1
|
Hou C, Wang Y, Meng X, Lu L, Fu P, Zhu W, Wang Y. Bioactive hydrogenated azaphilones from acid-tolerant fungus Penicillium purpureum OUCMDZ-019. J Antibiot (Tokyo) 2025:10.1038/s41429-025-00818-7. [PMID: 40128317 DOI: 10.1038/s41429-025-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
Two new hydrogenated azaphilones (1 and 2), together with the known azaphilone (3) were isolated from the red soil-derived acid-tolerant fungus Penicillium purpureum OUCMDZ-019 by OSMAC (one strain many compounds) strategy. Their structures were determined by nuclear magnetic resonance (NMR) spectroscopy analysis and electronic circular dichroism (ECD) calculations. Compound 1 was the first reported azaphilone that salified with pyridine and chlorination occurred at C-1, and it exhibited potential inhibitory activity on melanin production as tyrosinase inhibitor in vivo. Furthermore, (+)-mitorubrinol acetate (3) showed significantly inhibitory activity against H1N1 with IC50 values of 58.6 μM (ribavirin, IC50 85.0 μM) as the first report.
Collapse
Affiliation(s)
- Chengfeng Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqing Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiangling Meng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ling Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Kang H, Torruellas C, Kozlowski MC. Asymmetric Total Synthesis of Chaetoglobin A. J Org Chem 2023; 88:6691-6703. [PMID: 37195069 PMCID: PMC10411588 DOI: 10.1021/acs.joc.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An asymmetric total synthesis of chaetoglobin A was achieved. Atroposelective oxidative coupling of a phenol incorporating all but one carbon of the final product was used as a key step to generate axial chirality. The stereochemical outcome of the catalytic oxidative phenolic with the highly substituted phenol used herein was found to be opposite that of the simpler congeners reported previously, providing a cautionary tale about extrapolating asymmetric processes from simple to more complex substrates. Optimization of the postphenolic coupling steps including formylation, oxidative dearomatization, and selective deprotection steps are outlined. The tertiary acetates of chaetoglobin A were exceptionally labile due to activation by the adjacent keto groups, which complicated each of these steps. In contrast, the final oxygen to nitrogen exchange proceeded readily and the spectroscopic data from the synthetic material matches that of the isolated natural product in all respects.
Collapse
Affiliation(s)
- Houng Kang
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Carilyn Torruellas
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Ghazawi KF, Fatani SA, Mohamed SGA, Mohamed GA, Ibrahim SRM. Aspergillus nidulans—Natural Metabolites Powerhouse: Structures, Biosynthesis, Bioactivities, and Biotechnological Potential. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nowadays, finding out new natural scaffolds of microbial origin increases at a higher rate than in the past decades and represents an auspicious route for reinvigorating the pool of compounds entering pharmaceutical industries. Fungi serve as a depository of fascinating, structurally unique metabolites with considerable therapeutic significance. Aspergillus genus represents one of the most prolific genera of filamentous fungi. Aspergillus nidulans Winter G. is a well-known and plentiful source of bioactive metabolites with abundant structural diversity, including terpenoids, benzophenones, sterols, alkaloids, xanthones, and polyketides, many of which display various bioactivities, such as cytotoxicity, antioxidant, anti-inflammatory, antiviral, and antimicrobial activities. The current work is targeted to survey the reported literature on A. nidulans, particularly its metabolites, biosynthesis, and bioactivities, in addition to recent reports on its biotechnological potential. From 1953 till November 2022, relying on the stated data, 206 metabolites were listed, with more than 100 references.
Collapse
|
4
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Feng ZY, Huang PZ, Jiang SJ, Shen SJ, Chen JJ. Three new highly oxygenated azaphilones from an endophytic fungus Penicillium sp. LZUC-S1. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Combining OSMAC, metabolomic and genomic methods for the production and annotation of halogenated azaphilones and ilicicolins in termite symbiotic fungi. Sci Rep 2022; 12:17310. [PMID: 36243836 PMCID: PMC9569342 DOI: 10.1038/s41598-022-22256-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023] Open
Abstract
We gathered a collection of termite mutualistic strains from French Guiana to explore the metabolites of symbiotic microorganisms. Molecular networks reconstructed from a metabolomic analysis using LC-ESI-MS/MS methodology led us to identify two families of chlorinated polyketides, i.e., azaphilones from Penicillium sclerotiorum and ilicicolins from Neonectria discophora. To define the biosynthetic pathways related to these two types of scaffolds, we used a whole genome sequencing approach followed by hybrid assembly from short and long reads. We found two biosynthetic gene clusters, including two FAD-dependent halogenases. To exploit the enzymatic promiscuity of the two identified FAD halogenases, we sought to biosynthesize novel halogenated metabolites. An OSMAC strategy was used and resulted in the production of brominated analogs of ilicicolins and azaphilones as well as iodinated analogs of azaphilones.
