1
|
Beyer PD, Nielsen MM, Picazo E, Jacobsen EN. β-Selective 2-Deoxy- and 2,6-Dideoxyglucosylations Catalyzed by Bis-Thioureas. J Am Chem Soc 2024; 146:27318-27323. [PMID: 39348510 DOI: 10.1021/jacs.4c11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
We present methods for β-selective 2-deoxy- and 2,6-dideoxyglucosylations of natural products, carbohydrates, and amino acids using bis-thiourea hydrogen-bond-donor catalysts. Disarming ester protecting groups were necessary to counter the high reactivity of 2-deoxyglycosyl electrophiles toward non-stereospecific SN1 pathways. Alcohol and phenol nucleophiles with both base- and acid-sensitive functionalities were compatible with the catalytic protocol, enabling access to a wide array of 2-deoxy-β-O-glucosides.
Collapse
Affiliation(s)
- Peyton D Beyer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael M Nielsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elias Picazo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Demchenko AV, De Meo C. The 4K reaction. Carbohydr Res 2024; 538:109102. [PMID: 38569333 DOI: 10.1016/j.carres.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The classical Koenigs-Knorr glycosidation of bromides or chlorides promoted with Ag2O or Ag2CO3 works only with reactive substrates (ideally both donor and acceptor). This reaction was found to be practically ineffective with unreactive donors such as per-O-benzoylated mannosyl bromide. Recently, it was discovered that the addition of catalytic (Lewis) acids to a silver salt-promoted reaction has a dramatic effect on the reaction rate and yield. A tentative mechanism for this cooperatively-catalyzed glycosylation reaction has been proposed, and the improved understanding of the reaction led to more efficient protocols and broader applications to a variety of glycosidic linkages. Since Ag2O-mediated activation was introduced by German chemists Koenigs and Knorr, and "cooperatively catalyzed" is Kooperativ Katalysiert in German, we refer to this new reaction as "the 4K reaction."
Collapse
Affiliation(s)
- Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, United States.
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, IL, 62025, United States
| |
Collapse
|
3
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
4
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
5
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Mukherji A, Rotta MKV, Sarmah BK, Kancharla PK. Influence of Various Silyl Protecting Groups on Stereoselective 2-Deoxyrhamnosylation. J Org Chem 2023; 88:245-260. [PMID: 36524596 DOI: 10.1021/acs.joc.2c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of various silyl protecting groups on 2-deoxyrhamnosylation using 2-deoxyrhamnosyl acetates, thioglycosides, and (p-methoxyphenyl)vinylbenzoate (PMPVB) donors has been presented. C-Glycosylation reactions reveal that tert-butyldimethylsilyl (TBDMS), triisopropylsilyl (TIPS), and tert-butyldiphenylsilyl (TBDPS) silyl protected rhamnosyl oxocarbenium ions have no facial selectivity except for the conformationally (4H3) locked tetraisopropyldisiloxane (TIPDS) protected rhamnose donor, which provides complete α-selectivity. However, TBDPS protected rhamnosyl donors are found to be superior protecting groups for α-stereoselective O-glycosylation reactions with various acceptors. The observed results are found consistent across donors and donor activation conditions. Most importantly, the study was conducted at room temperature unlike the other energy-intensive low-temperature studies and was bound to have more practical utility. The outcomes have been explained using kinetic and thermodynamic analyses.
