1
|
Duan X, Zheng G, Xiao G. Visible-Light-Driven Synthesis of Dihydroaurones from Aromatic Diazo Compounds. J Org Chem 2024; 89:13026-13030. [PMID: 39240348 DOI: 10.1021/acs.joc.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Dihydroaurones, which are derivatives of aurones, exhibit similar biological activity. Although there are many synthetic methods for dihydroaurones, ecofriendly methodologies that circumvent the use of precious metals still need to be explored. In this work, a catalyst-free, visible-light-driven synthesis of dihydroaurones has been developed through the cyclization of aromatic diazo compounds. The reaction proceeded smoothly under mild conditions, resulting in a series of dihydroaurones in moderate to high yields. Mechanistic investigation suggests that this process involves a radical-pair Stevens rearrangement.
Collapse
Affiliation(s)
- Xiuyuan Duan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Xiao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
3
|
He Q, Zhang Q, Rolka AB, Suero MG. Alkoxy Diazomethylation of Alkenes by Photoredox-Catalyzed Oxidative Radical-Polar Crossover. J Am Chem Soc 2024; 146:12294-12299. [PMID: 38663863 PMCID: PMC11082901 DOI: 10.1021/jacs.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Herein, we present the discovery and development of the first photoredox-catalyzed alkoxy diazomethylation of alkenes with hypervalent iodine reagents and alcohols. This multicomponent process represents a new disconnection approach to diazo compounds and is featured by a broad scope, mild reaction conditions, and excellent selectivity. Key to the process was the generation of diazomethyl radicals, which engaged alkenes and alcohols in an inter- and intramolecular fashion by a photoredox-catalyzed oxidative radical-polar crossover leading to unexplored β-alkoxydiazo compounds. The synthetic utility of such diazo compounds was demonstrated with a series of transformations involving C-H, N-H, and O-H insertions as well as in the construction of complex sp3-rich heterocycles.
Collapse
Affiliation(s)
- Qiyuan He
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Quan Zhang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alessa B. Rolka
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA,
Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Orłowska K, Łuczak K, Krajewski P, Santiago JV, Rybicka-Jasińska K, Gryko D. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem Commun (Camb) 2023. [PMID: 37997166 DOI: 10.1039/d3cc05174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Structurally diversified diazoalkanes can be activated under red light irradiation relying on direct photolysis, photosensitization or photoredox catalysis.
Collapse
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - João V Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| |
Collapse
|
5
|
Cong F, Zhang W, Zhang G, Liu J, Zhang Y, Zhou C, Wang L. Visible light as a sole requirement for alkylation of α-C(sp 3)-H of N-aryltetrahydroisoquinolines with alkylboronic acids. Org Biomol Chem 2023; 21:8910-8917. [PMID: 37906093 DOI: 10.1039/d3ob01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An alkylation of α-C(sp3)-H at N-aryltetrahydroisoquinolines with alkylboronic acids was developed under visible-light irradiation in the absence of additional photocatalyst. The reaction proceeded well, tolerating a variety of functional groups, and featured low-cost and mild reaction conditions. A preliminary mechanistic study indicated that an electron donor-acceptor (EDA) complex between an electron-rich N-aryltetrahydroisoquinoline and an electron-poor alkylboronic acid was involved in the reaction.
Collapse
Affiliation(s)
- Feihu Cong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wenjing Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
6
|
Ohno H, Takahashi R, Suga T, Soeta T, Ukaji Y. Divergent transformation of C, N-cyclic- N'-acyl azomethine imines by reaction with diazo compounds. Org Biomol Chem 2023; 21:7891-7894. [PMID: 37747044 DOI: 10.1039/d3ob01165h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
C,N-cyclic-N'-acyl azomethine imines with isoquinoline skeletons were investigated for their reactivity with diazo compounds via two different pathways. During the reaction with ethyl diazoacetate, an α-diazoacetate moiety was introduced at the C1-position of the resulting tetrahydroisoquinolines. Alternatively, diazomethane or trimethylsilyldiazomethane was used to synthesize 3-benzazepine derivatives via ring expansion.