Collapse
|
7
|
Chakrabarty S, Romero EO, Pyser JB, Yazarians JA, Narayan ARH. Chemoenzymatic Total Synthesis of Natural Products. Acc Chem Res 2021; 54:1374-1384. [PMID: 33600149 PMCID: PMC8210581 DOI: 10.1021/acs.accounts.0c00810] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The total synthesis of structurally complex natural products has challenged and inspired generations of chemists and remains an exciting area of active research. Despite their history as privileged bioactivity-rich scaffolds, the use of natural products in drug discovery has waned. This shift is driven by their relatively low abundance hindering isolation from natural sources and the challenges presented by their synthesis. Recent developments in biocatalysis have resulted in the application of enzymes for the construction of complex molecules. From the inception of the Narayan lab in 2015, we have focused on harnessing the exquisite selectivity of enzymes alongside contemporary small molecule-based approaches to enable concise chemoenzymatic routes to natural products.We have focused on enzymes from various families that perform selective oxidation reactions. For example, we have targeted xyloketal natural products through a strategy that relies on a chemo- and site-selective biocatalytic hydroxylation. Members of the xyloketal family are characterized by polycyclic ketal cores and demonstrate potent neurological activity. We envisioned assembling a representative xyloketal natural product (xyloketal D) involving a biocatalytically generated ortho-quinone methide intermediate. The non-heme iron (NHI) dependent monooxygenase ClaD was used to perform the benzylic hydroxylation of a resorcinol precursor, the product of which can undergo spontaneous loss of water to form an ortho-quinone methide under mild conditions. This intermediate was trapped using a chiral dienophile to complete the total synthesis of xyloketal D.A second class of biocatalytic oxidation that we have employed in synthesis is the hydroxylative dearomatization of resorcinol compounds using flavin-dependent monooxygenases (FDMOs). We anticipated that the catalyst-controlled site- and stereoselectivity of FDMOs would enable the total synthesis of azaphilone natural products. Azaphilones are bioactive compounds characterized by a pyranoquinone bicyclic core and a fully substituted chiral carbon atom. We leveraged the stereodivergent reactivity of FDMOs AzaH and AfoD to achieve the enantioselective synthesis of trichoflectin enantiomers, deflectin 1a, and lunatoic acid. We also leveraged FDMOs to construct tropolone and sorbicillinoid natural products. Tropolones are a structurally diverse class of bioactive molecules characterized by an aromatic cycloheptatriene core bearing an α-hydroxyketone moiety. We developed a two-step biocatalytic cascade to the tropolone natural product stipitatic aldehyde using the FDMO TropB and a NHI monooxygenase TropC. The FDMO SorbC obtained from the sorbicillin biosynthetic pathway was used in the concise total synthesis of a urea sorbicillinoid natural product.Our long-standing interest in using enzymes to carry out C-H hydroxylation reactions has also been channeled for the late-stage diversification of complex scaffolds. For example, we have used Rieske oxygenases to hydroxylate the tricyclic core common to paralytic shellfish toxins. The systemic toxicity of these compounds can be reduced by adding hydroxyl and sulfate groups, which improves their properties and potential as therapeutic agents. The enzymes SxtT, GxtA, SxtN, and SxtSUL were used to carry out selective C-H hydroxylation and O-sulfation in saxitoxin and related structures. We conclude this Account with a discussion of existing challenges in biocatalysis and ways we can currently address them.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Evan O. Romero
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua B. Pyser
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica A. Yazarians
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Chiang YM, Lin TS, Chang SL, Ahn G, Wang CCC. An Aspergillus nidulans Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synth Biol 2021; 10:173-182. [PMID: 33375785 DOI: 10.1021/acssynbio.0c00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal natural products (NPs) comprise a vast number of bioactive molecules with diverse activities, and among them are many important drugs. However, the yields of fungal NPs from native producers are usually low, and total synthesis of structurally complex NPs is challenging. As such, downstream derivatization and optimization of lead fungal NPs can be impeded by the high cost of obtaining sufficient starting material. In recent years, reconstitution of NP biosynthetic pathways in heterologous hosts has become an attractive alternative approach to produce complex NPs. Here, we present an efficient, cloning-free strategy for the cluster refactoring and total biosynthesis of fungal NPs in Aspergillus nidulans. Our platform places our genes of interest (GOIs) under the regulation of the robust asperfuranone afo biosynthesis gene machinery, allowing for their concerted activation upon induction. We demonstrated the utility of our system by creating strains that can synthesize high-value NPs, citreoviridin (1), mutilin (2), and pleuromutilin (3), with good to high yield and purity. This platform can be used not only for producing NPs of interests (i.e., total biosynthesis) but also for elucidating cryptic biosynthesis pathways.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Shu-Lin Chang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Green Ahn
