1
|
White B, Dudding T. Catalytic Light-Driven Strategy for Transforming Oximes to Carbonyls. J Org Chem 2024; 89:4569-4578. [PMID: 38478895 DOI: 10.1021/acs.joc.3c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Oxime and carbonyl functional groups serve as powerful chemical hubs for constructing complex synthetic targets and valuable molecular scaffolds. In furthering this value, we report a photopromoted catalytic deoximation protocol for converting oximes and their derivatives to carbonyl functional groups. This strategic approach benefits from the use of renewable light energy input and ambient air conditions, in addition to demonstrating good substrate scope, functional group tolerance, and product yields. In offering, insights into these reactivity mechanistic studies are communicated, and the value of this protocol is further shown through one-pot operations.
Collapse
Affiliation(s)
- Brandon White
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2 S3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2 S3A1, Canada
| |
Collapse
|
2
|
Xu C, Loh CCJ. An ultra-low thiourea catalyzed strain-release glycosylation and a multicatalytic diversification strategy. Nat Commun 2018; 9:4057. [PMID: 30282986 PMCID: PMC6170412 DOI: 10.1038/s41467-018-06329-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The utility of thiourea catalysis in selective glycosylation strategies has gained significant momentum lately due to its versatility in hydrogen bonding or anionic recognition activation modes. The use of these non-covalent interactions constitute a powerful means to construct glycosidic linkages as it mimics physiologically occurring glycosyltransferases. However, glycosyl donor activation through the currently employed catalysts is moderate such that, in general, catalyst loadings are rather high in these transformations. In addition, thiourea catalysis has not been well explored for the synthesis of furanosides. Herein, we demonstrate an ultra-low loadings stereoselective and stereospecific thiourea catalyzed strain-release furanosylation and pyranosylation strategy. Our ultra-low organocatalyzed furanosylation enables a multicatalytic strategy, which opens up a unique avenue towards rapid diversification of synthetic glycosides. In-situ NMR monitoring unravel insights into unknown reaction intermediates and initial rate kinetic studies reveal a plausible synergistic hydrogen bonding/Brønsted acid activation mode. Non-covalent glycosyl donor activation often requires high organocatalyst loadings. Here, the authors demonstrate that strain-release glycosylations can take place at very low thiourea catalyst loadings. In addition, the authors developed a one-pot multicatalytic strategy that can diversify glycosides rapidly.
Collapse
Affiliation(s)
- Chunfa Xu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Charles C J Loh
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund,, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany. .,Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Silver-catalyzed stereoselective formation of glycosides using glycosyl ynenoates as donors. Chem Commun (Camb) 2018; 54:8626-8629. [PMID: 30019713 DOI: 10.1039/c8cc02494d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A silver-catalyzed glycosylation reaction employing readily accessible and stable glycosyl ynenoates is developed. This reaction is mostly high yielding and exhibits varying levels of stereoinversion at the anomeric position. Compared to established and versatile Yu's gold catalysis, this chemistry features the use of substantially cheaper AgNTf2.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zaigang Luo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Abstract
Naturally occurring glycans and glycoconjugates have extremely diverse structures and biological functions. Syntheses of these molecules and their artificial mimics, which have attracted the interest of those developing new therapeutic agents, rely on glycosylation methodologies to construct the various glycosidic linkages. In this regard, a wide array of glycosylation methods have been developed, and they mainly involve the substitution of a leaving group on the anomeric carbon of a glycosyl donor with an acceptor (a nucleophile) under the action of a particular promoter (usually a stoichiometric electrophile). However, glycosylations involving inherently unstable or unreactive donors/acceptors are still problematic. In those systems, reactions involving nucleophilic, electrophilic, or acidic species present on the leaving group and the promoter could become competitive and detrimental to the glycosylation. To address this problem, we applied the recently developed chemistry of alkynophilic gold(I) catalysts to the development of new glycosylation reactions that would avoid the use of the conventional leaving groups and promoters. Gratifyingly, glycosyl o-alkynylbenzoates (namely, glycosyl o-hexynyl- and o-cyclopropylethynylbenzoates) turned out to be privileged donors under gold(I) catalysis with Ph3PAuNTf2 and Ph3PAuOTf. The merits of this new glycosylation