Collapse
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mahendra K V Rotta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bikash K Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Xu Z, DiBello M, Wang Z, Rose JA, Chen L, Li X, Herzon SB. Stereocontrolled Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A. J Am Chem Soc 2022; 144:16199-16205. [PMID: 35998350 DOI: 10.1021/jacs.2c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a stereocontrolled synthesis of 3, the fully glycosylated monomeric unit of the dimeric cytotoxic bacterial metabolite (-)-lomaiviticin A (2). A novel strategy involving convergent, site- and stereoselective coupling of the β,γ-unsaturated ketone 6 and the naphthyl bromide 7 (92%, 15:1 diastereomeric ratio (dr)), followed by radical-based annulation and silyl ether cleavage, provided the tetracycle 5 (57% overall), which contains the carbon skeleton of the aglycon of 3. The β-linked 2,4,6-trideoxy-4-aminoglycoside l-pyrrolosamine was installed in 73% yield and with 15:1 β:α selectivity using a modified Koenigs-Knorr glycosylation. The diazo substituent was introduced via direct diazo transfer to an electron-rich benzoindene (4 → 27). The α-linked 2,6-dideoxyglycoside l-oleandrose was introduced by gold-catalyzed activation of an o-alkynyl glycosylbenzoate (75%, >20:1 α:β selectivity). A carefully orchestrated endgame sequence then provided efficient access to 3. Cell viability studies indicated that monomer 3 is not cytotoxic at concentrations up to 1 μM, providing conclusive evidence that the dimeric structure of (-)-lomaiviticin A (2) is required for cytotoxic effects. The preparation of 3 provides a foundation to complete the synthesis of (-)-lomaiviticin A (2) itself.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Zechun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Lei Chen
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut06520, United States
| |
Collapse
|
8
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
9
|
Mizia JC, Syed MU, Bennett CS. Synthesis of the α-Linked Digitoxose Trisaccharide Fragment of Kijanimicin: An Unexpected Application of Glycosyl Sulfonates. Org Lett 2022; 24:731-735. [PMID: 35005969 DOI: 10.1021/acs.orglett.1c04190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, we demonstrated that glycosyl tosylates are effective for the synthesis of β-glycosides of gluco-configured 2-deoxy sugars. Here, we show the same sulfonate system can be used for the selective synthesis of α-glycosides containing the allo-configured 2-deoxy sugar digitoxose. As with previous work, optimal selectivity is obtained through matching the donor with the appropriate arylsulfonyl chloride promoter. The utility of this method is demonstrated through the synthesis of the α-linked digitoxose trisaccharide fragment of kijanimicin.
Collapse
Affiliation(s)
- J Colin Mizia
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Mohammed U Syed
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
10
|
Liu X, Lin Y, Liu A, Sun Q, Sun H, Xu P, Li G, Song Y, Xie W, Sun H, Yu B, Li W. 2‐Diphenylphosphinonyl
‐acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of
β‐Glycosides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yetong Lin
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Ao Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Qianhui Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Huiyong Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guolong Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yingying Song
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Weijia Xie
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Haopeng Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| |
Collapse
|
11
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kaneko M, Li Z, Burk M, Colis L, Herzon SB. Synthesis and Biological Evaluation of (2 S,2' S)-Lomaiviticin A. J Am Chem Soc 2021; 143:1126-1132. [PMID: 33410680 PMCID: PMC8174553 DOI: 10.1021/jacs.0c11960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(-)-Lomaiviticin A (1) is a genotoxic C2-symmetric metabolite that arises from the formal dimerization of two bis(glycosylated) diazotetrahydrobenzo[b]fluorenes. Here we present a synthesis of the monomer 17 and its coupling to form (2S,2'S)-lomaiviticin A (4), an unnatural diastereomer of 1. (2S,2'S)-Lomaiviticin A (4) is significantly less genotoxic, a result we attribute to changes in the orientation of the diazofluorene and carbohydrate residues, relative to 1. These data bring the importance of the configuration of the conjoining bond to light and place the total synthesis of 1 itself within reach.
Collapse
Affiliation(s)
- Miho Kaneko
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhenwu Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Matthew Burk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Laureen Colis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
13
|
Tang Y, Wang M, Qin H, An X, Guo Z, Zhu G, Zhang L, Chen Y. Deciphering the Biosynthesis of TDP-β-l-oleandrose in Avermectin. JOURNAL OF NATURAL PRODUCTS 2020; 83:3199-3206. [PMID: 32970428 DOI: 10.1021/acs.jnatprod.0c00902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Avermectin (AVM) refers to eight macrolides containing a common l-oleandrosyl disaccharide chain indispensable to their antiparasitic bioactivities. We delineated the biosynthetic pathway of TDP-β-l-oleandrose (1), the sugar donor of AVM, by characterizing AveBVIII, AveBV, and AveBVII as TDP-sugar 3-ketoreductase, 5-epimerase, and 3-O-methyltransferase, respectively. On the basis of this pathway, we successfully reconstituted the biosynthesis of 1 in Escherichia coli. Our work completes the biosynthetic pathway of AVM and lays a solid foundation for further studies.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiang An
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
15
|
Romeo JR, McDermott L, Bennett CS. Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Org Lett 2020; 22:3649-3654. [PMID: 32281384 PMCID: PMC7239334 DOI: 10.1021/acs.orglett.0c01153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first synthesis of the tetrasaccharide fragment of the anthracycline natural product Arugomycin is described. A reagent controlled dehydrative glycosylation method involving cyclopropenium activation was utilized to synthesize the α-linkages with complete anomeric selectivity. The synthesis was completed in 20 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- Joseph R Romeo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luca McDermott
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
16
|
Meng S, Zhong W, Yao W, Li Z. Stereoselective Phenylselenoglycosylation of Glycals Bearing a Fused Carbonate Moiety toward the Synthesis of 2-Deoxy-β-galactosides and β-Mannosides. Org Lett 2020; 22:2981-2986. [PMID: 32216320 DOI: 10.1021/acs.orglett.0c00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A phenylselenoglycosylation reaction of glycal derivatives mediated by diphenyl diselenide and phenyliodine(III) bis(trifluoroacetate) under mild conditions is described. Stereoselective glycosylation has been achieved by installing fused carbonate on those glycals. 3,4-O-Carbonate galactals and 2,3-O-carbonate 2-hydroxyglucals are converted into corresponding glycosides in good yields with excellent β-selectivity, resulting in 2-phenylseleno-2-deoxy-β-galactosides and 2-phenylseleno-β-mannosides which are good precursors of 2-deoxy-β-galactosides and β-mannosides, respectively.
