, Imoto H, Ooyama Y, Ohshita J, Kato T, Naka K. Highly Efficient Singlet Oxygen Generation and High Oxidation Resistance Enhanced by Arsole-Polymer-Based Photosensitizer: Application as a Recyclable Photooxidation Catalyst. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Takuji Kato
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
36
|
Asymmetric meso-CF3-dipyrromethanes with amino- and heterocyclic functions from trifluoro(pyrrolyl)ethanols and pyrroles. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Rumyantsev EV, Marfin YS. Boron Dipirrins: Mechanism of Formation, Spectral and Photophysical Properties, and Directions of Functionalization. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363219120454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Zhu SE, Zhang J, Dou L, Li N, Hu K, Gao T, Lu H, Si J, Wang X, Yang W. Rigid axially symmetrical C 60-BODIPY triplet photosensitizers: effect of bridge length on singlet oxygen generation. NEW J CHEM 2020. [DOI: 10.1039/d0nj05085g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two rigid axially symmetrical C60-BODIPY systems with different bridge lengths have been synthesized and the dyad with short bridge generates a higher quantum yield of singlet oxygen.
Collapse
|
39
|
|
40
|
He X, Situ B, Gao M, Guan S, He B, Ge X, Li S, Tao M, Zou H, Tang BZ, Zheng L. Stereotactic Photodynamic Therapy Using a Two-Photon AIE Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905080. [PMID: 31721436 DOI: 10.1002/smll.201905080] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Two-photon photodynamic therapy (TP-PDT) is emerging as a powerful strategy for stereotactic targeting of diseased areas, but ideal photosensitizers (PSs) are currently lacking. This work reports a smart PS with aggregation-induced emission (AIE) feature, namely DPASP, for TP-PDT with excellent performances. DPASP exhibits high affinity to mitochondria, superior photostability, large two-photon absorption cross section as well as efficient reactive oxygen species generation, enabling it to achieve photosensitization both in vitro and in vivo under two-photon excitation. Moreover, its capability of stereotactic ablation of targeted cells with high-precision is also successfully demonstrated. All these merits make DPASP a promising TP-PDT candidate for accurate ablation of abnormal tissues with minimal damages to surrounding areas in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaojing He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bairong He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxue Ge
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiwu Li
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hang Zou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, Shenzhen, 518057, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
41
|
Ozcan E, Kazan HH, Çoşut B. Recent chemo-/biosensor and bioimaging studies based on indole-decorated BODIPYs. LUMINESCENCE 2019; 35:168-177. [PMID: 31709693 DOI: 10.1002/bio.3719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole-based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole-based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole-based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.
Collapse
Affiliation(s)
- Emrah Ozcan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Hasan Huseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Bunyemin Çoşut
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
42
|
Wang H, Wang Z, Li Y, Xu T, Zhang Q, Yang M, Wang P, Gu Y. A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Real-Time Dose-Effect Relationship Monitoring in Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902185. [PMID: 31389152 DOI: 10.1002/smll.201902185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Singlet oxygen, as the main member of reactive oxygen species, plays a significant role in cancer photodynamic therapy. However, the in vivo real-time detection of singlet oxygen remains challenging. In this work, a Förster resonance energy transfer (FRET)-based upconversion nanoplatform for monitoring the singlet oxygen in living systems is developed, with the ability to evaluate the in vivo dose-effect relationship between singlet oxygen and photodynamic therapy (PDT) efficacy. In details, this nanoplatform is composed of core-shell upconversion nanoparticles (UCNPs), photosensitizer MC540, NIR dye IR-820, and poly(acryl amine) PAA-octylamine, where the UCNPs serve as an energy donor while IR-820 serves as an energy acceptor. The nanoparticles are found to sensitively reflect the singlet oxygen levels generated in the tumor tissues during PDT, by luminescence intensity changes of UNCPs at 800 nm emission. Furthermore, it could also enable tumor treatment with satisfactory biocompatibility. To the best knowledge, this is the first report of a theranostic nanoplatform with the ability to formulate the in vivo dose-effect relationship between singlet oxygen and PDT efficacy and to achieve tumor treatment at the same time. This work might also provide an executable strategy to evaluate photodynamic therapeutic efficacy based on singlet oxygen pathway.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
43
|
