1
|
Gu P, Ding L, Fang X, Zhu J, Kang S, Wu B, Zhang J, Zhao Y, Shi Z. Chromium- and Metal-Reductant-Free Asymmetric Nozaki-Hiyama-Kishi (NHK) Reaction Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408195. [PMID: 38923245 DOI: 10.1002/anie.202408195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral allylic alcohols are highly prized in synthetic chemistry due to their versatile reactivity stemming from both alkenyl and hydroxyl functionalities. While the Nozaki-Hiyama-Kishi (NHK) reaction is a widely used method for the synthesis of allylic alcohols, it suffers from drawbacks such as the use of toxic chromium salts, high amounts of metal reductants, and poor enantiocontrol. To address these limitations, we present a novel approach involving a metallaphotoredox-catalyzed asymmetric NHK reaction for the production of chiral allylic alcohols. This method marries alkenyl (pseudo)halides with aldehydes, leveraging a synergistic blend of a chiral nickel catalyst and a photocatalyst. This innovative technique enables both oxidative addition and insertion just using nickel, diverging significantly from the conventional NHK reaction pathway mediated by nickel and chromium salts. The adoption of this methodology holds immense promise for crafting a spectrum of intricate compounds, particularly those of significance in pharmaceuticals. Detailed experimental investigations have shed light on the metallaphotoredox process, further enhancing our understanding and enabling further advancements.
Collapse
Affiliation(s)
- Pei Gu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jie Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuyu Kang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Bingcheng Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Andreetta P, Martin RT, Souilah C, Rentería-Gómez Á, Song Z, Khorramshahi Bayat Y, Ivlev S, Gutierrez O, Casitas A. Experimental and Computational Studies on Cobalt(I)-Catalyzed Regioselective Allylic Alkylation Reactions. Angew Chem Int Ed Engl 2023; 62:e202310129. [PMID: 37772828 PMCID: PMC10843511 DOI: 10.1002/anie.202310129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Here, we report the development of cobalt(I)-catalyzed regioselective allylic alkylation reactions of tertiary allyl carbonates with 1,3-dicarbonyl compounds. A family of well-defined tetrahedral cobalt(I) complexes bearing commercially available bidentate bis(phosphine) ligands [(P,P)Co(PPh3 )Cl] are synthesized and explored as catalysts in allylic alkylation reactions. The catalyst [(dppp)Co(PPh3 )Cl] (dppp=1,3-Bis(diphenylphosphino)propane) enables the alkylation of a large variety of tertiary allyl carbonates with high yields and excellent regioselectivity for the branched product. Remarkably, this methodology is selective for the activation of tertiary allyl carbonates even in the presence of secondary allyl carbonates. This contrasts with the selectivity observed in cobalt-catalyzed allylic alkylations enabled by visible light photocatalysis. Mechanistic insights by means of experimental and computational investigations support a Co(I)/Co(III) catalytic cycle.
Collapse
Affiliation(s)
- Philip Andreetta
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park. 8051 Regents Dr, College Park, Maryland, 20742, USA
| | - Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park. 8051 Regents Dr, College Park, Maryland, 20742, USA
| | - Yas Khorramshahi Bayat
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, USA
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
3
|
Chaves-Pouso A, Álvarez-Constantino AM, Fañanás-Mastral M. Enantio- and Diastereoselective Copper-Catalyzed Allylboration of Alkynes with Allylic gem-Dichlorides. Angew Chem Int Ed Engl 2022; 61:e202117696. [PMID: 35263483 PMCID: PMC9314970 DOI: 10.1002/anie.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/06/2022]
Abstract
Allylic gem-dichlorides are shown to be efficient substrates for catalytic asymmetric allylboration of alkynes. The method employs a chiral NHC-Cu catalyst capable of generating in a single step chiral skipped dienes bearing a Z-alkenyl chloride, a trisubstituted E-alkenyl boronate and a bis-allylic stereocenter with excellent levels of chemo-, regio- enantio- and diastereoselectivity. This high degree of functionalization makes these products versatile building blocks as illustrated with the synthesis of several optically active compounds. DFT calculations support the key presence of a metal cation bridge ligand-substrate interaction and account for the stereoselectivity outcome.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Bai P, Jiang Y, Xiao T, Qin G. A Single‐Step Synthesis of Stereodefined Skipped Trienes: Pd‐Catalyzed Cascade Reaction of Terminal Alkynes with Allylic Halides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peizhi Bai
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Yubo Jiang
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Tiebo Xiao
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Guiping Qin
- Kunming University of Science and Technology Faculty of Science 727 South Jingming Road, Chenggong District, Kunming 650500 Kunming CHINA
