1
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
De Abreu M, Rogge T, Lanzi M, Saiegh TJ, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202319960. [PMID: 38375976 DOI: 10.1002/anie.202319960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.
Collapse
Affiliation(s)
- Maxime De Abreu
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Tomas J Saiegh
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
- Institute of Organic Chemistry, JMU Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
4
|
Chen L, Ji H, Ding Y, Szostak M, Liu C. Palladium-Catalyzed Decarbonylative Sonogashira Alkynylation of Carboxylic-Phosphoric Anhydrides. J Org Chem 2024; 89:2665-2674. [PMID: 38288991 DOI: 10.1021/acs.joc.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We report the first palladium-catalyzed decarbonylative alkynylation of carboxylic-phosphoric anhydrides via highly selective C(O)-O bond cleavage. Carboxylic-phosphoric anhydrides are highly active carboxylic acid derivatives, which are generated through activating carboxylic acids using phosphates by esterification or direct dehydrogenative coupling with phosphites. Highly valuable internal alkynes have been generated by the present method, and the efficiency of this approach has been demonstrated through a wide substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lan Chen
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Haiyao Ji
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yimin Ding
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
5
|
Sakthivel K, Gana RJ, Shoji T, Takenaga N, Dohi T, Singh FV. Recent progress in metal assisted multicomponent reactions in organic synthesis. Front Chem 2023; 11:1217744. [PMID: 37744060 PMCID: PMC10514581 DOI: 10.3389/fchem.2023.1217744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
To prepare complicated organic molecules, straightforward, sustainable, and clean methodologies are urgently required. Thus, researchers are attempting to develop imaginative approaches. Metal-catalyzed multicomponent reactions (MCRs) offer optimal molecular diversity, high atomic efficiency, and energy savings in a single reaction step. These versatile protocols are often used to synthesize numerous natural compounds, heterocyclic molecules, and medications. Thus far, the majority of metal-catalyzed MCRs under investigation are based on metal catalysts such as copper and palladium; however, current research is focused on developing novel, environmentally friendly catalytic systems. In this regard, this study demonstrates the effectiveness of metal catalysts in MCRs. The aim of this study is to provide an overview of metal catalysts for safe application in MCRs.
Collapse
Affiliation(s)
- Kokila Sakthivel
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - R. J. Gana
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Toshitaka Shoji
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
7
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
8
|
Synthesis and structural characterization of nitro-functionalized cyclic hypervalent iodine compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Wang QD, Zhang SX, Zhang ZW, Wang Y, Ma M, Chu XQ, Shen ZL. Palladium-Catalyzed Sonogashira Coupling of a Heterocyclic Phosphonium Salt with a Terminal Alkyne. Org Lett 2022; 24:4919-4924. [PMID: 35771670 DOI: 10.1021/acs.orglett.2c01800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Sonogashira coupling of a heterocyclic phosphonium salt with a terminal alkyne via C-P bond cleavage was developed. The reactions proceeded smoothly in the presence of palladium catalyst, copper(I) iodide, and N,N-diisopropylethylamine (DIPEA) in N-methyl-2-pyrrolidone (NMP) at 100 °C for 12 h, producing the corresponding alkynyl-substituted pyridine, quinoline, pyrazine, and quinoxaline in moderate to good yields with wide substrate scope and broad functional group tolerance. In addition, gram-scale synthesis could also be achieved, and the reaction could be applied to the functionalization of alkyne-containing complex molecules derived from sugars and pharmaceutical and naturally occurring products (e.g., estrone, d-galactopyranose, menthol, and ibuprofen).
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Si-Xuan Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Yang S, Zhang Y. Synthesis of 9-Fluorenylidenes via Pd-Catalyzed C-H Vinylation with Vinyl Bromides. Org Lett 2021; 23:7746-7750. [PMID: 34559537 DOI: 10.1021/acs.orglett.1c02722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and efficient approach for the synthesis of 9-fluorenylidenes has been developed via the palladium-catalyzed cross-coupling of 2-iodobiphenyls and vinyl bromides. The reaction involves the C-H activation of 2-iodobiphenyls and dual C-C bond formations. A range of 9-fluorenylidene derivatives, including diphenyldibenzofulvenes, can be synthesized with the reaction.