Collapse
Affiliation(s)
- Haruki Ohno
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryosuke Takahashi
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takahiro Soeta
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
7
|
Zhang LY, Wang NX, Lucan D, Cheung W, Xing Y. Recent Advances in Aerobic Oxidative of C-H Bond by Molecular Oxygen Focus on Heterocycles. Chemistry 2023; 29:e202301700. [PMID: 37390122 DOI: 10.1002/chem.202301700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Aerobic oxidative cross-coupling represents one of the most straightforward and atom-economic methods for construction of C-C and C-X (X=N, O, S, or P) bonds using air as a sustainable external oxidant. The oxidative coupling of C-H bonds in heterocyclic compounds can effectively increase their molecular complexity by introducing new functional groups through C-H bond activation, or by formation of new heterocyclic structures through cascade construction of two or more sequential chemical bonds. This is very useful as it can increase the potential applications of these structures in natural products, pharmaceuticals, agricultural chemicals, and functional materials. This is a representative overview of recent progress since 2010 on green oxidative coupling reactions of C-H bond using O2 or air as internal oxidant focus on Heterocycles. It aims to provide a platform for expanding the scope and utility of air as green oxidant, together with a brief discussion on research into the mechanisms behind it.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry &, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - William Cheung
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
8
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
9
|
Saito K, Aoyama H, Sako M, Arisawa M, Murai K. Double Ring Expansion Strategy for Fused 3-Benzazepines: Alternative Synthesis of the Dolby-Weinreb Enamine. J Org Chem 2022; 87:16947-16951. [PMID: 36475678 DOI: 10.1021/acs.joc.2c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A double ring expansion strategy for constructing fused 3-benzazepines is described. The oxidative ring expansion of spiroamine compounds with N-chlorosuccinimide and subsequent ring expansion of the resulting ketiminium ion intermediates with trimethylsilyldiazomethane afforded fused 3-benzazepines in a one-pot operation. Importantly, the Dolby-Weinreb enamine, which is a key synthetic intermediate for harringtonine alkaloids, cephalotaxines, can be accessed from commercial materials in only two steps using our developed method.
Collapse
Affiliation(s)
- Keigo Saito
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Yajima T. Visible-light-induced Organocatalytic Perfluoroalkylation of Electron-rich Olefins. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wang J, Huang H, Gao H, Qin G, Xiao T, Jiang Y. DBU/AgOTf Relay‐Catalysis Enabled One‐Pot Synthesis of 1,3‐Dihydroisobenzofurans and Its Conversion to Indanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haotian Gao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
12
|
Chen R, Lan J, Li F, Wang K, Xue Y, Xu C, Liu L. A Three‐Component Reaction to Construct β‐Aminonitroso‐α‐Diazocarbonyl Compounds under Metal‐Free Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rongxiang Chen
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Jihong Lan
- School of Chemistry and Materials Engineering Xinxiang University Xinxiang 453000 People's Republic of China
| | - Feng Li
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Yinghui Xue
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Canran Xu
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering Shangqiu Normal University Shangqiu 476000 People's Republic of China
| |
Collapse
|
13
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Zhang X, Wang X, Jiao C, Zhao J, Liu X, Zhang G. Transition-metal-free, mild and efficient ring expansion of amino acid derivatives: facile access to densely functionalized azepines. Org Chem Front 2022. [DOI: 10.1039/d2qo01147f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild, practical and efficient approach for the synthesis of valuable azepine products was achieved by the ring expansion of easily accessible amino acid derivatives.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xue Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. Progress of metal‐free visible‐light‐driven a‐C‐H functionalization of tertiary amines: A decade journey. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Pranjal K. Baruah
- GUIST, Gauhati University Applied Sciences Gopinath Bordoloi Nagar 781014 Guwahati INDIA
| |
Collapse
|
17
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
18
|
Li W, Xu H, Zhou L. Acid-catalyzed oxidative cross-coupling of acridans with silyl diazoenolates and a Rh-catalyzed rearrangement: two-step synthesis of γ-(9-acridanylidene)-β-keto esters. Org Biomol Chem 2021; 19:5649-5657. [PMID: 34105567 DOI: 10.1039/d1ob00691f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MsOH-catalyzed oxidative cross-coupling of acridans and silyl diazoenolates and a Rh2(OAc)4-catalyzed rearrangement of the resultant diazo products are described. The reactions provide various γ-(9-acridanylidene)-β-keto esters in good yields, which bear an active α-methylene unit for further functionalization.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hao Xu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Kumar Hota S, Jinan D, Prakash Panda S, Pan R, Sahoo B, Murarka S. Organophotoredox‐Catalyzed Late‐Stage Functionalization of Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Dilsha Jinan