| |
Collapse
|
5
|
Chaves‐Pouso A, Álvarez‐Constantino AM, Fañanás‐Mastral M. Enantio‐ and Diastereoselective Copper‐Catalyzed Allylboration of Alkynes with Allylic
gem
‐Dichlorides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Chaves‐Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrés M. Álvarez‐Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás‐Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
6
|
Farmer ME, Ehehalt LE, Pabst TP, Tudge MT, Chirik PJ. Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne [2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marcus E. Farmer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- GlaxoSmithKline Medicinal Chemistry, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, Pennsylvania 19426, United States
| | - Lauren E. Ehehalt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew T. Tudge
- GlaxoSmithKline Medicinal Chemistry, 1250 South Collegeville Road, P.O. Box 5089, Collegeville, Pennsylvania 19426, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Ando K, Watanabe H, Zhu X. One-Pot Preparation of ( E)-α,β-Unsaturated Aldehydes by a Julia-Kocienski Reaction of 2,2-Dimethoxyethyl PT Sulfone Followed by Acid Hydrolysis. J Org Chem 2021; 86:6969-6973. [PMID: 33870683 DOI: 10.1021/acs.joc.1c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(E)-α,β-Unsaturated aldehydes were synthesized by the Julia-Kocienski reaction of 2,2-dimethoxyethyl 1-phenyl-1H-tetrazol-5-yl (PT) sulfone 3 with various aldehydes, followed by acid hydrolysis. The reaction could be carried out in one pot, and various (E)-α,β-unsaturated aldehydes were obtained in a short time and with high yields.
Collapse
Affiliation(s)
- Kaori Ando
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Haruka Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | - Xiaoxian Zhu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Kennedy CR, Zhong H, Joannou MV, Chirik PJ. Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2]-Cycloaddition Reactions. Adv Synth Catal 2020; 362:404-416. [PMID: 32431586 PMCID: PMC7236768 DOI: 10.1002/adsc.201901289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization, and catalytic activity of pyridine(diimine) iron piperylene and isoprene complexes are described. These diene complexes are competent precatalysts for (i) the selective cross-[2+2]-cycloaddition of butadiene or (E)-piperylene with ethylene and α-olefins and (ii) the 1,4-hydrovinylation of isoprene with ethylene. In the former case, kinetic analysis implicates the diamagnetic η4-piperylene complex as the resting state prior to rate-determining oxidative cyclization. Variable temperature 1H NMR and EXSY experiments established that diene exchange from the diamagnetic, 18e- complexes occurs rapidly in solution at ambient temperature through a dissociative mechanism. The solid-state structure of (Me(Et)PDI)Fe(η4-piperylene) (Me(Et)PDI = 2,6-(2,6-Me2-C6H3N═CEt)2C5H3N), was determined by single-crystal X-ray diffraction and confirmed the s-trans coordination of the monosubstituted 1,3-diene. Possible relationships between ligand-controlled diene coordination geometry, metallacycle denticity, and chemoselectivity of iron-mediated cycloaddition reactions are discussed.
Collapse
Affiliation(s)
- C. Rose Kennedy
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Hongyu Zhong
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Matthew V. Joannou
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Paul J. Chirik
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| |
Collapse
|
9
|
Fukuzawa H, Aoyagi N, Sato R, Kataoka Y, Ura Y. Ruthenacyclopentanes as Intermediates in the Regio- and Stereoselective Linear Codimerization of N-Vinylamides with Electron-Deficient Alkenes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroko Fukuzawa
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Nozomi Aoyagi
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Ruriko Sato
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Yasutaka Kataoka
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Yasuyuki Ura
- Department of Chemistry,
Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
10
|
Deiab GIA, Al-Huniti MH, Hyatt IFD, Nagy EE, Gettys KE, Sayed SS, Joliat CM, Daniel PE, Vummalaneni RM, Morehead AT, Sargent AL, Croatt MP. Decarboxylative and dehydrative coupling of dienoic acids and pentadienyl alcohols to form 1,3,6,8-tetraenes. Beilstein J Org Chem 2017; 13:384-392. [PMID: 28382176 PMCID: PMC5355911 DOI: 10.3762/bjoc.13.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
Dienoic acids and pentadienyl alcohols are coupled in a decarboxylative and dehydrative manner at ambient temperature using Pd(0) catalysis to generate 1,3,6,8-tetraenes. Contrary to related decarboxylative coupling reactions, an anion-stabilizing group is not required adjacent to the carboxyl group. Of mechanistic importance, it appears that both the diene of the acid and the diene of the alcohol are required for this reaction. To further understand this reaction, substitutions at every unique position of both coupling partners was examined and two potential mechanisms are presented.
