1
|
Mishra R, Kaur P, Soni R, Madan A, Agarwal P, Singh G. Decoding the photoprotection strategies and manipulating cyanobacterial photoprotective metabolites, mycosporine-like amino acids, for next-generation sunscreens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108744. [PMID: 38781638 DOI: 10.1016/j.plaphy.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The most recent evaluation of the impacts of UV-B radiation and depletion of stratospheric ozone points out the need for effective photoprotection strategies for both biological and nonbiological components. To mitigate the disruptive consequences of artificial sunscreens, photoprotective compounds synthesized from gram-negative, oxygenic, and photoautotrophic prokaryote, cyanobacteria have been studied. In a quest to counteract the harmful UV radiation, cyanobacterial species biosynthesize photoprotective metabolites named as mycosporine-like amino acids (MAAs). The investigation of MAAs as potential substitutes for commercial sunscreen compounds is motivated by their inherent characteristics, such as antioxidative properties, water solubility, low molecular weight, and high molar extinction coefficients. These attributes contribute to the stability of MAAs and make them promising candidates for natural alternatives in sunscreen formulations. They are effective at reducing direct damage caused by UV radiation and do not lead to the production of reactive oxygen radicals. In order to better understand the role, ecology, and its application at a commercial scale, tools like genome mining, heterologous expression, and synthetic biology have been explored in this review to develop next-generation sunscreens. Utilizing tactical concepts of bio-nanoconjugate formation for the development of an efficient MAA-nanoparticle conjugate structure would not only give the sunscreen complex stability but would also serve as a promising tool for the production of analogues. This review would provide insight on efforts to produce MAAs by diversifying the biosynthetic pathways, modulating the precursors and stress conditions, and comprehending the gene cluster arrangement for MAA biosynthesis and its application in developing effective sunscreen.
Collapse
Affiliation(s)
- Reema Mishra
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Pritam Kaur
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Renu Soni
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Akanksha Madan
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Preeti Agarwal
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| | - Garvita Singh
- Department of Botany, Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110049, India.
| |
Collapse
|
2
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Kudo F, Chikuma T, Nambu M, Chisuga T, Sumimoto S, Iwasaki A, Suenaga K, Miyanaga A, Eguchi T. Unique Initiation and Termination Mechanisms Involved in the Biosynthesis of a Hybrid Polyketide-Nonribosomal Peptide Lyngbyapeptin B Produced by the Marine Cyanobacterium Moorena bouillonii. ACS Chem Biol 2023; 18:875-883. [PMID: 36921345 PMCID: PMC10127204 DOI: 10.1021/acschembio.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Takuji Chikuma
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Mizuki Nambu
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Shimpei Sumimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Oznobikhina LP, Lazarev IM, Lazareva NF. Experimental and Theoretical Investigation of the Structure of Acetoacetanilide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Taton A, Rohrer S, Diaz B, Reher R, Caraballo Rodriguez AM, Pierce ML, Dorrestein PC, Gerwick L, Gerwick WH, Golden JW. Heterologous Expression in Anabaena of the Columbamide Pathway from the Cyanobacterium Moorena bouillonii and Production of New Analogs. ACS Chem Biol 2022; 17:1910-1923. [DOI: 10.1021/acschembio.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnaud Taton
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Sebastian Rohrer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Brienna Diaz
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Raphael Reher
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06114, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Philipps University of Marburg, Marburg 35037, Germany
| | | | - Marsha L. Pierce
- Department of Pharmacology, Midwestern University, Downers Grove, Illinois 60515, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - James W. Golden
- School of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Xu Y, Du X, Yu X, Jiang Q, Zheng K, Xu J, Wang P. Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Mar Drugs 2022; 20:341. [PMID: 35736144 PMCID: PMC9225448 DOI: 10.3390/md20060341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is much higher than expected. Unfortunately, the majority of them are silent or only weakly expressed under traditional laboratory culture conditions. Furthermore, the large proportion of marine microorganisms are either uncultivable or cannot be genetically manipulated. Efficient heterologous expression systems can activate cryptic BGCs and increase target compound yield, allowing researchers to explore more unknown MNPs. When developing heterologous expression of MNPs, it is critical to consider heterologous host selection as well as genetic manipulations for BGCs. In this review, we summarize current progress on the heterologous expression of MNPs as a reference for future research.