protocol include the following: (1) the donors are easily prepared and are generally shelf-stable; (2) the promotion is catalytic; (3) the substrate scope is extremely wide; (4) relatively few side reactions are observed; (5) the glycosylation conditions are orthogonal to those of conventional methods; and (6) the method is operationally simple. Indeed, this method has been successfully applied in the synthesis of a wide variety of complex glycans and glycoconjugates, including complex glycosides of epoxides, nucleobases, flavonoids, lignans, steroids, triterpenes, and peptides. The direct glycosylation of some sensitive aglycones, such as dammarane C20-ol and sugar oximes, and the glycosylation-initiated polymerization of tetrahydrofuran were achieved for the first time. The gold(I) catalytic cycle of the present glycosylation protocol has been fully elucidated. In particular, key intermediates, such as the 1-glycosyloxyisochromenylium-4-gold(I) and isochromen-4-ylgold(I) complexes, have been unambiguously characterized. Exploiting the former glycosyloxypyrylium intermediate, SN2-type glycosylations were realized in specific cases, such as β-mannosylation/rhamnosylation. The protodeauration of the latter vinylgold(I) intermediate has been reported to be critically important for the gold(I) catalytic cycle. Thus, the addition of a strong acid as a cocatalyst can dramatically reduce the required loading of the gold(I) catalyst (down to 0.001 equiv). C-Glycosylation with silyl nucleophiles can proceed catalytically when moisture, which is sequestered by molecular sieves, can serve as the H+ donor for the required protodeauration step. Indeed, the unique mechanism explains the merits and broad applicability of the present glycosylation method and provides a foundation for future developments in glycosylation methodologies that mainly involve improving the diastereoselectivity and catalytic efficiency of glycosylations.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
6
|
Pifferi C, Daskhan GC, Fiore M, Shiao TC, Roy R, Renaudet O. Aminooxylated Carbohydrates: Synthesis and Applications. Chem Rev 2017; 117:9839-9873. [PMID: 28682060 DOI: 10.1021/acs.chemrev.6b00733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.
Collapse
Affiliation(s)
- Carlo Pifferi
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Gour Chand Daskhan
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Michele Fiore
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France
| | - Tze Chieh Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montreal , P.O. Box 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250 , F-38000 Grenoble, France.,Institut Universitaire de France , 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
8
|
Zhang L, Li L, Bai S, Zhou X, Wang P, Li M. Access to Diosgenyl Glycoconjugates via Gold(I)-Catalyzed Etherification of Diosgen-3-yl ortho-Hexynylbenzoate. Org Lett 2016; 18:6030-6033. [DOI: 10.1021/acs.orglett.6b02963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Zhang
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Linfeng Li
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorda Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Shujin Bai
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Xin Zhou
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Peng Wang
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Ming Li
- Key
Laboratory of Marine Medicine, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
9
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
10
|
Thadke SA, Neralkar M, Hotha S. Facile synthesis of aminooxy glycosides by gold(III)-catalyzed glycosidation. Carbohydr Res 2016; 430:16-23. [DOI: 10.1016/j.carres.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/03/2023]
|
11
|
Affiliation(s)
- Kevin Chung
- Department of Chemistry, Stanford University, Stanford, 94305 California, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, 94305 California, United States
| |
Collapse
|
12
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|
13
|
Zhu Y, Laval S, Tang Y, Lian G, Yu B. A Polystyrene-Bound Triphenylphosphine Gold(I) Catalyst for the Glycosylation of Glycosylortho-Hexynylbenzoates. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yugen Zhu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Stéphane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yu Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Gaoyan Lian
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; ?Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Li J, Dai Y, Li W, Laval S, Xu P, Yu B. Effective Synthesis of α-d-GlcN-(1→4)-d-GlcA/l-IdoA Glycosidic Linkage under Gold(I) Catalysis. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiakun Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Yuanwei Dai
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Stéphane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
15
|
Zhu Y, Yu B. Highly Stereoselective β-Mannopyranosylation via the 1-α-Glycosyloxy-isochromenylium-4-gold(I) Intermediates. Chemistry 2015; 21:8771-80. [DOI: 10.1002/chem.201500648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 01/02/2023]
