1
|
Diaz DB, Rowshanpour R, Saunders GJ, Dudding T, Yudin AK. The Role of Attractive Non-Covalent Interactions in Peptide Macrocyclization. J Org Chem 2024; 89:1483-1491. [PMID: 38217516 DOI: 10.1021/acs.joc.3c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
The efficiency of macrocyclization reactions relies on the appropriate conformational preorganization of a linear precursor, ensuring that reactive ends are in spatial proximity prior to ring closure. Traditional peptide cyclization approaches that reduce the extent of terminal ion pairing often disfavor cyclization-conducive conformations and can lead to undesired cyclodimerization or oligomerization side reactions, particularly when they are performed without high dilution. To address this challenge, synthetic strategies that leverage attractive noncovalent interactions, such as zwitterionic attraction between chain termini during macrocyclization, offer a potential solution by reducing the entropic penalty associated with linear peptides adopting precyclization conformations. In this study, we investigate the role of (N-isocyanoimino)triphenylphosphorane (Pinc) in facilitating the cyclization of linear peptides into conformationally rigid macrocycles. The observed moderate diastereoselectivity is consistent with the preferential Si-facial addition of Pinc, where the isocyanide adds to the E-iminium ion on the same face as the l-proline amide group. The resulting peptide chain reveals that the activated phosphonium ylide of Pinc brings the reactive ends close together, promoting cyclization by enclosing the carboxylate within the interior of the pentapeptide and preventing the formation of byproducts. For shorter peptides with modified peptide backbones, the cyclization mechanism and outcome are redirected, as nucleophilic motifs such as thiazole and imidazole can covalently trap nitrilium intermediates. The isolation of the intermediate in the unproductive macrocyclization pathway, along with nuclear magnetic resonance and density functional theory studies, provides insights into heterocycle-dependent selectivity. The Pinc-driven macrocyclization process has generated diverse collections of cyclic molecules, and our models offer a comprehensive understanding of observed trends, facilitating the development of other heterocycle-forming macrocyclization reactions.
Collapse
Affiliation(s)
- Diego B Diaz
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rozhin Rowshanpour
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - George J Saunders
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Lakshman MK. Base Modifications of Nucleosides via the Use of Peptide-Coupling Agents, and Beyond. CHEM REC 2023; 23:e202200182. [PMID: 36166699 DOI: 10.1002/tcr.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Indexed: 01/24/2023]
Abstract
Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition-elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide-coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two-step, one-pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
3
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
4
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
5
|
Yuan C, Han F, Jia L, Hu X. Facilitated formation of 2-pyridyl oxime ethers via PyBroP promoted addition of oximes to pyridine N-oxides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Raj M, Wills RD, Adebomi VT. Peptide Cyclization at High Concentration. Synlett 2020. [DOI: 10.1055/s-0040-1707165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The emergence of cyclic peptides as pharmaceuticals has led to an eruption of new methodologies for macrocyclization. However, the cyclization of peptides at high concentrations presents a challenge due to the production of side products like dimers and oligomers. This factor is more pronounced with the cyclization of peptides composed of fewer than seven amino acids, thus has created a need for a new synthetic strategy. Herein, we will elucidate a new chemoselective method termed ‘CyClick’ that works in an exclusively intramolecular fashion preventing the formation of commonly occurring side products such as dimers and oligomers, even at relatively high concentration.1 Introduction2 Known Methodologies3 Novel CyClick Chemistry4 Conclusion and Outlook
Collapse
Affiliation(s)
- Monika Raj
- Department of Chemistry and Biochemistry, Auburn University Auburn
| | | | | |
Collapse
|
7
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
8
|
Xu F, Li Y, Huang X, Fang X, Li Z, Jiang H, Qiao J, Chu W, Sun Z. Hypervalent Iodine(III)‐Mediated Regioselective Cyanation of Quinoline
N
‐Oxides with Trimethylsilyl Cyanide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Xu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Yuqin Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xin Huang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Xinjie Fang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhuofei Li
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Hongshuo Jiang
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Jingyi Qiao
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials ScienceHeilongjiang University Harbin 150080 People's Republic of China
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency ConversionCollege of Heilongjiang Province Harbin 150080 People's Republic of China
| |
Collapse
|
9
|
Liman M, Türkmen YE. Development of one-pot benzylic amination reactions of azine N-oxides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Arynes, diaryliodonium salts and azine N-oxides in transition metal-free electrophilic N-arylation. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kaldas SJ, Yudin AK. Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry 2018; 24:7074-7082. [DOI: 10.1002/chem.201705418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sherif J. Kaldas
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
12
|
Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 2018; 14:6611-37. [PMID: 27282396 DOI: 10.1039/c6ob00936k] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.