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Isbrandt T, Frisvad JC, Madsen A, Larsen TO. New azaphilones from Aspergillus neoglaber. AMB Express 2020; 10:145. [PMID: 32804338 PMCID: PMC7431503 DOI: 10.1186/s13568-020-01078-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
Three new azaphilones, sassafrin E (1), sassafrin F (2), and sassafrinamine A (3), were isolated from the filamentous fungus Aspergillus neoglaber. The structures of the compounds were determined by nuclear magnetic resonance spectroscopy, and were found to be novel analogues of two already known compound classes; sassafrins and berkchaetoazaphilones. Sassafrin E and F were both oxygen containing, while sassafrinamine A additionally contained a nitrogen atom, originating from an aminoethanol moiety, as well as extensive conjugation resulting in an intense purple colour of the pure compound. The structure of sassafrin E was further confirmed using deuterium exchange experiments coupled with high-resolution tandem mass spectrometry.
Collapse
|
10
|
Lan L, Liu J, Xing M, Smith AR, Wang J, Wu X, Appelman C, Li K, Roy A, Gowthaman R, Karanicolas J, Somoza AD, Wang CCC, Miao Y, De Guzman R, Oakley BR, Neufeld KL, Xu L. Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers (Basel) 2020; 12:cancers12082221. [PMID: 32784494 PMCID: PMC7463734 DOI: 10.3390/cancers12082221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
RNA-binding protein Musashi-1 (MSI1) is a key regulator of several stem cell populations. MSI1 is involved in tumor proliferation and maintenance, and it regulates target mRNAs at the translational level. The known mRNA targets of MSI1 include Numb, APC, and P21WAF-1, key regulators of Notch/Wnt signaling and cell cycle progression, respectively. In this study, we aim to identify small molecule inhibitors of MSI1-mRNA interactions, which could block the growth of cancer cells with high levels of MSI1. Using a fluorescence polarization (FP) assay, we screened small molecules from several chemical libraries for those that disrupt the binding of MSI1 to its consensus RNA. One cluster of hit compounds is the derivatives of secondary metabolites from Aspergillus nidulans. One of the top hits, Aza-9, from this cluster was further validated by surface plasmon resonance and nuclear magnetic resonance spectroscopy, which demonstrated that Aza-9 binds directly to MSI1, and the binding is at the RNA binding pocket. We also show that Aza-9 binds to Musashi-2 (MSI2) as well. To test whether Aza-9 has anti-cancer potential, we used liposomes to facilitate Aza-9 cellular uptake. Aza-9-liposome inhibits proliferation, induces apoptosis and autophagy, and down-regulates Notch and Wnt signaling in colon cancer cell lines. In conclusion, we identified a series of potential lead compounds for inhibiting MSI1/2 function, while establishing a framework for identifying small molecule inhibitors of RNA binding proteins using FP-based screening methodology.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jiajun Liu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Minli Xing
- Bio-NMR Core Facility, the University of Kansas, Lawrence, KS 66045, USA;
| | - Amber R. Smith
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jinan Wang
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Carl Appelman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Ke Li
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, the University of Kansas, Lawrence, KS 66045, USA;
| | - Ragul Gowthaman
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Amber D. Somoza
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
| | - Clay C. C. Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA
| | - Yinglong Miao
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Roberto De Guzman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Berl R. Oakley
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Kristi L. Neufeld
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Cancer Biology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Radiation Oncology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
11
|
Pyser JB, Baker Dockrey SA, Benítez AR, Joyce LA, Wiscons RA, Smith JL, Narayan ARH. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc 2019; 141:18551-18559. [PMID: 31692339 PMCID: PMC7029798 DOI: 10.1021/jacs.9b09385] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selective access to a targeted isomer is often critical in the synthesis of biologically active molecules. Whereas small-molecule reagents and catalysts often act with anticipated site- and stereoselectivity, this predictability does not extend to enzymes. Further, the lack of access to catalysts that provide complementary selectivity creates a challenge in the application of biocatalysis in synthesis. Here, we report an approach for accessing biocatalysts with complementary selectivity that is orthogonal to protein engineering. Through the use of a sequence similarity network (SSN), a number of sequences were selected, and the corresponding biocatalysts were evaluated for reactivity and selectivity. With a number of biocatalysts identified that operate with complementary site- and stereoselectivity, these catalysts were employed in the stereodivergent, chemoenzymatic synthesis of azaphilone natural products. Specifically, the first syntheses of trichoflectin, deflectin-1a, and lunatoic acid A were achieved. In addition, chemoenzymatic syntheses of these azaphilones supplied enantioenriched material for reassignment of the absolute configuration of trichoflectin and deflectin-1a based on optical rotation, CD spectra, and X-ray crystallography.