Collapse
Affiliation(s)
- Shuai Yang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University 1239 Siping Road, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Zhao YH, Wang JL, Zhou YB, Liu MC, Wu HY. Palladium-catalyzed coupling reaction of 2-iodobiphenyls with alkenyl bromides for the construction of 9-(diorganomethylidene)fluorenes. Org Biomol Chem 2021; 19:8250-8253. [PMID: 34518849 DOI: 10.1039/d1ob01547h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom economical protocol for the construction of 9-(diorganomethylidene)fluorenes through palladium-catalyzed coupling reactions of 2-iodobiphenyls with alkenyl bromides has been reported. The reaction proceeds through the C-H activation/oxidative addition/reduction elimination/intramolecular Heck coupling reaction to afford a series of 9-(diorganomethylidene)fluorenes with good yields. Control experiments demonstrate that a five-membered palladacycle acts as a key intermediate and β-H elimination serves as the rate-limiting step.
Collapse
Affiliation(s)
- Ya-Heng Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Jian-Long Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| |
Collapse
|
12
|
Zhang M, Deng W, Sun M, Zhou L, Deng G, Liang Y, Yang Y. α-Bromoacrylic Acids as C1 Insertion Units for Palladium-Catalyzed Decarboxylative Synthesis of Diverse Dibenzofulvenes. Org Lett 2021; 23:5744-5749. [PMID: 34319122 DOI: 10.1021/acs.orglett.1c01888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein α-bromoacrylic acids have been employed as C1 insertion units to achieve the palladium-catalyzed [4 + 1] annulation of 2-iodobiphenyls, which provides an efficient platform for the construction of diverse dibenzofulvenes. This protocol enables the formation of double C(aryl)-C(vinyl) bonds via a C(vinyl)-Br bond cleavage and decarboxylation. It is particularly noteworthy that the method features a broad substrate scope, and various interesting frameworks, such as bridged ring, fused (hetero)aromatic ring, and divinylbenzene, can be successfully incorporated into the products.
Collapse
Affiliation(s)
- Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wenbo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mingjie Sun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
13
|
Abstract
Decarbonylative Sonogashira cross-coupling of carboxylic acids by palladium catalysis is presented. The carboxylic acid is activated in situ by the formation of a mixed anhydride and further decarbonylates using the Pd(OAc)2/Xantphos system to provide an aryl-Pd intermediate, which is intercepted by alkynes to access the traditional Pd(0)/(II) cycle using carboxylic acids as ubiquitous and orthogonal electrophilic cross-coupling partners. The methodology efficiently constructs new C(sp2)-C(sp) bonds and can be applied to the derivatization of pharmaceuticals. Mechanistic studies give support to decarbonylation preceding transmetalation in this process.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Antonkin NS, Vlasenko YA, Yoshimura A, Smirnov VI, Borodina TN, Zhdankin VV, Yusubov MS, Shafir A, Postnikov PS. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. J Org Chem 2021; 86:7163-7178. [PMID: 33944564 DOI: 10.1021/acs.joc.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to the preparation of imidazole-substituted cyclic iodonium salts has been developed via the oxidative cyclization of 1-phenyl-5-iodoimidazole using a cheap and available Oxone/H2SO4 oxidative system. The structure of the new polycyclic heteroarenes has been confirmed by single-crystal X-ray diffractometry, revealing the characteristic structure features for cyclic iodonium salts. The newly produced imidazole-flanked cyclic iodonium compounds were found to readily engage in a heterocyclization reaction with elemental sulfur, affording benzo[5,1-b]imidazothiazoles in good yields.