Collapse
Affiliation(s)
- Alexandria P Taylor
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Ralph P Robinson
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Yvette M Fobian
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - David C Blakemore
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Lyn H Jones
- Worldwide Medicinal Chemistry, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Olugbeminiyi Fadeyi
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
13
|
González-Bobes F, Hickey MR, Cohen B, Bultman M, Chen K, Fanfair D, Rosso VW, Strotman NA, Mudryk B, Murugesan S, Schild RL, Ivy S, Eastgate MD, Sweeney JT, Conlon DA. Preparation of the HIV Attachment Inhibitor BMS-663068. Part 5. Selective C-7 Bromination of the 6-Azaindole Core. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco González-Bobes
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Matthew R. Hickey
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Benjamin Cohen
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Michael Bultman
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Ke Chen
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Dayne Fanfair
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Victor W. Rosso
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Neil A. Strotman
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Boguslaw Mudryk
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Saravanababu Murugesan
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Richard L. Schild
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Sabrina Ivy
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Martin D. Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - Jason T. Sweeney
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| | - David A. Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb
Drive, New Brunswick, New
Jersey 08903-0191, United States
| |
Collapse
|
14
|
Tsutsumi LS, Tan GT, Sun D. Solid-phase synthesis of cyclic hexapeptides wollamides A, B and desotamide B. Tetrahedron Lett 2017; 58:2675-2680. [PMID: 29129945 PMCID: PMC5678967 DOI: 10.1016/j.tetlet.2017.05.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid-phase synthesis of antibacterial cyclohexapeptides including wollamides A, B and desotamide B has been developed. Briefly, the protected linear hexapeptides were assembled on 2-chlorotrityl chloride resin using standard Fmoc chemistry and diisopropylcarbodiimide/hydroxybenzotriazole coupling reagents, cleaved off-resin with hexafluoroisopropanol/dichloromethane to keep side-chain protecting groups intact, and cyclized in solution. Final global removal of all protecting groups using a cocktail of trifluoroacetic acid/triisopropylsilane/dichloromethane afforded the desired cyclic hexapeptides, which were characterized by 1H, 13C NMR, and HRMS. Subsequent investigation of macrocyclization parameters such as terminal residues, coupling reagents, and cyclization concentration revealed the optimized conditions for the synthesis of this class of cyclic hexapeptides.
Collapse
Affiliation(s)
- Lissa S Tsutsumi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - Ghee T Tan
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| |
Collapse
|
15
|
Bugaenko DI, Yurovskaya MA, Karchava AV. Quaternary N-(2-Pyridyl)-DABCO Salts: One-Pot in Situ Formation from Pyridine-N-oxides and Reactions with Nucleophiles: A Mild and Selective Route to Substituted N-(2-Pyridyl)-N′-ethylpiperazines. J Org Chem 2017; 82:2136-2149. [DOI: 10.1021/acs.joc.6b02952] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Bi WZ, Sun K, Qu C, Chen XL, Qu LB, Zhu SH, Li X, Wu HT, Duan LK, Zhao YF. A direct metal-free C2–H functionalization of quinoline N-oxides: a highly selective amination and alkylation strategy towards 2-substituted quinolines. Org Chem Front 2017. [DOI: 10.1039/c7qo00311k] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An efficient one-pot methodology for C2-selective amination and alkylation of quinoline N-oxides was developed in the presence of diethyl H-phosphonate.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Kai Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Chen Qu
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Xiao-Lan Chen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
- Luoyang Institute of Science and Technology
| | - Shao-Hua Zhu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Xu Li
- Institute of Chemistry Co. Ltd
- Henan Academy of Sciences
- Zhengzhou
- China
| | - Hai-Tao Wu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Li-Kun Duan
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Yu-Fen Zhao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
- Department of Chemistry
| |
Collapse
|
17
|
Frost JR, Scully CCG, Yudin AK. Oxadiazole grafts in peptide macrocycles. Nat Chem 2016; 8:1105-1111. [PMID: 27874866 DOI: 10.1038/nchem.2636] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/05/2016] [Indexed: 02/08/2023]
Abstract
Synthetic methods that provide control over macrocycle conformation and, at the same time, mitigate the polarity of peptide bonds represent valuable tools for the discovery of new bioactive molecules. Here, we report a macrocyclization reaction between a linear peptide, an aldehyde and (N-isocyanimino)triphenylphosphorane. This process generates head-to-tail cyclic peptidomimetics in a single step. This method is tolerant to variation in the peptide and aldehyde components and has been applied for the synthesis of 15-, 18-, 21- and 24-membered rings. The resulting peptide macrocycles feature a 1,3,4-oxadiazole and a tertiary amine in their scaffolds. This non-canonical backbone region acts as an endocyclic control element that promotes and stabilizes a unique intramolecular hydrogen-bond network and can lead to macrocycles with conformationally rigid turn structures. Oxadiazole-containing macrocycles can also display a high passive membrane permeability, an important property for the development of bioavailable peptide-based therapeutics.