Collapse
Affiliation(s)
- Yushan Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xinhua Du
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xionghui Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Qian Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Kaiwen Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Jinzhong Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
- State Key Laboratory of Motor Vehicle Biofuel Technology, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
8
|
Expression of Cyanobacterial Biosynthetic Gene Clusters in Escherichia coli. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2489:315-332. [PMID: 35524058 DOI: 10.1007/978-1-0716-2273-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria represent an attractive source of natural bioactive compounds, ranging from sunscreens to cancer treatments. While many biosynthetic gene clusters (BGCs) that encode cyanobacterial natural products are known, the slow growth and lack of genetic tools in the native producers hampers their modification, characterization, and large-scale production. By engineering heterologous hosts for the expression of cyanobacterial BGCs, sufficient material can be produced for research or industry. Although several hosts have been evaluated for the expression of cyanobacterial natural products, this work details the process of expressing BGCs in Escherichia coli via promoter exchange.
Collapse
|
9
|
Wu X, Li W. The Applications of
β
‐Keto
Amides for Heterocycle Synthesis. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqiang Wu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| | - Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| |
Collapse
|
10
|
Avalon NE, Murray AE, Daligault HE, Lo CC, Davenport KW, Dichosa AEK, Chain PSG, Baker BJ. Bioinformatic and Mechanistic Analysis of the Palmerolide PKS-NRPS Biosynthetic Pathway From the Microbiome of an Antarctic Ascidian. Front Chem 2021; 9:802574. [PMID: 35004620 PMCID: PMC8739492 DOI: 10.3389/fchem.2021.802574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Complex interactions exist between microbiomes and their hosts. Increasingly, defensive metabolites that have been attributed to host biosynthetic capability are now being recognized as products of host-associated microbes. These unique metabolites often have bioactivity targets in human disease and can be purposed as pharmaceuticals. Polyketides are a complex family of natural products that often serve as defensive metabolites for competitive or pro-survival purposes for the producing organism, while demonstrating bioactivity in human diseases as cholesterol lowering agents, anti-infectives, and anti-tumor agents. Marine invertebrates and microbes are a rich source of polyketides. Palmerolide A, a polyketide isolated from the Antarctic ascidian Synoicum adareanum, is a vacuolar-ATPase inhibitor with potent bioactivity against melanoma cell lines. The biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites are encoded in the genomes of the producers as discrete genomic elements. A candidate palmerolide BGC was identified from a S. adareanum microbiome-metagenome based on a high degree of congruence with a chemical structure-based retrobiosynthetic prediction. Protein family homology analysis, conserved domain searches, active site and motif identification were used to identify and propose the function of the ∼75 kbp trans-acyltransferase (AT) polyketide synthase-non-ribosomal synthase (PKS-NRPS) domains responsible for the stepwise synthesis of palmerolide A. Though PKS systems often act in a predictable co-linear sequence, this BGC includes multiple trans-acting enzymatic domains, a non-canonical condensation termination domain, a bacterial luciferase-like monooxygenase (LLM), and is found in multiple copies within the metagenome-assembled genome (MAG). Detailed inspection of the five highly similar pal BGC copies suggests the potential for biosynthesis of other members of the palmerolide chemical family. This is the first delineation of a biosynthetic gene cluster from an Antarctic microbial species, recently proposed as Candidatus Synoicihabitans palmerolidicus. These findings have relevance for fundamental knowledge of PKS combinatorial biosynthesis and could enhance drug development efforts of palmerolide A through heterologous gene expression.
Collapse
Affiliation(s)
- Nicole E. Avalon
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Alison E. Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| | | | - Chien-Chi Lo
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | | | | | - Bill J. Baker
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
12
|
Li W, Zheng Y, Qu E, Bai J, Deng Q. β
‐Keto Amides: A Jack‐of‐All‐Trades Building Block in Organic Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yan Zheng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jin Bai
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
13
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
14
|
Taton A, Ecker A, Diaz B, Moss NA, Anderson B, Reher R, Leão TF, Simkovsky R, Dorrestein PC, Gerwick L, Gerwick WH, Golden JW. Heterologous Expression of Cryptomaldamide in a Cyanobacterial Host. ACS Synth Biol 2020; 9:3364-3376. [PMID: 33180461 DOI: 10.1021/acssynbio.0c00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, nonribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drug leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers. Here we report a set of genetic tools for the heterologous expression of biosynthetic gene clusters in the cyanobacteria Synechococcus elongatus PCC 7942 and Anabaena (Nostoc) PCC 7120. To facilitate the transfer of gene clusters in both strains, we engineered a strain of Anabaena that contains S. elongatus homologous sequences for chromosomal recombination at a neutral site and devised a CRISPR-based strategy to efficiently obtain segregated double recombinant clones of Anabaena. These genetic tools were used to express the large 28.7 kb cryptomaldamide biosynthetic gene cluster from the marine cyanobacterium Moorena (Moorea) producens JHB in both model strains. S. elongatus did not produce cryptomaldamide; however, high-titer production of cryptomaldamide was obtained in Anabaena. The methods developed in this study will facilitate the heterologous expression of biosynthetic gene clusters isolated from marine cyanobacteria and complex metagenomic samples.