Collapse
Affiliation(s)
- Joshua B. Pyser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Summer A. Baker Dockrey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Leo A. Joyce
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065
| | - Ren A. Wiscons
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
13
|
Liu Z, Qiu P, Liu H, Li J, Shao C, Yan T, Cao W, She Z. Identification of anti-inflammatory polyketides from the coral-derived fungus Penicillium sclerotiorin: In vitro approaches and molecular-modeling. Bioorg Chem 2019; 88:102973. [DOI: 10.1016/j.bioorg.2019.102973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
14
|
Antifungal and Antibacterial Activities of Azaphilones from the Gorgonian-Derived Penicillium sclerotiorum Fungus. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02739-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Tang JL, Zhou ZY, Yang T, Yao C, Wu LW, Li GY. Azaphilone Alkaloids with Anti-inflammatory Activity from Fungus Penicillium sclerotiorum cib-411. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2175-2182. [PMID: 30702881 DOI: 10.1021/acs.jafc.8b05628] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine new azaphilone alkaloids, penazaphilones A-I (1-9), were isolated from the solid fermented rice culture of Penicillium sclerotiorum cib-411. The structures of compounds 1-9 were elucidated based on HRESIMS, NMR, and CD spectroscopic data. The structures of 5 and 8 were confirmed by X-ray crystallographic analyses. Biological evaluation showed that compounds 1, 5, 6, and 8 inhibited the production of nitric oxide (NO) on RAW 264.7 cells stimulated by lipopolysaccharide with IC50 values of 15.29, 9.34, 9.50, and 7.05 μM, respectively. Meanwhile, they did not exhibit obvious cytotoxicity at a concentration of 50.0 μM.
Collapse
Affiliation(s)
- Jia-Lin Tang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zong-Yuan Zhou
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| | - Can Yao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| | - Lin-Wei Wu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| | - Guo-You Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province , Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| |
Collapse
|
16
|
Chen G, An X, Wang H, Pei Y. 3″-Hydroxymethyl-butyrolactone II from Aspergillus sp. Nat Prod Res 2019; 34:2086-2089. [PMID: 30777446 DOI: 10.1080/14786419.2019.1573235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In continuation of the search for new compounds from the terrestrial fungus Aspergillus sp., one new butyrolactone, 3″-hydroxymethyl-butyrolactone II (1) was isolated. The chemical structure of 1 was confirmed by extensive 1D and 2D NMR and HR-ESI mass data analysis, and by comparison with literature data. The absolute configuration was also determined by ECD calculations.
Collapse
Affiliation(s)
- Gang Chen
- College of Pharmacy, Harbin Medical University , Harbin , PR China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang , China
| | - Xiao An
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang , China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang , China
| | - Yuehu Pei
- College of Pharmacy, Harbin Medical University , Harbin , PR China
| |
Collapse
|
17
|
Kang H, Torruellas C, Liu J, Kozlowski MC. Total Synthesis of Chaetoglobin A via Catalytic, Atroposelective Oxidative Phenol Coupling. Org Lett 2018; 20:5554-5558. [PMID: 30207731 DOI: 10.1021/acs.orglett.8b02183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first total synthesis of chaetoglobin A (1), which features a chiral axis between two identical highly oxygenated bicyclic cores, was successfully completed in 12 steps from 2,6-dimethoxytoluene. Vanadium-catalyzed oxidative phenol coupling, as a key step, enabled generation of the axial chirality.