Collapse
Affiliation(s)
- Nikita S Antonkin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Yulia A Vlasenko
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Akira Yoshimura
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Vladimir I Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Tatyana N Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Viktor V Zhdankin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Alexandr Shafir
- Department of Biological Chemistry, IQAC-CSIC, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Solid-State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
16
|
Ma YC, Luo JY, Zhang SC, Lu SH, Du GF, He L. An N-heterocyclic carbene-catalyzed switchable reaction of 9-(trimethylsilyl)fluorene and aldehydes: chemoselective synthesis of dibenzofulvenes and fluorenyl alcohols. Org Biomol Chem 2021; 19:3717-3721. [PMID: 33908559 DOI: 10.1039/d1ob00065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-heterocyclic carbene-catalyzed synthesis of dibenzofulvenes and fluorenyl alcohols was developed. In the presence of 10 mol% NHC (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and 4 Å molecular sieves, 9-(trimethylsilyl)fluorene undergoes an olefination reaction with aldehydes to produce dibenzofulvenes in 43-99% yields. However, on reducing the NHC loading to 1 mol% and with the addition of water, 9-(trimethylsilyl)fluorene selectively undergoes nucleophilic addition with aldehydes to afford fluorenyl alcohols in 40-95% yields.
Collapse
Affiliation(s)
- Yu-Chuan Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Jin-Yun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Shi-Chu Zhang
- College of Sciences, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Shu-Hui Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Guang-Fen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| |
Collapse
|
17
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
18
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
19
|
Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Reutrakul V, Surawatanawong P, Wattanathana W, Leowanawat P. Dibenzopleiadiene-embeded polyaromatics via [4 + 3] annulative decarbonylation/decarboxylation. Org Chem Front 2021. [DOI: 10.1039/d0qo00942c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient sequential cross-coupling/annulation strategy is developed to construct structurally and optoelectronically diverse class of dibezopleiadiene-embeded polyaromatics.
Collapse
Affiliation(s)
- Kritchasorn Kantarod
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Thanapat Worakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Darunee Soorukram
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Panida Surawatanawong
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering
- Faculty of Engineering
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Pawaret Leowanawat
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
20
|
Peng X, Yang Y, Luo B, Wen S, Huang P. Modular Tandem Mizoroki‐Heck/Reductive Heck Reactions to Construct Fluorenes from Cyclic Diaryliodoniums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences Zhaoqing Medical College Zhaoqing 526000 People's Republic of China
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Yang Yang
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
- School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Bingling Luo
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Peng Huang
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| |
Collapse
|
21
|
Peng X, Sun Z, Kuang P, Li L, Chen J, Chen J. Copper-Catalyzed Selective Arylation of Nitriles with Cyclic Diaryl Iodonium Salts: Direct Access to Structurally Diversified Diarylmethane Amides with Potential Neuroprotective and Anticancer Activities. Org Lett 2020; 22:5789-5795. [PMID: 32677838 DOI: 10.1021/acs.orglett.0c01829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel, simple, and high-yielding approach for the preparation of diarylmethane amide derivatives has been developed by reacting cyclic diaryl iodonium salts with nitriles using CuCl as a catalyst. The procedure is efficient with high atom economy and a wide substrate range. Importantly, selective arylation of nitriles was obtained without affecting the phenyl amino/hydroxyl groups. Furthermore, two of the diarylmethane amides (3k, 3s) displayed excellent neuroprotective and anticancer activities.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Peihua Kuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| |
Collapse
|
22
|
Caspers LD, Spils J, Damrath M, Lork E, Nachtsheim BJ. One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts. J Org Chem 2020; 85:9161-9178. [PMID: 32539390 DOI: 10.1021/acs.joc.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two one-pot procedures for the construction of carbon-bridged diaryliodonium triflates and tetrafluoroborates are described. Strong Brønsted acids enable the effective Friedel-Crafts alkylation with diversely substituted o-iodobenzyl alcohol derivatives, providing diphenylmethane scaffolds, which are subsequently oxidized and cyclized to the corresponding dibenzo[b,e]iodininium salts. Based on NMR investigations and density functional theory (DFT) calculations, we could verify the so-far-undescribed existence of two stable isomers in cyclic iodonium salts substituted with aliphatic side chains in the carbon bridge.