Collapse
|
15
|
Wells KN, Videau P, Nelson D, Eiting JE, Philmus B. The influence of sigma factors and ribosomal recognition elements on heterologous expression of cyanobacterial gene clusters in Escherichia coli. FEMS Microbiol Lett 2019; 365:5047307. [PMID: 29982530 DOI: 10.1093/femsle/fny164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial natural products offer new possibilities for drugs and lead compounds but many factors can inhibit the production of sufficient yields for pharmaceutical processes. While Escherichia coli and Streptomyces sp. have been used as heterologous expression hosts to produce cyanobacterial natural products, they have not met with resounding success largely due to their inability to recognize cyanobacterial promoter regions. Recent work has shown that the filamentous freshwater cyanobacterium Anabaena sp. strain PCC 7120 recognizes various cyanobacterial promoter regions and can produce lyngbyatoxin A from the native promoter. Introduction of Anabaena sigma factors into E. coli might allow the native transcriptional machinery to recognize cyanobacterial promoters. Here, all 12 Anabaena sigma factors were expressed in E. coli and subsets were found to initiate transcription from several cyanobacterial promoters based on transcriptional fusions to the chloramphenicol acetyltransferase (CAT) reporter. Expression of individual Anabaena sigma factors in E. coli did not result in lyngbyatoxin A production from its native cyanobacterial gene cluster, possibly hindered by deficiencies in recognition of cyanobacterial ribosomal binding sites by native E. coli translational machinery. This represents an important step toward engineering E. coli into a general heterologous expression host for cyanobacterial biosynthetic gene cluster expression.
Collapse
Affiliation(s)
- Kaitlyn N Wells
- Undergraduate Honors College, 450 Learning Innovation Center, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Jessie E Eiting
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Thuan NH, An TT, Shrestha A, Canh NX, Sohng JK, Dhakal D. Recent Advances in Exploration and Biotechnological Production of Bioactive Compounds in Three Cyanobacterial Genera: Nostoc, Lyngbya, and Microcystis. Front Chem 2019; 7:604. [PMID: 31552222 PMCID: PMC6734169 DOI: 10.3389/fchem.2019.00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria, are only Gram-negative bacteria with the capacity of oxygenic photosynthesis, so termed as “Cyanophyta” or “blue-green algae.” Their habitat is ubiquitous, which includes the diverse environments, such as soil, water, rock and other organisms (symbiosis, commensalism, or parasitism, etc.,). They are characterized as prominent producers of numerous types of important compounds with anti-microbial, anti-viral, anti-inflammatory and anti-tumor properties. Among the various cyanobacterial genera, members belonging to genera Nostoc, Lyngbya, and Microcystis possess greater attention. The major reason for that is the strains belonging to these genera produce the compounds with diverse activities/structures, including compounds in preclinical and/or clinical trials (cryptophycin and curacin), or the compounds retaining unique activities such as protease inhibitor (micropeptins and aeruginosins). Most of these compounds were tested for their efficacy and mechanism of action(MOA) through in vitro and/or in vivo studies. Recently, the advances in culture techniques of these cyanobacteria, and isolation, purification, and chromatographic analysis of their compounds have revealed insurmountable novel bioactive compounds from these cyanobacteria. This review provides comprehensive update on the origin, isolation and purification methods, chemical structures and biological activities of the major compounds from Nostoc, Lyngbya, and Microcystis. In addition, multi-omics approaches and biotechnological production of compounds from selected cyanobacterial genera have been discussed.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Tran Tuan An
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam, South Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| |
Collapse
|
17
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
18
|
Knoot CJ, Khatri Y, Hohlman RM, Sherman DH, Pakrasi HB. Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019; 8:1941-1951. [PMID: 31284716 PMCID: PMC6724726 DOI: 10.1021/acssynbio.9b00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria produce numerous valuable bioactive secondary metabolites (natural products) including alkaloids, isoprenoids, nonribosomal peptides, and polyketides. However, the genomic organization of the biosynthetic gene clusters, complex gene expression patterns, and low compound yields synthesized by the native producers currently limits access to the vast majority of these valuable molecules for detailed studies. Molecular cloning and expression of such clusters in heterotrophic hosts is often precarious owing to genetic and biochemical incompatibilities. Production of such biomolecules in photoautotrophic hosts analogous to the native producers is an attractive alternative that has been under-explored. Here, we describe engineering of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce key compounds of the hapalindole family of indole-isonitrile alkaloids. Engineering of the 42-kbp "fam" hapalindole pathway from the cyanobacterium Fischerella ambigua UTEX 1903 into S2973 was accomplished by rationally reconstructing six to seven core biosynthetic genes into synthetic operons. The resulting Synechococcus strains afforded controllable production of indole-isonitrile biosynthetic intermediates and hapalindoles H and 12-epi-hapalindole U at a titer of 0.75-3 mg/L. Exchanging genes encoding fam cyclase enzymes in the synthetic operons was employed to control the stereochemistry of the resulting product. Establishing a robust expression system provides a facile route to scalable levels of similar natural and new forms of bioactive hapalindole derivatives and its structural relatives (e.g., fischerindoles, welwitindolinones). Moreover, this versatile expression system represents a promising tool for exploring other functional characteristics of orphan gene products that mediate the remarkable biosynthesis of this important family of natural products.