Collapse
Affiliation(s)
- Houng Kang
- Department of Chemistry, Roy and Diana Vagelos Laboratories , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Carilyn Torruellas
- U.S. Army Edgewood Chemical Biological Center , RDCB-DRC-P/Building E3400 , Aberdeen Proving Ground , Maryland 21010-5424 , United States
| | - Jinchu Liu
- Department of Process Research and Development , Merck Research Laboratories , Rahway , New Jersey 07065 , United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
18
|
Zhao HG, Wang M, Lin YY, Zhou SL. Optimization of culture conditions for penicilazaphilone C production by a marine-derived fungus Penicillium sclerotiorum
M-22. Lett Appl Microbiol 2018; 66:222-230. [PMID: 29285768 DOI: 10.1111/lam.12841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Affiliation(s)
- H.-G. Zhao
- Key Laboratory of Tropical Diseases and Translation Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine; Hainan Medical College; Haikou China
| | - M. Wang
- Key Laboratory of Tropical Diseases and Translation Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine; Hainan Medical College; Haikou China
| | - Y.-Y. Lin
- Key Laboratory of Tropical Diseases and Translation Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine; Hainan Medical College; Haikou China
| | - S.-L. Zhou
- Key Laboratory of Tropical Diseases and Translation Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine; Hainan Medical College; Haikou China
| |
Collapse
|
19
|
Hu C, Ma S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. MEDCHEMCOMM 2018; 9:212-225. [PMID: 30108915 PMCID: PMC6083793 DOI: 10.1039/c7md00390k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Inflammation is favorable in most cases, because it is a kind of body defensive response to external stimuli; sometimes, inflammation is also harmful, such as attacks on the body's own tissues. It could be that inflammation is a unified process of injury and resistance to injury. Inflammation brings extreme pain to patients, showing symptoms of rubor, swelling, fever, pain and dysfunction. As the specific mechanism is not clear yet, the current anti-inflammatory agents are given priority for relieving suffering of patients. Thus it is emergent to find new anti-inflammatory agents with rapid effect. Lipoxygenase (LOX) is a kind of rate-limiting enzyme in the process of arachidonic acid metabolism into leukotriene (LT) which mediates the occurrence of inflammation. The inhibition of LOX can reduce LT, thereby producing an anti-inflammatory effect. In this review, the LOX inhibitors reported in recent years are summarized, and, in particular, their activities, structure-activity relationships and molecular docking studies are emphasized, which will provide new ideas to design novel LOX inhibitors.
Collapse
Affiliation(s)
- Chaoyu Hu
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| | - Shutao Ma
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44, West Culture Road , Jinan 250012 , P.R. China .
| |
Collapse
|
20
|
Wei MY, Wang CF, Wang KL, Qian PY, Wang CY, Shao CL. Preparation, Structure, and Potent Antifouling Activity of Sclerotioramine Derivatives. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:372-378. [PMID: 28688034 DOI: 10.1007/s10126-017-9760-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
A series of 30 sclerotioramine derivatives (2-31) of the natural compound, (+)-sclerotiorin (1), has been successfully semi-synthesized by a one-step reaction with high yields (up to 80%). The structures of these new derivatives were established by extensive spectroscopic methods and single-crystal X-ray diffraction analysis for 3, 6, and 10. (+)-Sclerotiorin (1) and its semisynthetic derivatives (2-31) were evaluated for their antifouling activity. Most of them except 6, 7, 8, 12, and 28 showed potent antifouling activity against the larval settlement of the barnacle Balanus amphitrite. More interestingly, most of the aromatic amino-derivatives (13-17, 19-21, 23, 25-27, and 29-31) showed strong antifouling activity; however, only two aliphatic amino-derivatives (5 and 10) had the activity.