Collapse
Affiliation(s)
- Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
23
|
Chang MY, Tsai YL, Chen HY. CuBr 2-Mediated One-Pot Synthesis of Sulfonyl 9-Fluorenylidenes. J Org Chem 2020; 85:6897-6909. [PMID: 32383591 DOI: 10.1021/acs.joc.0c00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, a high-yield method for the synthesis of sulfonyl 9-fluorenylidenes is described, which consists of a one-pot straightforward three-step synthetic route, including (i) CuBr2-mediated α-bromination of o-arylacetophenone, (ii) sequential nucleophilic substitution of the resulting α-bromo o-arylacetophenone with sodium sulfinate (RSO2Na), and (iii) the CuBr2-mediated intramolecular Friedel-Crafts cyclizative dehydration. A plausible mechanism is proposed and discussed. This protocol provides a highly effective regio- and stereoselective annulation via the formation of one carbon-carbon (C-C) bond and one carbon-sulfur (C-S) bond.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Heinen F, Engelage E, Cramer CJ, Huber SM. Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors. J Am Chem Soc 2020; 142:8633-8640. [PMID: 32286829 PMCID: PMC7252947 DOI: 10.1021/jacs.9b13309] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
“Hypervalent”
iodine(III) derivatives have been established as powerful reagents
in organic transformations, but so far only a handful of studies have
addressed their potential use as halogen-bonding noncovalent Lewis
acids. In contrast to “classical” halogen-bond donors
based on iodine(I) compounds, iodine(III) salts feature two directional
electrophilic axes perpendicular to each other. Herein we present
the first systematic investigation on biaxial binding to such Lewis
acids in solution. To this end, hindered and unhindered iodolium species
were titrated with various substrates, including diesters and diamides,
via 1H NMR spectroscopy and isothermal titration calorimetry.
Clear evidence for biaxial binding was obtained in two model systems,
and the association strengths increased by 2 orders of magnitude.
These findings were corroborated by density functional theory calculations
(which reproduced the trend well but underestimated the absolute binding
constants) and a cocrystal featuring biaxial coordination of a diamide
to the unhindered iodolium compound.
Collapse
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis 55455-0431, Minnesota, United States
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| |
Collapse
|
25
|
Peng X, Li L, Ren Y, Xue H, Liu J, Wen S, Chen J. Synthesis of
N
‐Carbonyl Acridanes as Highly Potent Inhibitors of Tubulin Polymerization
via
One‐Pot Copper‐Catalyzed Dual Arylation of Nitriles with Cyclic Diphenyl Iodoniums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Ling Li
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Yichang Ren
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Huanxin Xue
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Jin Liu
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer MedicineSun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Jianjun Chen
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| |
Collapse
|
26
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
27
|
Hu T, Xu K, Ye Z, Zhu K, Wu Y, Zhang F. Two-in-One Strategy for the Pd(II)-Catalyzed Tandem C-H Arylation/Decarboxylative Annulation Involved with Cyclic Diaryliodonium Salts. Org Lett 2019; 21:7233-7237. [PMID: 31479281 DOI: 10.1021/acs.orglett.9b02429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here a two-in-one strategy for the Pd(II)-catalyzed tandem C-H arylation/decarboxylative annulation between readily available cyclic diaryliodonium salts and benzoic acids. The carboxylic acid functionality can be used as both a directing group for the ortho-C-H arylation and the reactive group for the tandem decarboxylative annulation. By a step-economical double cross-coupling annulation procedure, the privileged triphenylene frameworks were efficiently constructed, which have potential applications in material chemistry.