Collapse
Affiliation(s)
- Cory J Knoot
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| | - Yogan Khatri
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Robert M Hohlman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Himadri B Pakrasi
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
19
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
20
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
21
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
22
|
Greunke C, Duell ER, D’Agostino PM, Glöckle A, Lamm K, Gulder TAM. Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic potential. Metab Eng 2018; 47:334-345. [DOI: 10.1016/j.ymben.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022]
|
23
|
Moss NA, Leao T, Glukhov E, Gerwick L, Gerwick WH. Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria. Methods Enzymol 2018; 604:3-43. [PMID: 29779657 DOI: 10.1016/bs.mie.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria.
Collapse
Affiliation(s)
- Nathan A Moss
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Tiago Leao
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Evgenia Glukhov
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Lena Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States.
| |
Collapse
|
24
|
Yang G, Cozad MA, Holland DA, Zhang Y, Luesch H, Ding Y. Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synth Biol 2018; 7:664-671. [PMID: 29304277 DOI: 10.1021/acssynbio.7b00397] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycosporine-like amino acids (MAAs) are secondary metabolites of a variety of marine organisms including cyanobacteria and macroalgae. These compounds have strong ultraviolet (UV) absorption maxima between 310 and 362 nm and are biological sunscreens for counteracting the damaging effects of UV radiation in nature. The common MAA shinorine has been used as one key active ingredient of environmentally friendly sunscreen creams. Commercially used shinorine is isolated from one red algae that is generally harvested from the wild. Here, we describe the use of Synechocystis sp. PCC6803 as a host for the heterologous production of shinorine. We mined a shinorine gene cluster from the filamentous cyanobacterium Fischerella sp. PCC9339. When expressing the cluster in Synechocystis sp. PCC6803, we observed the production of shinorine using LC-MS analysis, but its productivity was three times lower than the native producer. Integrated transcriptional and metabolic profiling identified rate-limiting steps in the heterologous production of shinorine. The use of multiple promoters led to a 10-fold increase of its yield to 2.37 ± 0.21 mg/g dry biomass weight, comparable to commercially used shinorine producer. The UV protection of shinorine was further confirmed using the engineered Synechocystis sp. PCC6803. This work was the first time to demonstrate the photosynthetic overproduction of MAA. The results suggest that Synechocystis sp. PCC6803 can have broad applications as the synthetic biology chassis to produce other cyanobacterial natural products, expediting the translation of genomes into chemicals.
Collapse
Affiliation(s)
- Guang Yang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Monica A. Cozad
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Destin A. Holland
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yi Zhang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
25
|
Mao X, Liu Z, Sun J, Lee SY. Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv 2017; 35:1004-1021. [DOI: 10.1016/j.biotechadv.2017.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
|
26
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
27
|
Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways. Sci Rep 2017; 7:11888. [PMID: 28928426 PMCID: PMC5605751 DOI: 10.1038/s41598-017-12244-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria produce structurally and functionally diverse polyketides, nonribosomal peptides and their hybrids. Sfp-type phosphopantetheinyl transferases (PPTases) are essential to the production of these compounds via functionalizing carrier proteins (CPs) of biosynthetic megaenzymes. However, cyanobacterial Sfp-type PPTases remain poorly characterized, posing a significant barrier to the exploitation of cyanobacteria for biotechnological and biomedical applications. Herein, we describe the detailed characterization of multiple cyanobacterial Sfp-type PPTases that were rationally selected. Biochemical characterization of these enzymes along with the prototypic enzyme Sfp from Bacillus subtilis demonstrated their varying specificities toward 11 recombinant CPs of different types of biosynthetic pathways from cyanobacterial and Streptomyces strains. Kinetic analysis further indicated that PPTases possess the higher binding affinity and catalytic efficiency toward their cognate CPs in comparison with noncognate substrates. Moreover, when chromosomally replacing the native PPTase gene of Synechocystis sp. PCC6803, two selected cyanobacterial PPTases and Sfp supported the growth of resulted mutants. Cell lysates of the cyanobacterial mutants further functionalized recombinant CP substrates. Collectively, these studies reveal the versatile catalysis of selected cyanobacterial PPTases and provide new tools to synthesize cyanobacterial natural products using in vitro and in vivo synthetic biology approaches.