- School of Chemistry Indian Institute of Science Education and Research (IISER) Thiruvananthapuram 695551 Thiruvananthapuram Kerala India
| | - Satya Prakash Panda
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Rittwika Pan
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Basudev Sahoo
- School of Chemistry Indian Institute of Science Education and Research (IISER) Thiruvananthapuram 695551 Thiruvananthapuram Kerala India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| |
Collapse
|
20
|
Lin C, Li P, Wang L. Visible-light induced Cross-Dehydrogenative-Coupling (CDC) reactions of N-aryl tetrahydroisoquinolines under aerobic conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Dong J, Wang H, Mao S, Wang X, Zhou M, Li L. Visible Light‐Induced [3+2] Cyclization Reactions of Hydrazones with Hypervalent Iodine Diazo Reagents for the Synthesis of 1‐Amino‐1,2,3‐Triazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun‐Ying Dong
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Shukuan Mao
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lei Li
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| |
Collapse
|
22
|
Chen Y, Xia L, Chang Y, Ma W, Wang B. Application of N-Alkyl Amines as Versatile Building Blocks in Oxidative Coupling Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Yuan J, Liu Y, Ge Y, Dong S, Song S, Yang L, Xiao Y, Zhang S, Qu L. Visible-Light-Induced Regioselective ortho-C—H Phosphonylation of β-Naphthols with Diarylphosphine Oxides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Mori-Quiroz LM, Londhe SS, Clift MD. Formal α-Allylation of Primary Amines by a Dearomative, Palladium-Catalyzed Umpolung Allylation of N-(Aryloxy)imines. J Org Chem 2020; 85:14827-14846. [PMID: 33152244 DOI: 10.1021/acs.joc.0c01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-(Aryloxy)imines, readily accessible by condensation/tautomerization of (pseudo)benzylic primary amines and 2,6-di-tert-butyl-1,4-benzoquinone, undergo efficient allylation to afford a wide range of homoallylic primary amines following hydrolytic workup. Deprotonation of N-(aryloxy)imines generates a delocalized 2-azaallyl anion-type nucleophile that engages in dearomative C-C bond-forming reactions with allylpalladium(II) electrophiles generated from allylic tert-butyl carbonates. This reactivity umpolung enables the formal α-allylation of (pseudo)benzylic primary amines. Mechanistic studies reveal that the apparent regioselectivity of the desired bond-forming event is a convergent process that is initiated by unselective allylation of N-(aryloxy)imines to give several regioisomeric species, which subsequently rearrange via stepwise [1,3]- or concerted [3,3]-sigmatropic shifts, ultimately converging to provide the desired regioisomer of the amine products.
Collapse
Affiliation(s)
- Luis M Mori-Quiroz
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Shrikant S Londhe
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Michael D Clift
- Department of Chemistry, The University of Kansas, 1140 Gray-Little Hall, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
25
|
Yu K, Zhang H, Sheng Y, Zhu Y. Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Recent advances in the C(1)-functionalization of tetrahydroisoquinolines via multicomponent reactions. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02677-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Alam T, Rakshit A, Begum P, Dahiya A, Patel BK. Visible-Light-Induced Difunctionalization of Styrenes: Synthesis of N-Hydroxybenzimidoyl Cyanides. Org Lett 2020; 22:3728-3733. [DOI: 10.1021/acs.orglett.0c01235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Pakiza Begum
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
28
|
Liu J, Zhang K, Chen Z, Wei Z, Zhang L. A Porous and Stable Porphyrin Metal‐Organic Framework as an Efficient Catalyst towards Visible‐Light‐Mediated Aerobic Cross‐Dehydrogenative‐Coupling Reactions. Chem Asian J 2020; 15:1118-1124. [DOI: 10.1002/asia.201901697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jiewei Liu
- School of Biotechnology and Health SciencesWuyi University Jiangmen 529020 P.R. China
- International Healthcare Innovation Institute (Jiangmen) Jiangmen 529040 P. R. China
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen 529020 P.R. China
| | - Zhiyao Chen
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhang‐Wen Wei
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Li Zhang
- School of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
29
|
Bag D, Kour H, Sawant SD. Photo-induced 1,2-carbohalofunctionalization of C–C multiple bonds via ATRA pathway. Org Biomol Chem 2020; 18:8278-8293. [PMID: 33006347 DOI: 10.1039/d0ob01454k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbohalofunctionalization of C–C multiple bonds via atom transfer radical processes constitutes an efficient method for the construction of halogenated building blocks with complete atom economy. This review summarizes the recent advancements.