Collapse
Affiliation(s)
- Shuai Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wenhe Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
17
|
Wen P, Simmons CJ, Ma ZX, Blaszczyk SA, Balzer PG, Ye W, Duan X, Wang HY, Yin D, Stevens CM, Tang W. Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions. Org Lett 2020; 22:1495-1498. [PMID: 32026682 PMCID: PMC7050992 DOI: 10.1021/acs.orglett.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A general method has been developed for the formation of glycosyl chlorides and bromides from picolinic esters under mild and neutral conditions. Benchtop stable picolinic esters are activated by a copper(II) halide species to afford the corresponding products in high yields with a traceless leaving group. Rare β glycosyl chlorides are accessible via this route through neighboring group participation. Additionally, glycosyl chlorides with labile protecting groups previously not easily accessible can be prepared.
Collapse
Affiliation(s)
- Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Christopher J. Simmons
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhi-xiong Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Paul G. Balzer
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Wenjing Ye
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Xiyan Duan
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Hao-Yuan Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Dan Yin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Christopher M. Stevens
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
18
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
19
|
Direct Addition of Amides to Glycals Enabled by Solvation‐Insusceptible 2‐Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Nakatsuji Y, Kobayashi Y, Takemoto Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019; 58:14115-14119. [PMID: 31392793 DOI: 10.1002/anie.201907129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 01/12/2023]
Abstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
21
|
Shaw M, Kumar A. Additive‐Free Gold(III)‐Catalyzed Stereoselective Synthesis of 2‐Deoxyglycosides Using Phenylpropiolate Glycosides as Donors. Chem Asian J 2019; 14:4651-4658. [DOI: 10.1002/asia.201900888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mukta Shaw
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| | - Amit Kumar
- Department of ChemistryIndian Institute of Technology Patna, Bihta 801106 Bihar India
| |
Collapse
|
22
|
Mizia JC, Bennett CS. Reagent Controlled Direct Dehydrative Glycosylation with 2-Deoxy Sugars: Construction of the Saquayamycin Z Pentasaccharide. Org Lett 2019; 21:5922-5927. [PMID: 31305082 DOI: 10.1021/acs.orglett.9b02056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first synthesis of the pentasaccharide fragment of the angucycline antibiotic saquayamycin Z is described. By using our sulfonyl chloride mediated reagent controlled dehydrative glycosylation, we are able to assemble the glycosidic linkages with high levels of anomeric selectivity. The total synthesis was completed in 25 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- J Colin Mizia
- Department of Chemistry , Tufts University , Medford , Massachusetts 02155 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
23
|
Hoang KM, Lees NR, Herzon SB. Programmable Synthesis of 2-Deoxyglycosides. J Am Chem Soc 2019; 141:8098-8103. [DOI: 10.1021/jacs.9b03982] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin M. Hoang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas R. Lees
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Yalamanchili S, Lloyd D, Bennett CS. Synthesis of the Hexasaccharide Fragment of Landomycin A Using a Mild, Reagent-Controlled Approach. Org Lett 2019; 21:3674-3677. [PMID: 31021647 DOI: 10.1021/acs.orglett.9b01118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of the hexasaccharide fragment of landomycin A is reported. Using p-toluenesulfonyl chloride mediated dehydrative glycosylation, we constructed the deoxy-sugar linkages in a stereoselective fashion without the need for temporary prosthetic groups to control selectivity. Through this approach, the hexasaccharide was obtained in 28 steps and 8.9% overall yield, which is an order of magnitude higher than that of previously reported approaches.