Collapse
|
28
|
Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. MARINE ENVIRONMENTAL RESEARCH 2017; 128:58-69. [PMID: 27160988 DOI: 10.1016/j.marenvres.2016.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
There is an urgent need to discover new drug entities due to the increased incidence of severe diseases as cancer and neurodegenerative pathologies, and reducing efficacy of existing antibiotics. Recently, there is a renewed interest in exploring the marine habitat for new pharmaceuticals also thanks to the advancement in cultivation technologies and in molecular biology techniques. Microorganisms represent a still poorly explored resource for drug discovery. The possibility of obtaining a continuous source of bioactives from marine microorganisms, more amenable to culturing compared to macro-organisms, may be able to meet the challenging demands of pharmaceutical industries. This would enable a more environmentally-friendly approach to drug discovery and overcome the over-utilization of marine resources and the use of destructive collection practices. The importance of the topic is underlined by the number of EU projects funded aimed at improving the exploitation of marine organisms for drug discovery.
Collapse
Affiliation(s)
- G Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - M Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Sansone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - C Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - N Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - A Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
29
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
30
|
Luzzatto-Knaan T, Garg N, Wang M, Glukhov E, Peng Y, Ackermann G, Amir A, Duggan BM, Ryazanov S, Gerwick L, Knight R, Alexandrov T, Bandeira N, Gerwick WH, Dorrestein PC. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. eLife 2017; 6. [PMID: 28492366 PMCID: PMC5441867 DOI: 10.7554/elife.24214] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI:http://dx.doi.org/10.7554/eLife.24214.001 Cyanobacteria and algae are found in all oceans around the globe. Like plants, they can use sunlight as a source of energy in a process called photosynthesis. As a result, these organisms are important sources of oxygen and another vital nutrient called nitrogen for other marine organisms. Many of these organisms also produce a variety of other chemicals known as “natural products” to help them to survive in their environments. Some of these natural products have shown potential as medicinal drugs. The search for new chemicals with useful medicinal properties has led researchers to collect samples of algae and cyanobacteria from various locations around the world. An approach called mass spectrometry is often used to identify new chemicals because it can provide information about the structure of a molecule based on how much its fragments weigh. Luzzatto-Knaan et al. used mass spectrometry to search for new chemicals in samples of algae and cyanobacteria that had been collected by diving and snorkeling in a wide variety of tropical marine environments over several decades. The experiments reveal that the organisms in these samples produce a diverse range of chemicals, most of which were previously unknown and have not been found in other similar environmental collections. The data were grouped together into eight major collection areas covering different parts of the tropics. The samples from some areas contained a wider variety of chemicals than others. Within each collection area, some molecules were found to be very common whereas others were only present at specific locations. To highlight the distribution of these natural products, Luzzatto-Knaan et al. display the data on a world map. Further experiments used this approach as a guide to extract a previously unknown chemical called yuvalamide A from a marine cyanobacterium. The next challenge would be to associate the geographical patterns of chemicals to their potential ecological roles. This approach offers a new way to explore large-scale collections of environmental samples to discover and study new natural products. DOI:http://dx.doi.org/10.7554/eLife.24214.002
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | - Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | - Mingxun Wang
- Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Yao Peng
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, United States
| | - Gail Ackermann
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Amnon Amir
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Brendan M Duggan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States
| | | | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nuno Bandeira
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States
| | - William H Gerwick
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, United States.,Center for Computational Mass Spectrometry and Department of Computer Science and Engineering, University of California San Diego, San Diego, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| |
Collapse
|
31
|
Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species. Front Microbiol 2017; 8:394. [PMID: 28360891 PMCID: PMC5350119 DOI: 10.3389/fmicb.2017.00394] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Hye-Rim Pyeon
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Engineering, Inha University Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University Incheon, South Korea
| |
Collapse
|
32
|
Yin S, Li Z, Wang X, Wang H, Jia X, Ai G, Bai Z, Shi M, Yuan F, Liu T, Wang W, Yang K. Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl Microbiol Biotechnol 2016; 100:10563-10572. [PMID: 27709288 DOI: 10.1007/s00253-016-7873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and manipulate the oxytetracycline (OTC) gene cluster and to alter OTC fermentation process. To achieve these goals, a fast-growing heterologous host Streptomyces venezuelae WVR2006 was rationally selected among several potential hosts. It shows rapid and dispersed growth and intrinsic high resistance to OTC. By manipulating the expression of two cluster-situated regulators (CSR) OtcR and OtrR and precursor supply, the OTC production level was significantly increased in this heterologous host from 75 to 431 mg/l only in 48 h, a level comparable to the native producer Streptomyces rimosus M4018 in 8 days. This work shows that S. venezuelae WVR2006 is a promising chassis for the production of secondary metabolites, and the engineered heterologous OTC producer has the potential to completely alter the fermentation process of OTC production.