Bera A, Bagchi D, Pal SK. Improvement of Photostability and NIR Activity of Cyanine Dye through Nanohybrid Formation: Key Information from Ultrafast Dynamical Studies. J Phys Chem A 2019; 123:7550-7557. [PMID: 31402654 DOI: 10.1021/acs.jpca.9b04100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near-infrared (NIR) light harvesting has enormous importance for different potential applications in the modern era of research. Some NIR cyanine dyes such as IR820 have achieved great success in energy harvesting and cancer therapy. However, their action is limited for low photostability, considerable thermal degradation, short circulation times, and nonspecific biodistribution. Our present study is an attempt to overcome such limitations by attaching a model cyanine dye IR820 with ZnO nanoparticles. We prepared an IR820-ZnO nanohybrid and characterized it using microscopic and optical spectroscopic tools. Thermogravimetric analysis depicted greater thermal stability of the IR820-ZnO nanohybrid compared to free dye. We explored the enhancement in the photostability of IR820 upon nanohybrid formation. We detected generation of photoinduced reactive oxygen species (ROS) such as superoxide, singlet oxygen, and so forth using appropriate molecular probes. The formation of IR820-ZnO nanohybrid reduced production of photoinduced singlet oxygen. However, it revealed an alternative trend in overall ROS formation (increases total ROS) under red light illumination. To correlate the enhanced photostability of IR820 on the ZnO surface, we explored excited-state dynamical processes at the interface in nanohybrids. We illustrated the photoinduced excited-state electron-transfer process from the lowest unoccupied molecular orbital of IR820 to the conduction band of ZnO. This photoelectron-transfer process enhances the production of ROS and decreases the formation of singlet oxygen that altogether leads to improvement in photostability and overall activity. A quencher of singlet oxygen sodium azide (NaN3) was used to further confirm the direct association of singlet oxygen generation with the photostability issue of IR820. Also, ZnO is able to deliver the dye selectively in acidic environment, which suggests its diseased site-specific targeted activity. Our results provide promising improvement for potential use of IR820 through formation of a nanohybrid that could be translated for other NIR cyanine dyes.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
44
|
Jiang XD, Jia L, Su Y, Li C, Sun C, Xiao L. Synthesis and application of near-infrared absorbing morpholino-containing aza-BODIPYs. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804927. [PMID: 30785670 DOI: 10.1002/smll.201804927] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/11/2019] [Indexed: 05/11/2023]
Abstract
As traditional phototherapy agents, boron dipyrromethene (BODIPY) photosensitizers have attracted increasing attention due to their high molar extinction coefficients, high phototherapy efficacy, and excellent photostability. After being formed into nanostructures, BODIPY-containing nano-photosensitizers show enhanced water solubility and biocompatibility as well as efficient tumor accumulation compared to BODIPY molecules. Hence, BODIPY nano-photosensitizers demonstrate a promising potential for fighting cancer. This review contains three sections, classifying photodynamic therapy (PDT), photothermal therapy (PTT), and the combination of PDT and PTT based on BODIPY nano-photosensitizers. It summarizes various BODIPY nano-photosensitizers, which are prepared via different approaches including molecular precipitation, supramolecular interactions, and polymer encapsulation. In each section, the design strategies and working principles of these BODIPY nano-photosensitizers are highlighted. In addition, the detailed in vitro and in vivo applications of these recently developed nano-photosensitizers are discussed together with future challenges in this field, highlighting the potential of these promising nanoagents for new tumor phototherapies.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
46
|
Miao W, Feng Y, Wu Q, Sheng W, Li M, Liu Q, Hao E, Jiao L. Phenanthro[b]-Fused BODIPYs through Tandem Suzuki and Oxidative Aromatic Couplings: Synthesis and Photophysical Properties. J Org Chem 2019; 84:9693-9704. [DOI: 10.1021/acs.joc.9b01425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Miao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yuanmei Feng
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanle Sheng
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Mao Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
47
|
Chang G, Zhang H, Li S, Huang F, Shen Y, Xie A. Effective photodynamic therapy of polymer hydrogel on tumor cells prepared using methylene blue sensitized mesoporous titania nanocrystal. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1392-1398. [DOI: 10.1016/j.msec.2019.02.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/09/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
48
|
Diaz-Rodriguez RM, Robertson KN, Thompson A. Classifying donor strengths of dipyrrinato/aza-dipyrrinato ligands. Dalton Trans 2019; 48:7546-7550. [PMID: 31070213 DOI: 10.1039/c9dt01148j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A parameter is reported by which to use 13C NMR chemical shifts to measure and predict the donor capabilities of N^N dipyrrinato and aza-dipyrrinato ligands chelating in L^X fashion. The results enable the rationalisation of the properties of these ligands and their complexes, as well as enable rational design incorporating both steric and electronic considerations when tuning to effect desired applications. Complexes containing these ligands are prevalent due to their desirable photophysical properties such as high chemical stability, resistance to photodegradation, strong absorbance, and ease of chemical modifiability.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | |
Collapse
|
49
|
Jiang X, Zhang T, Sun C, Meng Y, Xiao L. Synthesis of aza-BODIPY dyes bearing the naphthyl groups at 1,7-positions and application for singlet oxygen generation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Ruan Z, Yuan P, Li T, Tian Y, Cheng Q, Yan L. Redox-responsive prodrug-like PEGylated macrophotosensitizer nanoparticles for enhanced near-infrared imaging-guided photodynamic therapy. Eur J Pharm Biopharm 2019; 135:25-35. [DOI: 10.1016/j.ejpb.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|