Collapse
Affiliation(s)
- Tao Hu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Kai Xu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Zenghui Ye
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Kai Zhu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yanqi Wu
- Institute of Information Resource , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
28
|
Kepski K, Rice CR, Moran WJ. Cyclic Vinyl(aryl)iodonium Salts: Synthesis and Reactivity. Org Lett 2019; 21:6936-6939. [DOI: 10.1021/acs.orglett.9b02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Konrad Kepski
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Craig R. Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Wesley J. Moran
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
29
|
Zhu D, Li M, Wu Z, Du Y, Luo B, Huang P, Wen S. Copper-Catalyzed One-Pot Synthesis of Dibenzofurans, Xanthenes, and Xanthones from Cyclic Diphenyl Iodoniums. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daqian Zhu
- School of pharmacy; Guangdong Pharmaceutical University; 280 Waihuan East Road 510006 Guangzhou China
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Min Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
- Collaborative Innovation Center for Cancer Medicine; Changsha Medical University; 1501 Leifeng Road 410219 Changsha China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Yongliang Du
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Peng Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| |
Collapse
|
30
|
Pankova AS, Shestakov AN, Kuznetsov MA. Cyclization of ortho-ethynylbiaryls as an emerging versatile tool for the construction of polycyclic arenes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclization and cycloisomerization of ortho-aryl(ethynyl)arenes provide an easy direct access to fused polycyclic aromatic carbo- and heterocycles. This methodology has demonstrated an impressive progress in the recent years. The goal of this review is to give a comprehensive outlook on the synthetic potential, scope, limitations, and mechanistic aspects of the cyclization reactions. The material is arranged according to the activation method that can be used to induce cyclization: pyrolysis, metal catalysis, electrophilic activation, radical induction, base catalysis. Particular attention is paid to the specificity of ortho-ethynylbiaryls with a heterocyclic central core.
The bibliography includes 257 references.
Collapse
|
31
|
Zhu D, Wu Z, Liang L, Sun Y, Luo B, Huang P, Wen S. Heterocyclic iodoniums as versatile synthons to approach diversified polycyclic heteroarenes. RSC Adv 2019; 9:33170-33179. [PMID: 35529157 PMCID: PMC9073335 DOI: 10.1039/c9ra07288h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Polycyclic heteroarenes are important scaffolds in the construction of pharmaceuticals. We have previously developed a series of novel heterocyclic iodoniums. In our current work, these unique iodoniums were employed to construct various complex polycyclic heteroarenes with structural diversity via tandem dual arylations. As a result, indole, thiophene and triphenylene motifs were fused into these heterocycles with high molecular quality, which might provide promising fragments in drug discovery. Moreover, these heterocycles could be diversified at a late stage. The transformation of heterocyclic iodoniums led to the construction of heterocycles with a high structural diversity.![]()
Collapse
Affiliation(s)
- Daqian Zhu
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Peng Huang
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| |
Collapse
|
32
|
Wang M, Chen S, Jiang X. Atom-Economical Applications of Diaryliodonium Salts. Chem Asian J 2018; 13:2195-2207. [DOI: 10.1002/asia.201800609] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/13/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process; School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Shihao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process; School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process; School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
33
|
Zhu D, Wu Z, Luo B, Du Y, Liu P, Chen Y, Hu Y, Huang P, Wen S. Heterocyclic Iodoniums for the Assembly of Oxygen-Bridged Polycyclic Heteroarenes with Water as the Oxygen Source. Org Lett 2018; 20:4815-4818. [DOI: 10.1021/acs.orglett.8b01969] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daqian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yongliang Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yunyun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou 510006, China
| |
Collapse
|
34
|
Grelier G, Darses B, Dauban P. Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis. Beilstein J Org Chem 2018; 14:1508-1528. [PMID: 30013678 PMCID: PMC6037006 DOI: 10.3762/bjoc.14.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023] Open
Abstract
Most of the polyvalent organoiodine compounds derive from iodoarenes, which are released in stoichiometric amounts in any reaction mediated by λ3- or λ5-iodanes. In parallel to the development of solid-supported reagents or reactions catalytic in iodine, a third strategy has emerged to address this issue in terms of sustainability. The atom-economy of transformations involving stoichiometric amounts of λ3- or λ5-iodanes, thus, has been improved by designing tandem reactions that allows for incorporating the aryl motif into the products through a subsequent one-pot nucleophilic addition or catalytic coupling reaction. This review summarizes the main achievements reported in this area.