Collapse
Affiliation(s)
- John R Frost
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Conor C G Scully
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Hopkins BA, Smith GF, Sciammetta N. Synthesis of Cyclic Peptidomimetics via a Pd-Catalyzed Macroamination Reaction. Org Lett 2016; 18:4072-5. [DOI: 10.1021/acs.orglett.6b01961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brett A. Hopkins
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Graham F. Smith
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Nunzio Sciammetta
- Discovery Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Aithagani SK, Kumar M, Yadav M, Vishwakarma RA, Singh PP. Metal-Free, Phosphonium Salt-Mediated Sulfoximination of Azine N-Oxides: Approach for the Synthesis of N-Azine Sulfoximines. J Org Chem 2016; 81:5886-94. [PMID: 27304317 DOI: 10.1021/acs.joc.6b00593] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a simple and metal-free method for the synthesis of N-azine sulfoximines by the nucleophilic substitution of azine N-oxides with NH-sulfoximines. The present method works at room temperature with wide functional group compatibility and gives several unprecedented N-azine sulfoximines. The reaction conditions were also found suitable with enantiopure substrates and furnished products without any racemization. It also finds an application in the sulfoximination of azine-based functional molecules such as 2,2'-bipyridine, 1,10-phenanthroline, and quinine.
Collapse
Affiliation(s)
- Sravan Kumar Aithagani
- Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Mukesh Kumar
- Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Mahipal Yadav
- Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| |
Collapse
|
20
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
21
|
Rohrbacher F, Deniau G, Luther A, Bode JW. Spontaneous head-to-tail cyclization of unprotected linear peptides with the KAHA ligation. Chem Sci 2015; 6:4889-4896. [PMID: 29142720 PMCID: PMC5664356 DOI: 10.1039/c5sc01774b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/05/2015] [Indexed: 12/03/2022] Open
Abstract
The α-ketoacid–hydroxylamine (KAHA) ligation enables the direct cyclization of unprotected peptides upon cleavage, without coupling reagents or purification of precursors. We report the synthesis of a library of 24 cyclic peptides and a detailed mechanistic study.
The α-ketoacid–hydroxylamine (KAHA) ligation with 5-oxaproline enables the direct cyclization of peptides upon cleavage from a solid support, without coupling reagents, protecting groups, or purification of the linear precursors. This Fmoc SPPS-based method was applied to the synthesis of a library of 24 homoserine-containing cyclic peptides and was compared side-by-side with the synthesis of the same products using a standard method for cyclizing side-chain protected substrates. A detailed mechanistic study including 2H and 18O labeling experiments and the characterization of reaction intermediates by NMR and mass spectrometry is reported.
Collapse
Affiliation(s)
- Florian Rohrbacher
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . ; http://www.bode.ethz.ch
| | - Gildas Deniau
- Polyphor Ltd. , Hegenheimermattweg 125 , 4123 Allschwil , Switzerland . http://www.polyphor.com
| | - Anatol Luther
- Polyphor Ltd. , Hegenheimermattweg 125 , 4123 Allschwil , Switzerland . http://www.polyphor.com
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . ; http://www.bode.ethz.ch.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan . http://www.itbm.nagoya-u.ac.jp
| |
Collapse
|
22
|
Overcoming Electronics with Strategy. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100023-6.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Yudin AK. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 2015; 6:30-49. [PMID: 28553456 PMCID: PMC5424464 DOI: 10.1039/c4sc03089c] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022] Open
Abstract
A noticeable increase in molecular complexity of drug targets has created an unmet need in the therapeutic agents that are larger than traditional small molecules. Macrocycles, which are cyclic compounds comprising 12 atoms or more, are now recognized as molecules that "are up to the task" to interrogate extended protein interfaces. However, because macrocycles (particularly the ones based on peptides) are equipped with large polar surface areas, achieving cellular permeability and bioavailability is anything but straightforward. While one might consider this to be the Achilles' heel of this class of compounds, the synthetic community continues to develop creative approaches toward the synthesis of macrocycles and their site-selective modification. This perspective provides an overview of both mechanistic and structural issues that bear on macrocycles as a unique class of molecules. The reader is offered a historical foray into some of the classic studies that have resulted in the current renaissance of macrocycles. In addition, an attempt is made to overview the more recent developments that give hope that macrocycles might indeed turn into a useful therapeutic modality.