Collapse
Affiliation(s)
- Subbarao Yalamanchili
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Dina Lloyd
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Clay S Bennett
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
25
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
26
|
Lloyd D, Bennett CS. An Improved Approach to the Direct Construction of 2-Deoxy-β-Linked Sugars: Applications to Oligosaccharide Synthesis. Chemistry 2018; 24:7610-7614. [PMID: 29572995 DOI: 10.1002/chem.201800736] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/19/2018] [Indexed: 02/05/2023]
Abstract
A next-generation reagent-controlled approach for the synthesis of 2,6-dideoxy and 2,3,6-trideoxy sugar donors in good yield and high β-selectivity is reported. The use of p-toluenesulfonyl chloride and potassium hexamethyldisilazide (KHMDS) greatly simplifies deoxy-sugar glycoside construction, and can be used for gram-scale glycosylation reactions. The development of this approach and its application to the construction of β-linked deoxy-sugar oligosaccharides are described.
Collapse
Affiliation(s)
- Dina Lloyd
- Department Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Clay S Bennett
- Department Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| |
Collapse
|
27
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
28
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018; 57:6120-6124. [DOI: 10.1002/anie.201800909] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
29
|
Ru-Catalyzed Chemoselective Olefin Migration Reaction of Cyclic Allylic Acetals to Enol Acetals. Org Lett 2018; 20:979-982. [DOI: 10.1021/acs.orglett.7b03900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Palo-Nieto C, Sau A, Galan MC. Gold(I)-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. J Am Chem Soc 2017; 139:14041-14044. [PMID: 28934850 PMCID: PMC5951607 DOI: 10.1021/jacs.7b08898] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
31
|
Zeng J, Xu Y, Wang H, Meng L, Wan Q. Recent progress on the synthesis of 2-deoxy glycosides. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9010-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017; 56:3640-3644. [PMID: 28211228 PMCID: PMC5484376 DOI: 10.1002/anie.201612071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α-stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N-phenyl-2-(di-tert-butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
Collapse
Affiliation(s)
- Abhijit Sau
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ryan Williams
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Carlos Palo‐Nieto
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Sandra Medina
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
33
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium‐Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijit Sau
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Ryan Williams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Carlos Palo‐Nieto
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Antonio Franconetti
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Sandra Medina
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
34
|
Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 2017; 355:162-166. [PMID: 28082586 PMCID: PMC5671764 DOI: 10.1126/science.aal1875] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023]
Abstract
Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction.
Collapse
Affiliation(s)
- Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaid C Harper
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nadine Kuhl
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eugene E Kwan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Palo-Nieto C, Sau A, Williams R, Galan MC. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides. J Org Chem 2016; 82:407-414. [PMID: 28004941 PMCID: PMC5309864 DOI: 10.1021/acs.joc.6b02498] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A practical approach for the α-stereoselective synthesis of deoxyglycosides using cooperative Brønsted acid-type organocatalysis has been developed. The method is tolerant of a wide range of glycoside donors and acceptors, and its versatility is exemplified in the one-pot synthesis of a trisaccharide. Mechanistic studies suggest that thiourea-induced acid amplification of the chiral acid via H-bonding is key for the enhancement in reaction rate and yield, while stereocontrol is dependent on the chirality of the acid.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Ryan Williams
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
36
|
Zhang W, Luo X, Wang Z, Zhang J. One-pot synthesis of β-2,6-dideoxyglycosides via glycosyl iodide intermediates. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1239729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaosheng Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhongfu Wang
- School of Life Sciences, Northwestern University, Xi'an, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
37
|
Miyagawa A, Takeuchi S, Itoda S, Toyama S, Kurimoto K, Yamamura H, Ito Y. Chemical synthesis and isolation of UDP-2-deoxy glucose and galactose. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1227849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Atsushi Miyagawa
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Shunya Takeuchi