Collapse
Affiliation(s)
- Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Huizhuan Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zishang Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Tiejun Liu
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
33
|
Videau P, Wells KN, Singh AJ, Gerwick WH, Philmus B. Assessment of Anabaena sp. Strain PCC 7120 as a Heterologous Expression Host for Cyanobacterial Natural Products: Production of Lyngbyatoxin A. ACS Synth Biol 2016; 5:978-88. [PMID: 27176641 DOI: 10.1021/acssynbio.6b00038] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are well-known producers of natural products of highly varied structure and biological properties. However, the long doubling times, difficulty in establishing genetic methods for marine cyanobacteria, and low compound titers have hindered research into the biosynthesis of their secondary metabolites. While a few attempts to heterologously express cyanobacterial natural products have occurred, the results have been of varied success. Here, we report the first steps in developing the model freshwater cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena 7120) as a general heterologous expression host for cyanobacterial secondary metabolites. We show that Anabaena 7120 can heterologously synthesize lyngbyatoxin A in yields comparable to those of the native producer, Moorea producens, and detail the design and use of replicative plasmids for compound production. We also demonstrate that Anabaena 7120 recognizes promoters from various biosynthetic gene clusters from both free-living and obligate symbiotic marine cyanobacteria. Through simple genetic manipulations, the titer of lyngbyatoxin A can be improved up to 13-fold. The development of Anabaena 7120 as a general heterologous expression host enables investigation of interesting cyanobacterial biosynthetic reactions and genetic engineering of their biosynthetic pathways.
Collapse
Affiliation(s)
| | | | | | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography
and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
34
|
Zhang L, Hoshino S, Awakawa T, Wakimoto T, Abe I. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of thetleABCBiosynthetic Gene Cluster. Chembiochem 2016; 17:1407-11. [DOI: 10.1002/cbic.201600229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Lihan Zhang
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshiyuki Wakimoto
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Pharmaceutical Sciences; Hokkaido University; Kita 12 Nishi 6 Kita-ku Sapporo 060-0812 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 2016; 33:348-64. [PMID: 26758451 DOI: 10.1039/c5np00097a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
36
|
Esposito G, Della Sala G, Teta R, Caso A, Bourguet‐Kondracki M, Pawlik JR, Mangoni A, Costantino V. Chlorinated Thiazole‐Containing Polyketide‐Peptides from the Caribbean Sponge Smenospongia conulosa: Structure Elucidation on Microgram Scale. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Germana Esposito
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Gerardo Della Sala
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Roberta Teta
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Alessia Caso
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Marie‐Lise Bourguet‐Kondracki
- Molécules de Communication et Adaptation des Micro‐organismesUMR 7245 CNRS‐MNHNMuséum National d'Histoire Naturelle57 rue Cuvier (C.P. 54)75005ParisFrance
| | - Joseph R. Pawlik
- Department of Biology and Marine BiologyCenter for Marine ScienceUniversity of North Carolina Wilmington5600 Marvin K Moss LaneWilmingtonNC 28409USA
| | - Alfonso Mangoni
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Valeria Costantino
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| |
Collapse
|
37
|
Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol 2016; 23:642-652. [PMID: 26433696 DOI: 10.1016/j.tim.2015.07.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.
Collapse
Affiliation(s)
- Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
38
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
39
|
Zhang G, Li J, Zhu T, Gu Q, Li D. Advanced tools in marine natural drug discovery. Curr Opin Biotechnol 2016; 42:13-23. [PMID: 26954946 DOI: 10.1016/j.copbio.2016.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/10/2023]
Abstract
Marine natural products (MNPs) remain promising drug sources with several marine-derived drugs having been successfully approved. Nevertheless, it is never a smooth sailing to seek bioactive compounds from marine environments, during which many challenges are need to be faced to, for example, discovering unique marine resources, reviving unculturable organisms outside the marine environment, distinguishing novel compounds from the known ones, and disclosing the function of MNPs and optimizing their pharmacological use. Herein we review some advanced techniques and methodologies that can be employed to deal with above challenges with the intent of inspiring the forthcoming efforts in MNPs discovery pipelines.