Collapse
Affiliation(s)
- Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, The People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, The People's Republic of China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, The People's Republic of China
| | - Cui-Fang Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, The People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, The People's Republic of China
| | - Kai-Ling Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, The People's Republic of China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, The People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, The People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, The People's Republic of China.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, The People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, The People's Republic of China.
| |
Collapse
|
21
|
Makrerougras M, Coffinier R, Oger S, Chevalier A, Sabot C, Franck X. Total Synthesis and Structural Revision of Chaetoviridins A. Org Lett 2017; 19:4146-4149. [DOI: 10.1021/acs.orglett.7b02053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mehdi Makrerougras
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Romain Coffinier
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Samuel Oger
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Arnaud Chevalier
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| | - Xavier Franck
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038), 76000 Rouen, France
| |
Collapse
|
22
|
Kaur K, Wu X, Fields JK, Johnson DK, Lan L, Pratt M, Somoza AD, Wang CCC, Karanicolas J, Oakley BR, Xu L, De Guzman RN. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS One 2017; 12:e0175471. [PMID: 28414767 PMCID: PMC5393604 DOI: 10.1371/journal.pone.0175471] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-binding protein Hu antigen R (HuR) binds to AU-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs. The HuR-ARE interactions stabilize many oncogenic mRNAs that play important roles in tumorigenesis. Thus, small molecules that interfere with the HuR-ARE interaction could potentially inhibit cancer cell growth and progression. Using a fluorescence polarization (FP) competition assay, we identified the compound azaphilone-9 (AZA-9) derived from the fungal natural product asperbenzaldehyde, binds to HuR and inhibits HuR-ARE interaction (IC50 ~1.2 μM). Results from surface plasmon resonance (SPR) verified the direct binding of AZA-9 to HuR. NMR methods mapped the RNA-binding interface of HuR and identified the involvement of critical RNA-binding residues in binding of AZA-9. Computational docking was then used to propose a likely binding site for AZA-9 in the RNA-binding cleft of HuR. Our results show that AZA-9 blocks key RNA-binding residues of HuR and disrupts HuR-RNA interactions in vitro. This knowledge is needed in developing more potent AZA-9 derivatives that could lead to new cancer therapy.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - James K Fields
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, United States of America
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Miranda Pratt
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Amber D Somoza
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Clay C C Wang
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California United States of America
| | - John Karanicolas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America.,Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
23
|
Chen D, Ma S, He L, Yuan P, She Z, Lu Y. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis (Edinb) 2017; 103:37-43. [DOI: 10.1016/j.tube.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
24
|
Oakley CE, Ahuja M, Sun WW, Entwistle R, Akashi T, Yaegashi J, Guo CJ, Cerqueira GC, Russo Wortman J, Wang CCC, Chiang YM, Oakley BR. Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol Microbiol 2016; 103:347-365. [PMID: 27775185 DOI: 10.1111/mmi.13562] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 01/17/2023]
Abstract
Fungal secondary metabolites (SMs) are extremely important in medicine and agriculture, but regulation of their biosynthesis is incompletely understood. We have developed a genetic screen in Aspergillus nidulans for negative regulators of fungal SM gene clusters and we have used this screen to isolate mutations that upregulate transcription of the non-ribosomal peptide synthetase gene required for nidulanin A biosynthesis. Several of these mutations are allelic and we have identified the mutant gene by genome sequencing. The gene, which we designate mcrA, is conserved but uncharacterized, and it encodes a putative transcription factor. Metabolite profiles of mcrA deletant, mcrA overexpressing, and parental strains reveal that mcrA regulates at least ten SM gene clusters. Deletion of mcrA stimulates SM production even in strains carrying a deletion of the SM regulator laeA, and deletion of mcrA homologs in Aspergillus terreus and Penicillum canescens alters the secondary metabolite profile of these organisms. Deleting mcrA in a genetic dereplication strain has allowed us to discover two novel compounds as well as an antibiotic not known to be produced by A. nidulans. Deletion of mcrA upregulates transcription of hundreds of genes including many that are involved in secondary metabolism, while downregulating a smaller number of genes.
Collapse
Affiliation(s)
- C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Wei-Wen Sun
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Tomohiro Akashi
- Division of OMICS analysis, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, Aichi, 466-8550, Japan
| | - Junko Yaegashi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Gustavo C Cerqueira
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Jennifer Russo Wortman
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Chemistry, Dornsife Colleges of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan, 71710, Republic of China
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| |
Collapse
|
25
|
Zhou SL, Wang M, Zhao HG, Huang YH, Lin YY, Tan GH, Chen SL. Penicilazaphilone C, a new antineoplastic and antibacterial azaphilone from the Marine Fungus Penicillium sclerotiorum. Arch Pharm Res 2016; 39:1621-1627. [PMID: 27605109 DOI: 10.1007/s12272-016-0828-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Two azaphilonidal derivatives [penicilazaphilones B (1) and C (2)], have been isolated from the fermented products of marine fungus strain Penicillium sclerotiorum M-22, penicilazaphilones C was a new compound. The compound's structures were identified by the analysis of spectroscopic data including 1D and 2D NMR techniques (1H-NMR, 13C-NMR, COSY, HMQC, and HMBC). Biological evaluation revealed that penicilazaphilones B and C showed selective cytotoxicity against melanoma cells B-16 and human gastric cancer cells SGC-7901 with IC50 values of 0.291, 0.449 and 0.065, 0.720 mM, respectively, while exhibiting no significant toxicity to normal mammary epithelial cells M10 at the same concentration. Moreover, penicilazaphilones C also exhibited strong antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli with MIC values 0.037-0.150 mM, while penicilazaphilones B's bacteriostatic action was weaker.