Collapse
Affiliation(s)
- Ghina'a I Abu Deiab
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - I F Dempsey Hyatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Emma E Nagy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Kristen E Gettys
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Sommayah S Sayed
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Christine M Joliat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Paige E Daniel
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Rupa M Vummalaneni
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Andrew T Morehead
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Andrew L Sargent
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
11
|
Xie D, Shen D, Chen Q, Zhou J, Zeng X, Zhong G. N-Heterocyclic Carbene/Lewis Acid Catalyzed Enantioselective Aerobic Annulation of α,β-Unsaturated Aldehydes with 1,3-Dicarbonyl Compounds. J Org Chem 2016; 81:6136-41. [DOI: 10.1021/acs.joc.6b01152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Danbo Xie
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Dan Shen
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Qiliang Chen
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiaqi Zhou
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaofei Zeng
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Guofu Zhong
- College of Materials, Chemistry
and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
12
|
Hamlin TA, Kelly CB, Ovian JM, Wiles RJ, Tilley LJ, Leadbeater NE. Toward a Unified Mechanism for Oxoammonium Salt-Mediated Oxidation Reactions: A Theoretical and Experimental Study Using a Hydride Transfer Model. J Org Chem 2015; 80:8150-67. [DOI: 10.1021/acs.joc.5b01240] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Christopher B. Kelly
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - John M. Ovian
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rebecca J. Wiles
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Leon J. Tilley
- Department
of Chemistry, Stonehill College, 320 Washington Street, Easton, Massachusetts 02357, United States
| | - Nicholas E. Leadbeater
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Community Medicine & Health Care, University of Connecticut Health Center, The Exchange, 263 Farmington Avenue, Farmington, Connecticut 06030, United States
| |
Collapse
|
13
|
Nishimura A, Tamai E, Ohashi M, Ogoshi S. Synthesis of cyclobutenes and allenes by cobalt-catalyzed cross-dimerization of simple alkenes with 1,3-enynes. Chemistry 2014; 20:6613-7. [PMID: 24782325 DOI: 10.1002/chem.201402218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/07/2022]
Abstract
Cobalt-catalyzed cross-dimerization of simple alkenes with 1,3-enynes is reported. A [2+2] cycloaddition reaction occurred, with alkenes bearing no allylic hydrogen, by reductive elimination of a η(3)-butadienyl cobaltacycle. On the other hand, aliphatic alkenes underwent 1,4-hydroallylation by means of exo-cyclic β-H elimination. These reactions can provide cyclobutenes and allenes that were previously difficult to access, from simple substrates in a highly chemo- and regioselective manner.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan), Fax: (+81) 6-6879-7394
| | | | | | | |
Collapse
|
14
|
Xiang S, Meyer MP. A general approach to mechanism in multiproduct reactions: product-specific intermolecular kinetic isotope effects. J Am Chem Soc 2014; 136:5832-5. [PMID: 24721128 DOI: 10.1021/ja412827c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report a general method for the measurement of (13)C kinetic isotope effects at natural abundance for reactions that yield two or more products concurrently. We use, as an example, a recently reported Co-catalyzed reaction between cyclopentene and 1-phenyl-1-propyne. High-precision intermolecular (13)C isotope effects are reported for both the formal [2+2] cycloaddition (major) and Alder-ene (minor) reaction products. Mechanistic possibilities that are in accord with observed isotope effect measurements are discussed.
Collapse
Affiliation(s)
- Shuhuai Xiang
- Department of Chemistry and Biochemistry, University of California , Merced, California 95343, United States
| | | |
Collapse
|