Collapse
Affiliation(s)
- Gwendal Grelier
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Benjamin Darses
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
35
|
You X, Zhu D, Lu W, Sun Y, Qiao S, Luo B, Du Y, Pi R, Hu Y, Huang P, Wen S. Design, synthesis and biological evaluation of N-arylsulfonyl carbazoles as novel anticancer agents. RSC Adv 2018; 8:17183-17190. [PMID: 35539273 PMCID: PMC9080423 DOI: 10.1039/c8ra02939c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In this work, a set of structurally diverse synthetic carbazoles was screened for their anticancer activities. According to structure–activity relationship studies, carbazoles with an N-substituted sulfonyl group exhibited better anticancer activity. Moreover, compound 8h was discovered to show the most potent anticancer effects on Capan-2 cells by inducing apoptosis and cell cycle arrest in G2/M phase. Finally, the in vivo study demonstrated that 8h prevented the tumor growth in PANC-1 and Capan-2 xenograft models without apparent toxicity. In this work, a set of structurally diverse synthetic carbazoles was screened for their anticancer activities.![]()
Collapse
|
36
|
Tian ZY, Wang SM, Jia SJ, Song HX, Zhang CP. Sonogashira Reaction Using Arylsulfonium Salts as Cross-Coupling Partners. Org Lett 2017; 19:5454-5457. [DOI: 10.1021/acs.orglett.7b02764] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ze-Yu Tian
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Su-Jiao Jia
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hai-Xia Song
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
37
|
Xie H, Ding M, Liu M, Hu T, Zhang F. Synthesis of Functionalized Biaryls and Poly(hetero)aryl Containing Medium-Sized Lactones with Cyclic Diaryliodonium Salts. Org Lett 2017; 19:2600-2603. [PMID: 28481117 DOI: 10.1021/acs.orglett.7b00933] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel one-pot procedure is described for the transition-metal catalyzed sequential difunctionalization of diaryliodonium reagents. Reaction of commercially available anthranilic acid derivatives with readily available cyclic diaryliodonium salts followed by a Sonogashira coupling afforded various alkyne substituted biaryls in good to excellent yields. The functionalized biaryls were then utilized for the rapid and efficient one-pot synthesis of novel poly(hetero)aryl containing 10-membered lactones which are potential G-quadruplex binders and telomerase inhibitors.