Collapse
Affiliation(s)
- Andrei K Yudin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada . ; Blog: http://www.amphoteros.com
| |
Collapse
|
24
|
Belding L, Zaretsky S, Rotstein BH, Yudin AK, Dudding T. Shifting the energy landscape of multicomponent reactions using aziridine aldehyde dimers: a mechanistic study. J Org Chem 2014; 79:9465-71. [PMID: 25264960 DOI: 10.1021/jo501242r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A multicomponent reaction between an aziridine aldehyde dimer, isocyanide, and l-proline to afford a chiral piperazinone was studied to gain insight into the stereodetermining and rate-limiting steps of the reaction. The stereochemistry of the reaction was found to be determined by isocyanide addition, while the rate-limiting step was found to deviate from traditional isocyanide-based multicomponent reactions. A first-order rate dependence on aziridine aldehyde dimer and a zero-order rate dependence on all other reagents have been obtained. Computations at the MPWPW91/6-31G(d) level supported the experimental kinetic results and provide insight into the overall mechanism and the factors contributing to stereochemical induction. These factors are similar to traditional isocyanide-based multicomponent reactions, such as the Ugi reaction. The computations revealed that selective formation of a Z-iminium ion plays a key role in controlling the stereoselectivity of isocyanide addition, and the carboxylate group of l-proline mediates stereofacial addition. These conclusions are expected to be applicable to a wide range of reported stereoselective Ugi reactions and provide a basis for understanding the related macrocyclization of peptides with aziridine aldehydes.
Collapse
Affiliation(s)
- Lee Belding
- Brock University , St. Catharines, Ontario L2S 3A1, Canada
| | | | | | | | | |
Collapse
|
25
|
Rotstein BH, Zaretsky S, Rai V, Yudin AK. Small Heterocycles in Multicomponent Reactions. Chem Rev 2014; 114:8323-59. [DOI: 10.1021/cr400615v] [Citation(s) in RCA: 664] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Benjamin H. Rotstein
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Serge Zaretsky
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Vishal Rai
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-pass Road, Bhauri, Bhopal 462 066, MP India
| | - Andrei K. Yudin
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| |
Collapse
|
26
|
Prasanna R, Purushothaman S, Raghunathan R. Rapid assembly of heterocycle grafted macrocycles via tandem one-pot double 1,3-dipolar cycloaddition reaction. Org Biomol Chem 2014; 12:9375-83. [DOI: 10.1039/c4ob01778a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of triazole linked macrocycles grafted with glycospiroheterocycle was accomplished by stereo- and regioselective tandem double 1,3-dipolar cycloaddition (1,3-DC) reaction.
Collapse
Affiliation(s)
- R. Prasanna
- Department of Organic Chemistry
- University of Madras
- Chennai-600025, India
| | - S. Purushothaman
- Department of Organic Chemistry
- University of Madras
- Chennai-600025, India
| | - R. Raghunathan
- Department of Organic Chemistry
- University of Madras
- Chennai-600025, India
| |
Collapse
|
27
|
Willis NJ, Smith JM. An operationally simple, palladium catalysed dehydrogenative cross-coupling reaction of pyridine N-oxides and thiazoles “on water”. RSC Adv 2014. [DOI: 10.1039/c3ra44411b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Tang F, Chen C, Zhou Y, Lin C, Zhang J. Syntheses of indolizinones from an intramolecular one-pot process of gem-dibromoolefins. RSC Adv 2014. [DOI: 10.1039/c4ra09206f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A rare type of indolizinone is constructed from an Intramolecular one-pot process from gem-dibromoolefins.
