1
|
Maji S, Akhtar S, Halder S, Chatterjee I, Verma DP, Verma NK, Saroj J, Saxena D, Maitra R, Sharma J, Sharma B, Sakurai H, Mitra K, Chopra S, Ghosh JK, Panda G. Corannulene Amino Acid-Derived Water-Soluble Amphiphilic Buckybowls as Broad-Spectrum Membrane Targeting Antibacterial Agents. J Med Chem 2024; 67:15041-15060. [PMID: 39213648 DOI: 10.1021/acs.jmedchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To date, the use of corannulene has been restricted in the area of material science, but its application in biomedical research has yet to be established due to its nonsolubility in an aqueous environment and synthetic infeasibility. Herein, we detail the development of a new family of highly curved π-conjugated corannulene-containing unnatural α-amino acid (CAA) derivatives to overcome this challenge. These CAAs have been extended as novel constituents for the synthesis of corannulene-containing water-soluble cationic peptides (CCPs), which display inhibitory activity against broad-spectrum pathogenic bacteria along with drug-resistant bacteria via a membrane-damaging mechanism. Importantly, several of the synthesized peptides were found to be appreciably nonhemolytic against hRBCs and noncytotoxic against mammalian 3T3 cells. In vivo efficacy studies of the potent and least cytotoxic peptide 6a demonstrated clearance of bacteria from the spleen, liver, lung, and blood of mice infected with S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Saroj Maji
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Sabyasachi Halder
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Dharampura, Jagdalpur 494001, Chhattisgarh, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rahul Maitra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawana Sharma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Cruz-Hernández C, López-Camacho PY, Basurto-Islas G, Rojas A, Guadarrama P, Martínez-Herrera M. Click synthesis of dendronized malonates for the preparation of amphiphilic dendro[60]fullerenes. Org Biomol Chem 2024; 22:3328-3339. [PMID: 38584463 DOI: 10.1039/d3ob01986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Fullerene C60 and its malonate derivatives, produced via the Bingel-Hirsch reaction, have displayed promising properties against various diseases. These molecules have great therapeutic potential, but their broad use has been limited due to poor aqueous solubility and toxicity caused by accumulation. In this study, we synthesized new malonates and malonamides attached to first- and second-generation polyester dendrons using click chemistry (CuAAC). These dendrons were then linked at C60 through the Bingel-Hirsch reaction, resulting in an amphiphilic system that retains the hydrophobic nature of C60. The dendronized malonate derivatives showed good reaction yields for the Bingel-Hirsch mono-adducts and were easier to work with than the corresponding malonamides. However, the malonamide derivatives, which were obtained through a multistep reaction sequence, showed moderate yields in the Bingel-Hirsch reaction. Surprisingly, removing acetonide protecting groups from dendritic architectures was more challenging than anticipated, likely due to product decomposition. Only the corresponding free malonate derivatives 25 and 26 were obtained, but in a low yield due to decomposition under the reaction conditions. Meanwhile, it was not possible to obtain the corresponding malonamide derivatives 27 and 28. Currently, efforts are being made to improve the production of the desired molecules and to design new synthesis routes that allow direct access to the desired poly-hydroxylated derivatives. These derivatives will be evaluated as multitarget ligands against Alzheimer's disease, through their use as inhibitors of amyloid β-peptide aggregation, acetylcholinesterase modulators, and antioxidants.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| | - Perla Y López-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierias, Universidad de Guanajuato, Campus León, León Guanajuato, México
| | - Aaron Rojas
- Departamento de Química del Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, C.P. 07360 Mexico City, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Melchor Martínez-Herrera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, CDMX, 05300, Mexico.
| |
Collapse
|
3
|
Illescas BM, Pérez-Sánchez A, Mallo A, Martín-Domenech Á, Rodríguez-Crespo I, Martín N. Multivalent cationic dendrofullerenes for gene transfer: synthesis and DNA complexation. J Mater Chem B 2021; 8:4505-4515. [PMID: 32369088 DOI: 10.1039/d0tb00113a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-viral nucleic acid vectors able to display high transfection efficiencies with low toxicity and overcoming the multiple biological barriers are needed to further develop the clinical applications of gene therapy. The synthesis of hexakis-adducts of [60]fullerene endowed with 12, 24 and 36 positive ammonium groups and a tridecafullerene appended with 120 positive charges has been performed. The delivery of a plasmid containing the green fluorescent protein (EGFP) gene into HEK293 (Human Embryonic Kidney) cells resulting in effective gene expression has demonstrated the efficacy of these compounds to form polyplexes with DNA. Particularly, giant tridecafullerene macromolecules have shown higher efficiency in the complexation and transfection of DNA. Thus, they can be considered as promising non-viral vectors for transfection purposes.