Collapse
Affiliation(s)
- Hao Xie
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology , Hangzhou, 310014, P. R. China
| | - Mingruo Ding
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology , Hangzhou, 310014, P. R. China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology , Hangzhou, 310014, P. R. China
| | - Tao Hu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology , Hangzhou, 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology , Hangzhou, 310014, P. R. China
| |
Collapse
|
38
|
Liu L, Qiang J, Bai S, Li Y, Miao C, Li J. Palladium-catalyzed cyclocarbonylation of cyclic diaryliodoniums: Synthesis of fluorenones. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Li Liu
- School of Petrochemical Engineering; Changzhou University; Changzhou 213164 People's Republic of China
| | - Jian Qiang
- School of Petrochemical Engineering; Changzhou University; Changzhou 213164 People's Republic of China
| | - Shuhua Bai
- School of Pharmaceutical Engineering & Life Sciences; Changzhou University; Changzhou 213164 People's Republic of China
| | - Yang Li
- School of Pharmaceutical Engineering & Life Sciences; Changzhou University; Changzhou 213164 People's Republic of China
| | - Chunbao Miao
- School of Petrochemical Engineering; Changzhou University; Changzhou 213164 People's Republic of China
| | - Jian Li
- School of Pharmaceutical Engineering & Life Sciences; Changzhou University; Changzhou 213164 People's Republic of China
| |
Collapse
|
39
|
Liu L, Qiang J, Bai S, Li Y, Li J. Iron‐catalyzed carbon–sulfur bond formation: Atom‐economic construction of thioethers with diaryliodonium salts. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Li Liu
- School of Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Jian Qiang
- School of Petrochemical EngineeringChangzhou University Changzhou 213164 People's Republic of China
| | - Shuhua Bai
- School of Pharmaceutical Engineering and Life SciencesChangzhou University Changzhou 213164 People's Republic of China
| | - Yang Li
- School of Pharmaceutical Engineering and Life SciencesChangzhou University Changzhou 213164 People's Republic of China
| | - Jian Li
- School of Pharmaceutical Engineering and Life SciencesChangzhou University Changzhou 213164 People's Republic of China
| |
Collapse
|
40
|
Chatterjee N, Goswami A. Synthesis and Application of Cyclic Diaryliodonium Salts: A Platform for Bifunctionalization in a Single Step. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601651] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nachiketa Chatterjee
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road; 140001 Rupnagar Punjab India
| | - Avijit Goswami
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road; 140001 Rupnagar Punjab India
| |
Collapse
|
41
|
Peng X, Luo H, Wu F, Zhu D, Ganesan A, Huang P, Wen S. Synthesis of Fluorenes with an All-Carbon Quaternary CenterviaPalladium-Catalyzed Dual Arylation using Cyclic Diaryliodonium Triflates. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaopeng Peng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer Medicine; Sun Yat-sen University; 651 Dongfeng East Road Guangzhou 510060 People's Republic of China
- Guangdong Pharmaceutical University; 280 Waihuan East Road Guangzhou 510006 People's Republic of China
- Zhaoqing Medical College; 6 West River Road Zhaoqing 526060 People's Republic of China
| | - Hongwen Luo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer Medicine; Sun Yat-sen University; 651 Dongfeng East Road Guangzhou 510060 People's Republic of China
- Guangdong Pharmaceutical University; 280 Waihuan East Road Guangzhou 510006 People's Republic of China
| | - Fuhai Wu
- Guangdong Pharmaceutical University; 280 Waihuan East Road Guangzhou 510006 People's Republic of China
| | - Daqian Zhu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer Medicine; Sun Yat-sen University; 651 Dongfeng East Road Guangzhou 510060 People's Republic of China
| | - A. Ganesan
- School of Pharmacy; University of East Anglia; Norwich NR4 7TJ U.K
| | - Peng Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer Medicine; Sun Yat-sen University; 651 Dongfeng East Road Guangzhou 510060 People's Republic of China
- School of Pharmaceutical Sciences; Sun Yat-sen University; 132 Waihuan East Road Guangzhou 510006 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer Medicine; Sun Yat-sen University; 651 Dongfeng East Road Guangzhou 510060 People's Republic of China
- School of Pharmaceutical Sciences; Sun Yat-sen University; 132 Waihuan East Road Guangzhou 510006 People's Republic of China
| |
Collapse
|
42
|
Wang M, Wei J, Fan Q, Jiang X. Cu(ii)-catalyzed sulfide construction: both aryl groups utilization of intermolecular and intramolecular diaryliodonium salt. Chem Commun (Camb) 2017; 53:2918-2921. [DOI: 10.1039/c6cc09201b] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A sulfur–iodine exchange strategy was developed that utilized both aryl groups of diaryliodonium salt employed in intermolecular and intramolecular reactions.