|
16
|
Chen X, Shen D, Wang Q, Yang Y, Yu B. ortho-(Methyltosylaminoethynyl)benzyl glycosides as new glycosyl donors for latent-active glycosylation. Chem Commun (Camb) 2015; 51:13957-60. [DOI: 10.1039/c5cc05651a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new glycosylation protocol with ortho-(methyltosylaminoethynyl)benzyl glycosides as donors is disclosed.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Dacheng Shen
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Qiaoling Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
17
|
Kancharla PK, Kato T, Crich D. Probing the influence of protecting groups on the anomeric equilibrium in sialic acid glycosides with the persistent radical effect. J Am Chem Soc 2014; 136:5472-80. [PMID: 24606062 PMCID: PMC4004215 DOI: 10.1021/ja501276r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/11/2022]
Abstract
A method for the investigation of the influence of protecting groups on the anomeric equilibrium in the sialic acid glycosides has been developed on the basis of the equilibration of O-sialyl hydroxylamines by reversible homolytic scission of the glycosidic bond following the dictates of the Fischer-Ingold persistent radical effect. It is found that a trans-fused 4O,5N-oxazolidinone group stabilizes the equatorial glycoside, i.e., reduces the anomeric effect, when compared to the 4O,5N-diacetyl protected systems. This effect is discussed in terms of the powerful electron-withdrawing nature of the oxazolidinone system, which in turn is a function of its strong dipole moment in the mean plane of the pyranose ring system. The new equilibration method displays a small solvent effect and is most pronounced in less polar media consistent with the anomeric effect in general. The unusual (for anomeric radicals) poor kinetic selectivity of anomeric sialyl radicals is discussed in terms of the planar π-type structure of these radicals and of competing 1,3-diaxial interactions in the diastereomeric transition states for trapping on the α- and β-faces of the radical.
Collapse
Affiliation(s)
- Pavan K Kancharla
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | | | |
Collapse
|
18
|
Ulrich S, Boturyn D, Marra A, Renaudet O, Dumy P. Oxime Ligation: A Chemoselective Click-Type Reaction for Accessing Multifunctional Biomolecular Constructs. Chemistry 2013; 20:34-41. [DOI: 10.1002/chem.201302426] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Tang Y, Li J, Zhu Y, Li Y, Yu B. Mechanistic Insights into the Gold(I)-Catalyzed Activation of Glycosyl ortho-Alkynylbenzoates for Glycosidation. J Am Chem Soc 2013; 135:18396-405. [DOI: 10.1021/ja4064316] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu Tang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Jiakun Li
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yugen Zhu
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Yao Li
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Biao Yu
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| |
Collapse
|
20
|
Orbisaglia S, Jacques B, Braunstein P, Hueber D, Pale P, Blanc A, de Frémont P. Synthesis, Characterization, and Catalytic Activity of Cationic NHC Gold(III) Pyridine Complexes. Organometallics 2013. [DOI: 10.1021/om400338k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Serena Orbisaglia
- Laboratoire de Chimie de Coordination,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
- School
of Science and Technology, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino MC, Italy
| | - Béatrice Jacques
- Laboratoire de Chimie de Coordination,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| | - Damien Hueber
- Laboratoire
de Synthèse, Réactivité Organique et Catalyse,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| | - Patrick Pale
- Laboratoire
de Synthèse, Réactivité Organique et Catalyse,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| | - Aurélien Blanc
- Laboratoire
de Synthèse, Réactivité Organique et Catalyse,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| | - Pierre de Frémont
- Laboratoire de Chimie de Coordination,
Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 Rue Blaise Pascal, CS 90032, 67081
Strasbourg, France
| |
Collapse
|
21
|
Xiao G, Yu B. Total synthesis of starfish saponin goniopectenoside B. Chemistry 2013; 19:7708-12. [PMID: 23649953 DOI: 10.1002/chem.201301186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 11/07/2022]
Abstract
Star quality: Goniopectenoside B, a minor asterosaponin from starfish Goniopecten demonstrans with antifouling activity, has been synthesized in a convergent 21 steps and in 4.3 % overall yield starting from adrenosterone. This represents the first synthesis of a complex asterosaponin, which are ubiquitous and characteristic in starfish as defense chemicals (see figure).
Collapse
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China
| | | |
Collapse
|
22
|
Yu J, Sun J, Niu Y, Li R, Liao J, Zhang F, Yu B. Synthetic access toward the diverse ginsenosides. Chem Sci 2013. [DOI: 10.1039/c3sc51479j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|