Collapse
Affiliation(s)
- Fei Tang
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530, PR China
| | - Chaonan Chen
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530, PR China
| | - Yiqian Zhou
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530, PR China
| | - Cai Lin
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530, PR China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530, PR China
- State Key Laboratory of Respiratory Disease
- Guangzhou Medical College
| |
Collapse
|
29
|
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem Rev 2013; 114:901-26. [DOI: 10.1021/cr400031z] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miriam Góngora-Benítez
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Judit Tulla-Puche
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
- Department
of Organic Chemistry, University of Barcelona, Barcelona, 08028 Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
30
|
Template-constrained macrocyclic peptides prepared from native, unprotected precursors. Proc Natl Acad Sci U S A 2013; 110:E3753-60. [PMID: 24043790 DOI: 10.1073/pnas.1311706110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peptide-protein interactions are important mediators of cellular-signaling events. Consensus binding motifs (also known as short linear motifs) within these contacts underpin molecular recognition, yet have poor pharmacological properties as discrete species. Here, we present methods to transform intact peptides into stable, templated macrocycles. Two simple steps install the template. The key reaction is a palladium-catalyzed macrocyclization. The catalysis has broad scope and efficiently forms large rings by engaging native peptide functionality including phenols, imidazoles, amines, and carboxylic acids without the necessity of protecting groups. The tunable reactivity of the template gives the process special utility. Defined changes in reaction conditions markedly alter chemoselectivity. In all cases examined, cyclization occurs rapidly and in high yield at room temperature, regardless of peptide composition or chain length. We show that conformational restraints imparted by the template stabilize secondary structure and enhance proteolytic stability in vitro. Palladium-catalyzed internal cinnamylation is a strong complement to existing methods for peptide modification.
Collapse
|
31
|
Lawson KV, Rose TE, Harran PG. Template-induced macrocycle diversity through large ring-forming alkylations of tryptophan. Tetrahedron 2013; 69:7683-7691. [PMID: 23976797 DOI: 10.1016/j.tet.2013.05.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Macrocyclic peptidomimetics are valuable in research and serve as lead compounds in drug discovery efforts. New methods to prepare such structures are of considerable interest. In this pilot study, we show that an organic template harboring a latent cinnamyl cation participates in novel Friedel-Crafts macrocyclization reactions with tryptophan. Upon joining the template to Trp-Trp-Tyr, a single operation efficiently generates eight unique macrocycles. Each has been isolated and thoroughly characterized. Product distribution as a function of Brønsted and/or Lewis acidic conditions was explored, and outcomes were compared to rearrangements induced within a corresponding tyrosine-linked cyclic ether. The solution structure of a new macrocyclic pyrroloindoline was solved using a combination of two-dimensional NMR methods and molecular mechanics simulations. Template-induced structural diversification of peptide sequences harboring aromatic residues has potential to create myriad macrocycles that target surfaces involved in protein-protein interactions.
Collapse
Affiliation(s)
- Kenneth V Lawson
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
| | | | | |
Collapse
|
32
|
Elduque X, Pedroso E, Grandas A. Straightforward synthesis of cyclic and bicyclic peptides. Org Lett 2013; 15:2038-41. [PMID: 23570412 DOI: 10.1021/ol400726y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles.
Collapse
Affiliation(s)
- Xavier Elduque
- Departament de Química Orgànica and IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | |
Collapse
|
33
|
Chouhan G, James K. Efficient Construction of Proline-Containing β-Turn Mimetic Cyclic Tetrapeptides via CuAAC Macrocyclization. Org Lett 2013; 15:1206-9. [DOI: 10.1021/ol303572t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gagan Chouhan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keith James
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
34
|
Collins JC, Farley KA, Limberakis C, Liras S, Price D, James K. Macrocyclizations for medicinal chemistry: synthesis of druglike macrocycles by high-concentration Ullmann coupling. J Org Chem 2012; 77:11079-90. [PMID: 23167628 DOI: 10.1021/jo302089f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conditions have been identified for the efficient Ullmann macrocyclization of phenol and imidazole nucleophiles with aryl iodides at high reaction concentrations of up to 100 mM and using 5-10 mol % loading of an inexpensive copper catalyst. A range of substitution patterns and ring sizes are tolerated, and the method has been exemplified by the synthesis of a set of druglike macrocycles.
Collapse
Affiliation(s)
- James C Collins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
|