Collapse
Affiliation(s)
- Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
40
|
Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery. J Ind Microbiol Biotechnol 2015; 43:313-24. [PMID: 26578313 DOI: 10.1007/s10295-015-1705-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/03/2015] [Indexed: 01/01/2023]
Abstract
Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques.
Collapse
|
41
|
Micallef ML, D'Agostino PM, Sharma D, Viswanathan R, Moffitt MC. Genome mining for natural product biosynthetic gene clusters in the Subsection V cyanobacteria. BMC Genomics 2015; 16:669. [PMID: 26335778 PMCID: PMC4558948 DOI: 10.1186/s12864-015-1855-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cyanobacteria are well known for the production of a range of secondary metabolites. Whilst recent genome sequencing projects has led to an increase in the number of publically available cyanobacterial genomes, the secondary metabolite potential of many of these organisms remains elusive. Our study focused on the 11 publically available Subsection V cyanobacterial genomes, together with the draft genomes of Westiella intricata UH strain HT-29-1 and Hapalosiphon welwitschii UH strain IC-52-3, for their genetic potential to produce secondary metabolites. The Subsection V cyanobacterial genomes analysed in this study are reported to produce a diverse range of natural products, including the hapalindole-family of compounds, microcystin, hapalosin, mycosporine-like amino acids and hydrocarbons. RESULTS A putative gene cluster for the cyclic depsipeptide hapalosin, known to reverse P-glycoprotein multiple drug resistance, was identified within three Subsection V cyanobacterial genomes, including the producing cyanobacterium H. welwitschii UH strain IC-52-3. A number of orphan NRPS/PKS gene clusters and ribosomally-synthesised and post translationally-modified peptide gene clusters (including cyanobactin, microviridin and bacteriocin gene clusters) were identified. Furthermore, gene clusters encoding the biosynthesis of mycosporine-like amino acids, scytonemin, hydrocarbons and terpenes were also identified and compared. CONCLUSIONS Genome mining has revealed the diversity, abundance and complex nature of the secondary metabolite potential of the Subsection V cyanobacteria. This bioinformatic study has identified novel biosynthetic enzymes which have not been associated with gene clusters of known classes of natural products, suggesting that these cyanobacteria potentially produce structurally novel secondary metabolites.
Collapse
Affiliation(s)
- Melinda L Micallef
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Paul M D'Agostino
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Deepti Sharma
- Department of Chemistry, Case Western Reserve University, 2740 Millis Science Center, Adelbert Road, Cleveland, OH, 44106, USA.
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University, 2740 Millis Science Center, Adelbert Road, Cleveland, OH, 44106, USA.
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
42
|
Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch Pharm Res 2015. [DOI: 10.1007/s12272-015-0638-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Esposito G, Teta R, Miceli R, Ceccarelli LS, Della Sala G, Camerlingo R, Irollo E, Mangoni A, Pirozzi G, Costantino V. Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the Caribbean sponge, Smenospongia aurea. Mar Drugs 2015; 13:444-59. [PMID: 25603342 PMCID: PMC4306946 DOI: 10.3390/md13010444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/04/2015] [Indexed: 01/17/2023] Open
Abstract
The study of the secondary metabolites contained in the organic extract of Caribbean sponge Smenospongia aurea led to the isolation of smenothiazole A (3) and B (4), hybrid peptide/polyketide compounds. Assays performed using four solid tumor cell lines showed that smenothiazoles exert a potent cytotoxic activity at nanomolar levels, with selectivity over ovarian cancer cells and a pro-apoptotic mechanism.
Collapse
Affiliation(s)
- Germana Esposito
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Teta
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Miceli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Luca S Ceccarelli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Rosa Camerlingo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Elena Irollo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Alfonso Mangoni
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
44
|
Micallef ML, D'Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC. Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genomics 2014; 21:1-12. [PMID: 25482899 DOI: 10.1016/j.margen.2014.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022]
Abstract
Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.
Collapse
Affiliation(s)
- Melinda L Micallef
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - Paul M D'Agostino
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
45
|
Essack M, Alzubaidy HS, Bajic VB, Archer JAC. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins (Basel) 2014; 6:3058-76. [PMID: 25356733 PMCID: PMC4247248 DOI: 10.3390/toxins6113058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/19/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.
Collapse
Affiliation(s)
- Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Jeddah, Saudi Arabia.
| | - Hanin S Alzubaidy
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Jeddah, Saudi Arabia.