Collapse
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Jianpeng Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Qiaoling Fan
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
43
|
Tan Q, Zhou D, Zhang T, Liu B, Xu B. Iodine-doped sumanene and its application for the synthesis of chalcogenasumanenes and silasumanenes. Chem Commun (Camb) 2017; 53:10279-10282. [DOI: 10.1039/c7cc05885c] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first example of halogen-doped buckybowls has been synthesized, which can be readily transformed into pristine trithiasumanene, triselenasumanene and trisilasumanene.
Collapse
Affiliation(s)
- Qitao Tan
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai
- China
| | - Dandan Zhou
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai
- China
| | - Tao Zhang
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai
- China
| | - Bingxin Liu
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai
- China
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- Shanghai University
- Shanghai
- China
| |
Collapse
|
44
|
Chatterjee N, Goswami A. Diverse Transformations of Boronic Compounds Promoted by Hypervalent Organoiodines(III): Unique Combined Reactivity of Two Electrophilic Compounds. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nachiketa Chatterjee
- Indian Institute of Technology Ropar; Nangal Road Rupnagar, Punjab - 140001 India
| | - Avijit Goswami
- Indian Institute of Technology Ropar; Nangal Road Rupnagar, Punjab - 140001 India
| |
Collapse
|
45
|
Wang M, Fan Q, Jiang X. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur–Iodine and Selenium–Iodine Exchange. Org Lett 2016; 18:5756-5759. [DOI: 10.1021/acs.orglett.6b03078] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ming Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Process, School of
Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Qiaoling Fan
- Shanghai
Key Laboratory of Green Chemistry and Chemical Process, School of
Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Process, School of
Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin
Road 94, Tianjin, 300071, P. R. China
| |
Collapse
|
46
|
Wu Y, Wu F, Zhu D, Luo B, Wang H, Hu Y, Wen S, Huang P. Pd catalyzed insertion of alkynes into cyclic diaryliodoniums: a direct access to multi-substituted phenanthrenes. Org Biomol Chem 2016; 13:10386-91. [PMID: 26324765 DOI: 10.1039/c5ob01597a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclic diaryliodoniums remain unexplored compared to linear iodoniums. In our current work, internal alkynes were for the first time applied to react with cyclic iodoniums, catalyzed by Pd, resulting in a [4 + 2] benzannulation. Our work offers a new strategy to synthesize multi-substituted phenanthrene derivatives which are not easily accessed by conventional methods.
Collapse
Affiliation(s)
- Yongcheng Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shimizu M, Ogawa M, Tamagawa T, Shigitani R, Nakatani M, Nakano Y. Copper-Catalyzed Double S-Arylation of Potassium Thioacetate with Dibenziodolium Triflates: Facile Synthesis of Unsymmetrical Dibenzothiophenes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| | - Mai Ogawa
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| | - Tomokazu Tamagawa
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| | - Ryosuke Shigitani
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| | - Masaki Nakatani
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| | - Yoshiki Nakano
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; 1 Hashikami-cho 606-8585 Matsugasaki, Sakyo-ku Kyoto Japan
| |
Collapse
|
48
|
Li J, Wang H, Hou Y, Yu W, Xu S, Zhang Y. A General and Mild Copper(I)-Catalyzed Three-Component Reaction of Cyanamides, Amines, and Diaryliodonium Triflates. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Alkenylation of Arenes and Heteroarenes with Alkynes. Chem Rev 2016; 116:5894-986. [DOI: 10.1021/acs.chemrev.5b00514] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Dmitry S. Ryabukhin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per. 5, Saint Petersburg 194021, Russia
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Aleksander V. Vasilyev
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
- Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per. 5, Saint Petersburg 194021, Russia
| |
Collapse
|
50
|
Liu Z, Luo B, Liu X, Hu Y, Wu B, Huang P, Wen S. Cu/Pd-Catalyzed Cascade Reactions of Cyclic Diaryliodoniums and Alkynes - Access to Fluorenes with Conjugate Enynes/Dienes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|