Collapse
Affiliation(s)
- Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Alfonso Pérez-Sánchez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Araceli Mallo
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ángel Martín-Domenech
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | | | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain. and IMDEA-Nanociencia, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Meena CL, Singh D, Kizhakeetil B, Prasad M, George M, Tothadi S, Sanjayan GJ. Triazine-Based Janus G-C Nucleobase as a Building Block for Self-Assembly, Peptide Nucleic Acids, and Smart Polymers. J Org Chem 2021; 86:3186-3195. [PMID: 33523657 DOI: 10.1021/acs.joc.0c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This communication reports on the utility of a triazine-based self-assembling system, reminiscent of a Janus G-C nucleobase, as a building block for developing (1) supramolecular polymers, (2) peptide nucleic acids (PNAs), and (3) smart polymers. The strategically positioned self-complementary triple H-bonding arrays DDA and AAD facilitate efficient self-assembly, leading to a linear supramolecular polymer.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Dharmendra Singh
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Bhavya Kizhakeetil
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Manasa Prasad
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Malini George
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, Council of Scientific and Industrial Research National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
Herreros-López A, Carini M, Da Ros T, Carofiglio T, Marega C, La Parola V, Rapozzi V, Xodo L, Alshatwi AA, Hadad C, Prato M. Nanocrystalline cellulose-fullerene: Novel conjugates. Carbohydr Polym 2017; 164:92-101. [DOI: 10.1016/j.carbpol.2017.01.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
|
6
|
Campisciano V, La Parola V, Liotta LF, Giacalone F, Gruttadauria M. Fullerene-ionic-liquid conjugates: a new class of hybrid materials with unprecedented properties. Chemistry 2015; 21:3327-34. [PMID: 25589382 DOI: 10.1002/chem.201406067] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 11/10/2022]
Abstract
A modular approach has been followed for the synthesis of a series of fullerene-ionic-liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL(-1) in several cases. In addition, one of the C60 -IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano-onions and nanocages with few-layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDAX), and high-resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki-Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.
Collapse
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze s/n, Ed. 17, 90128 Palermo (Italy)
| | | | | | | | | |
Collapse
|
7
|
Hung C, Chang W, Liu S, Wu S, Chu C, Tsai Y, Imae T. Self‐aggregation of amphiphilic [60]fullerenyl focal point functionalized PAMAM dendrons into pseudodendrimers: DNA binding involving dendriplex formation. J Biomed Mater Res A 2014; 103:1595-604. [DOI: 10.1002/jbm.a.35299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng‐Hsiang Hung
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Wen‐Wei Chang
- School of Biomedical Sciences, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Ssu‐Ching Liu
- School of Biomedical Sciences, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Shang‐Jung Wu
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Chih‐Chien Chu
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
- Department of Medical EducationChung Shan Medical University HospitalTaichung40201 Taiwan
| | - Ya‐Ju Tsai
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607 Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607 Taiwan
| |
Collapse
|
8
|
Jennepalli S, Pyne SG, Keller PA. [60]Fullerenyl amino acids and peptides: a review of their synthesis and applications. RSC Adv 2014. [DOI: 10.1039/c4ra07310j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review reports on the latest progress in the synthesis of fullerenyl amino acids and related derivatives, and categorises the molecules into functional types for different uses: these include directly attached fullerenyl amino acids, fullerenyl N- and C-capping amino acids, and those amino acids in which the [60]fullerene group is attached to the amino acid side chain.
Collapse
Affiliation(s)
- Sreenu Jennepalli
- School of Chemistry
- University of Wollongong
- Wollongong, Australia
- ARC Centre of Excellence for Electromaterials Science
- University of Wollongong
| | - Stephen G. Pyne
- School of Chemistry
- University of Wollongong
- Wollongong, Australia
| | - Paul A. Keller
- School of Chemistry
- University of Wollongong
- Wollongong, Australia
- ARC Centre of Excellence for Electromaterials Science
- University of Wollongong
| |
Collapse
|
9
|
Quintana M, López AM, Rapino S, Toma FM, Iurlo M, Carraro M, Sartorel A, Maccato C, Ke X, Bittencourt C, Da Ros T, Van Tendeloo G, Marcaccio M, Paolucci F, Prato M, Bonchio M. Knitting the catalytic pattern of artificial photosynthesis to a hybrid graphene nanotexture. ACS NANO 2013; 7:811-817. [PMID: 23244166 DOI: 10.1021/nn305313q] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The artificial leaf project calls for new materials enabling multielectron catalysis with minimal overpotential, high turnover frequency, and long-term stability. Is graphene a better material than carbon nanotubes to enhance water oxidation catalysis for energy applications? Here we show that functionalized graphene with a tailored distribution of polycationic, quaternized, ammonium pendants provides an sp(2) carbon nanoplatform to anchor a totally inorganic tetraruthenate catalyst, mimicking the oxygen evolving center of natural PSII. The resulting hybrid material displays oxygen evolution at overpotential as low as 300 mV at neutral pH with negligible loss of performance after 4 h testing. This multilayer electroactive asset enhances the turnover frequency by 1 order of magnitude with respect to the isolated catalyst, and provides a definite up-grade of the carbon nanotube material, with a similar surface functionalization. Our innovation is based on a noninvasive, synthetic protocol for graphene functionalization that goes beyond the ill-defined oxidation-reduction methods, allowing a definite control of the surface properties.
Collapse
Affiliation(s)
- Mildred Quintana
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|