Collapse
Affiliation(s)
- Song-Lin Zhou
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China.,College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Min Wang
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Huan-Ge Zhao
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Yong-Hao Huang
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Ying-Ying Lin
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China.,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China
| | - Guang-Hong Tan
- Key Laboratory of Translation Medicine for Tropical Diseases, Ministry of Education, Hainan Medical College, Haikou, 571199, China. .,Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, 571199, China.
| | - Shung-Lin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
26
|
Bai J, Lu Y, Xu YM, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Diversity-Oriented Combinatorial Biosynthesis of Hybrid Polyketide Scaffolds from Azaphilone and Benzenediol Lactone Biosynthons. Org Lett 2016; 18:1262-5. [PMID: 26934205 DOI: 10.1021/acs.orglett.6b00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two disparate polyketide families, the benzenediol lactones and the azaphilones, are produced by fungi using iterative polyketide synthase (iPKS) enzymes consisting of collaborating partner subunits. Exploitation of this common biosynthetic logic using iPKS subunit shuffling allowed the diversity-oriented combinatorial biosynthesis of unprecedented polyketide scaffolds new to nature, bearing structural motifs from both of these orthogonal natural product families. Starter unit acyltransferase domain replacements proved necessary but not sufficient to guarantee communication between iPKS subunits.
Collapse
Affiliation(s)
- Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China.,Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuanyuan Lu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Ya-ming Xu
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Wei Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Ming Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Min Lin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
27
|
Paranjape SR, Riley AP, Somoza AD, Oakley CE, Wang CCC, Prisinzano TE, Oakley BR, Gamblin TC. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS Chem Neurosci 2015; 6:751-60. [PMID: 25822288 DOI: 10.1021/acschemneuro.5b00013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Andrew P. Riley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Amber D. Somoza
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas E. Prisinzano
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - T. Chris Gamblin
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Paranjape SR, Chiang YM, Sanchez JF, Entwistle R, Wang CCC, Oakley BR, Gamblin TC. Inhibition of Tau aggregation by three Aspergillus nidulans secondary metabolites: 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde. PLANTA MEDICA 2014; 80:77-85. [PMID: 24414310 PMCID: PMC6442474 DOI: 10.1055/s-0033-1360180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggregation of the microtubule-associated protein tau is a significant event in many neurodegenerative diseases including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activity. We have screened Aspergillus nidulans secondary metabolites containing aromatic ring structures for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol and the previously identified aggregation inhibitor emodin as a positive control. While several compounds showed some activity, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde were potent aggregation inhibitors as determined by both a filter trap assay and electron microscopy. In this study, these three compounds were stronger inhibitors than emodin, which has been shown in a prior study to inhibit the heparin induction of tau aggregation with an IC50 of 1-5 µM. Additionally, 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde reduced, but did not block, tau stabilization of microtubules. 2,ω-Dihydroxyemodin and asperthecin have similar structures to previously identified tau aggregation inhibitors, while asperbenzaldehyde represents a new class of compounds with tau aggregation inhibitor activity. Asperbenzaldehyde can be readily modified into compounds with strong lipoxygenase inhibitor activity, suggesting that compounds derived from asperbenzaldehyde could have dual activity. Together, our data demonstrates the potential of 2,ω-dihydroxyemodin, asperthecin, and asperbenzaldehyde as lead compounds for further development as therapeutics to inhibit tau aggregation in Alzheimer's disease and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Pharmaceutical Science, Chia Nan University School of Pharmacy and Science, Tainan 71710, Taiwan
| | - James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - T. Chris Gamblin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 2013; 41:433-42. [PMID: 24342965 DOI: 10.1007/s10295-013-1386-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
Fungi are prolific producers of secondary metabolites (SMs) that show a variety of biological activities. Recent advances in genome sequencing have shown that fungal genomes harbor far more SM gene clusters than are expressed under conventional laboratory conditions. Activation of these "silent" gene clusters is a major challenge, and many approaches have been taken to attempt to activate them and, thus, unlock the vast treasure chest of fungal SMs. This review will cover recent advances in genome mining of SMs in Aspergillus nidulans. We will also discuss current updates in gene annotation of A. nidulans and recent developments in A. nidulans as a molecular genetic system, both of which are essential for rapid and efficient experimental verification of SM gene clusters on a genome-wide scale. Finally, we will describe advances in the use of A. nidulans as a heterologous expression system to aid in the analysis of SM gene clusters from other fungal species that do not have an established molecular genetic system.