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Shinji Itoda
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Sanami Toyama
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Kenta Kurimoto
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hatsuo Yamamura
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama, Japan
| |
Collapse
|
38
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
39
|
Nogueira JM, Bylsma M, Bright DK, Bennett CS. Reagent‐Controlled α‐Selective Dehydrative Glycosylation of 2,6‐Dideoxy‐ and 2,3,6‐Trideoxy Sugars. Angew Chem Int Ed Engl 2016; 55:10088-92. [DOI: 10.1002/anie.201605091] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jason M. Nogueira
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Marissa Bylsma
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Danielle K. Bright
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Clay S. Bennett
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| |
Collapse
|
40
|
Nogueira JM, Bylsma M, Bright DK, Bennett CS. Reagent‐Controlled α‐Selective Dehydrative Glycosylation of 2,6‐Dideoxy‐ and 2,3,6‐Trideoxy Sugars. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jason M. Nogueira
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Marissa Bylsma
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Danielle K. Bright
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Clay S. Bennett
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| |
Collapse
|
41
|
Kimura T, Takahashi D, Toshima K. Glycosylations of Glycals using N-Iodosuccinimide (NIS) and Phosphorus Compounds for Syntheses of 2-Iodo- and 2-Deoxyglycosides. J Org Chem 2015; 80:9552-62. [PMID: 26375399 DOI: 10.1021/acs.joc.5b01542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylations of glycals and alcohols using N-iodosuccinimide (NIS) and a catalytic amount of PPh3 effectively proceeded under mild conditions to provide the corresponding 2-deoxy-2-iodoglycosides in high yields. The reactivity of the iodoglycosylations with PPh3 significantly increased in comparison to that using NIS alone as an activator. In addition, the glycosylations of glycals and alcohols using catalytic amounts of NIS and P(OPh)3 were effectively realized to give the corresponding 2-deoxyglycosides in high yields.
Collapse
Affiliation(s)
- Tomoya Kimura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
42
|
Song W, Zhao Y, Lynch JC, Kim H, Tang W. Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers. Chem Commun (Camb) 2015; 51:17475-8. [PMID: 26477956 DOI: 10.1039/c5cc07787g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All eight possible stereoisomers of 2,3,6-trideoxyhexopyranosides are prepared systematically from furan derivatives by a sequence of Achmatowicz rearrangement, Pd-catalysed glycosidation, and chiral catalyst-controlled tandem reductions. This sequence provides access to all possible stereoisomers of naturally occurring rhodinopyranosides, amicetopyranosides, disaccharide narbosine B, and other unnatural oligomeric 2,3,6-trideoxyhexopyranosides. It comprises a unique and systematic strategy for the de novo synthesis of deoxysugars.
Collapse
Affiliation(s)
- Wangze Song
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.
| | | | | | | | | |
Collapse
|
43
|
Wang H, Tao J, Cai X, Chen W, Zhao Y, Xu Y, Yao W, Zeng J, Wan Q. Stereoselective Synthesis of α-Linked 2-Deoxy Glycosides Enabled by Visible-Light-Mediated Reductive Deiodination. Chemistry 2014; 20:17319-23. [DOI: 10.1002/chem.201405516] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Indexed: 12/23/2022]
|
44
|
Kendale J, Valentín EM, Woerpel KA. Solvent effects in the nucleophilic substitutions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate: trichloroethylene as solvent for stereoselective C- and O-glycosylations. Org Lett 2014; 16:3684-7. [PMID: 24991982 PMCID: PMC4334250 DOI: 10.1021/ol501471c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 12/03/2022]
Abstract
The selectivities of nucleophilic substitution reactions of tetrahydropyran acetals promoted by trimethylsilyl trifluoromethanesulfonate depend upon the reaction solvent. Polar solvents favor the formation of S(N)1 products, while nonpolar solvents favor S(N)2 products. Trichloroethylene was identified as the solvent most likely to give S(N)2 products in both C- and O-glycosylation reactions.
Collapse
Affiliation(s)
- Joanna
C. Kendale
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Elizabeth M. Valentín
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - K. A. Woerpel
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
45
|
Beale TM, Moon PJ, Taylor MS. Organoboron-catalyzed regio- and stereoselective formation of β-2-deoxyglycosidic linkages. Org Lett 2014; 16:3604-7. [PMID: 24963885 DOI: 10.1021/ol501711v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A borinic acid derived catalyst enables regioselective and β-selective reactions of 2-deoxy- and 2,6-dideoxyglycosyl chloride donors with pyranoside-derived acceptors having unprotected cis-1,2- and 1,3-diol groups. The use of catalysis to promote a β-selective pathway by enhancement of acceptor nucleophilicity constitutes a distinct approach from previous work, which has been aimed at modulating donor reactivity by variation of protective and/or leaving groups.
Collapse
Affiliation(s)
- Thomas M Beale
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | |
Collapse
|