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Jeddah, Saudi Arabia.
| | - John A C Archer
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Jeddah, Saudi Arabia.
| |
Collapse
|
46
|
Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 2014; 12:3516-59. [PMID: 24918453 PMCID: PMC4071589 DOI: 10.3390/md12063516] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Abstract
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
Collapse
|
47
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
48
|
Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Ruh Wong W, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. Molecular networking as a dereplication strategy. JOURNAL OF NATURAL PRODUCTS 2013; 76:1686-99. [PMID: 24025162 PMCID: PMC3936340 DOI: 10.1021/np400413s] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A major goal in natural product discovery programs is to rapidly dereplicate known entities from complex biological extracts. We demonstrate here that molecular networking, an approach that organizes MS/MS data based on chemical similarity, is a powerful complement to traditional dereplication strategies. Successful dereplication with molecular networks requires MS/MS spectra of the natural product mixture along with MS/MS spectra of known standards, synthetic compounds, or well-characterized organisms, preferably organized into robust databases. This approach can accommodate different ionization platforms, enabling cross correlations of MS/MS data from ambient ionization, direct infusion, and LC-based methods. Molecular networking not only dereplicates known molecules from complex mixtures, it also captures related analogues, a challenge for many other dereplication strategies. To illustrate its utility as a dereplication tool, we apply mass spectrometry-based molecular networking to a diverse array of marine and terrestrial microbial samples, illustrating the dereplication of 58 molecules including analogues.
Collapse
Affiliation(s)
- Jane Y. Yang
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Laura M. Sanchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher M. Rath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Xueting Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100190, China
| | - Paul D. Boudreau
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Nicole Bruns
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Anne Wodtke
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Rafael de Felicio
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Nucleo de Pesquisaem Produtos Naturais e Sinteticos - Departamento de Fisica e Quimica - Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Do Café, s/n, Campus Universitario, CEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Amanda Fenner
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Weng Ruh Wong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Lixin Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100190, China
| | - Hosana M. Debonsi
- Nucleo de Pesquisaem Produtos Naturais e Sinteticos - Departamento de Fisica e Quimica - Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Do Café, s/n, Campus Universitario, CEP 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Corresponding Author Telephone: 858-534-6607 Fax: 858-822-0041
| |
Collapse
|
49
|
Ongley SE, Bian X, Zhang Y, Chau R, Gerwick WH, Müller R, Neilan BA. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS Chem Biol 2013; 8:1888-93. [PMID: 23751865 DOI: 10.1021/cb400189j] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many chemically complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L(-1)) and its precursor indolactam-V (150 mg L(-1)). Production, isolation, and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route, setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization, and exploitation of other cyanobacterial natural product pathways.
Collapse
Affiliation(s)
- Sarah E. Ongley
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Xiaoying Bian
- Department of Microbial Natural
Products, Helmholtz Institute for Pharmaceutical Research Saarland,
Helmholtz Centre for Infection Research and Department of Pharmaceutical
Biotechnology, Saarland University, Saarbrücken
66041, Germany
| | - Youming Zhang
- Shandong University-Helmholtz
Joint Institute of Biotechnology, State Key Laboratory of Microbial
Technology, Shandong University, Shanda
Nanlu 27, 250100 Jinan, P. R. China
| | - Rocky Chau
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | - William H. Gerwick
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, and Skaggs School
of Pharmacy and Pharmaceutical Science, University of California-San Diego, La Jolla, California 92093, United
States
| | - Rolf Müller
- Department of Microbial Natural
Products, Helmholtz Institute for Pharmaceutical Research Saarland,
Helmholtz Centre for Infection Research and Department of Pharmaceutical
Biotechnology, Saarland University, Saarbrücken
66041, Germany
| | - Brett A. Neilan
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
50
|
Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 2013; 8:e69319. [PMID: 23874942 PMCID: PMC3708917 DOI: 10.1371/journal.pone.0069319] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023] Open
Abstract
We describe a procedure for the conjugative transfer of phage P1-derived Artificial Chromosome (PAC) library clones containing large natural product gene clusters (≥70 kilobases) to Streptomyces coelicolor strains that have been engineered for improved heterologous production of natural products. This approach is demonstrated using the gene cluster for FK506 (tacrolimus), a clinically important immunosuppressant of high commercial value. The entire 83.5 kb FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 present in one 130 kb PAC clone was introduced into four different S. coelicolor derivatives and all produced FK506 and smaller amounts of the related compound FK520. FK506 yields were increased by approximately five-fold (from 1.2 mg L-1 to 5.5 mg L-1) in S. coelicolor M1146 containing the FK506 PAC upon over-expression of the FK506 LuxR regulatory gene fkbN. The PAC-based gene cluster conjugation methodology described here provides a tractable means to evaluate and manipulate FK506 biosynthesis and is readily applicable to other large gene clusters encoding natural products of interest to medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
- Adam C. Jones
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Lutz Heide
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (M. Buttner); (M. Bibb)
| | - Mervyn J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (M. Buttner); (M. Bibb)
| |
Collapse
|