Collapse
|
30
|
Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CCC, Oakley BR. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 2013; 135:7720-31. [PMID: 23621425 PMCID: PMC3697937 DOI: 10.1021/ja401945a] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal secondary metabolites (SMs) are an important source of medically valuable compounds. Genome projects have revealed that fungi have many SM biosynthetic gene clusters that are not normally expressed. To access these potentially valuable, cryptic clusters, we have developed a heterologous expression system in Aspergillus nidulans . We have developed an efficient system for amplifying genes from a target fungus, placing them under control of a regulatable promoter, transferring them into A. nidulans , and expressing them. We have validated this system by expressing nonreducing polyketide synthases of Aspergillus terreus and additional genes required for compound production and release. We have obtained compound production and release from six of these nonreducing polyketide synthases and have identified the products. To demonstrate that the procedure allows transfer and expression of entire secondary metabolite biosynthetic pathways, we have expressed all the genes of a silent A. terreus cluster and demonstrate that it produces asperfuranone. Further, by expressing the genes of this pathway in various combinations, we have clarified the asperfuranone biosynthetic pathway. We have also developed procedures for deleting entire A. nidulans SM clusters. This allows us to remove clusters that might interfere with analyses of heterologously expressed genes and to eliminate unwanted toxins.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, Republic of China
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Aric Schultz
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
- Current address: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Shu-Lin Chang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, Republic of China
| | - Calvin T. Sung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| |
Collapse
|
31
|
Affiliation(s)
- Jin-Ming Gao
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, Department of Chemistry and Chemical Engineering, College of Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | | | | |
Collapse
|
32
|
Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 2013; 97:6337-45. [DOI: 10.1007/s00253-013-4745-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
|
33
|
Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. ACTA ACUST UNITED AC 2012; 19:1049-59. [PMID: 22921072 DOI: 10.1016/j.chembiol.2012.07.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 01/20/2023]
Abstract
Azaphilones are a class of fungal metabolites characterized by a highly oxygenated pyrano-quinone bicyclic core and exhibiting a broad range of bioactivities. Although widespread among various fungi, their biosynthesis has not been thoroughly elucidated. By activation of a silent (aza) gene cluster in Aspergillus niger ATCC 1015, we discovered six azaphilone compounds, azanigerones A-F (1, 3-7). Transcriptional analysis and deletion of a key polyketide synthase (PKS) gene further confirmed the involvement of the aza gene cluster. The biosynthetic pathway was shown to involve the convergent actions of a highly reducing PKS and a non-reducing PKS. Most significantly, in vitro reaction of a key flavin-dependent monooxygenase encoded in the cluster with an early benzaldehyde intermediate revealed its roles in hydroxylation and pyran-ring formation to afford the characteristic bicylic core shared by azaphilones.
Collapse
|
34
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
35
|
A minor dihydropyran apocarotenoid from mated cultures of Blakeslea trispora. Molecules 2012; 17:12553-9. [PMID: 23095897 PMCID: PMC6268977 DOI: 10.3390/molecules171112553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 11/17/2022] Open
Abstract
The heterocyclic C15 apocarotenoid 1 was isolated from mated cultures of the strains F986 (+) and F921 (−) of Blakeslea trispora. This new compound formed during sexual interaction is a minor constituent of the culture media and its structure was elucidated by spectroscopic data, including 2D-NMR. A plausible biosynthetic pathway involving a double degradation of β-carotene, followed by several oxidations of the resulting monocyclofarnesane C15 fragment is proposed.
Collapse
|
36
|
Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 2012; 78:8234-44. [PMID: 23001671 DOI: 10.1128/aem.01808-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.
Collapse
|