Collapse
Affiliation(s)
- Debojyoti Bag
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Harpreet Kour
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| |
Collapse
|
30
|
Copper-catalyzed oxidative dehydrogenative functionalization of alkanes to allylic esters. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Benzannulation of Diazo Compounds under Visible Light Irradiation. Org Lett 2019; 21:6249-6254. [DOI: 10.1021/acs.orglett.9b02135] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Savita B. Nagode
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | | | - Namrata Rastogi
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
32
|
Stockerl S, Danelzik T, Piekarski DG, García Mancheño O. Mild, Metal-Free Oxidative Ring-Expansion Approach for the Synthesis of Benzo[ b]azepines. Org Lett 2019; 21:4535-4539. [PMID: 31184182 DOI: 10.1021/acs.orglett.9b01433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzo[ b]azepines are important structural motifs for the pharmaceutical industry. However, their syntheses are usually lengthy, involving several steps, transition-metal catalysts, and/or harsh conditions. A novel, general, mild, and metal-free oxidative ring expansion tandem reaction of hydroquinolines with TMSCHN2 as a versatile soft nucleophile to gain access to these valuable compounds in a simple and straightforward manner is presented.
Collapse
Affiliation(s)
- Sebastian Stockerl
- Organic Chemistry Institute , University of Münster , D-48149 Münster , Germany
| | - Tobias Danelzik
- Organic Chemistry Institute , University of Münster , D-48149 Münster , Germany
| | - Dariusz G Piekarski
- Organic Chemistry Institute , University of Münster , D-48149 Münster , Germany
| | | |
Collapse
|
33
|
Casado-Sánchez A, Uygur M, González-Muñoz D, Aguilar-Galindo F, Nova-Fernández JL, Arranz-Plaza J, Díaz-Tendero S, Cabrera S, Mancheño OG, Alemán J. 8-Mercaptoquinoline as a Ligand for Enhancing the Photocatalytic Activity of Pt(II) Coordination Complexes: Reactions and Mechanistic Insights. J Org Chem 2019; 84:6437-6447. [PMID: 30998010 DOI: 10.1021/acs.joc.9b00520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A family of quinoline-platinum(II) complexes as efficient photocatalysts is presented. Their key characteristic is their easy preparation by coordination of the readily available 8-hydroxy- or 8-thio-quinoline ligands, which are well known for their strong chelating ability to different metal ions. In the different photochemical transformations investigated, such as cross-dehydrogenative coupling, oxidation of arylboronic acids, and asymmetric alkylation of aldehydes, 8-mercaptoquinoline-Pt(II) complex proved to be the most general catalyst. Moreover, quenching experiments showed that, contrary to related methods reported in the literature, these complexes followed an oxidative quenching mechanism in all transformations studied. Besides, simulations performed with high-level ab initio methods of the complexes have helped to understand their photocatalytic activity.
Collapse
Affiliation(s)
| | - Mustafa Uygur
- Organic Chemistry Department , University of Münster , 48149 Münster , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang J, Wang J, Huang H, Qin G, Jiang Y, Xiao T. gem-Difluoroallylation of Aryl Diazoesters via Catalyst-Free, Blue-Light-Mediated Formal Doyle-Kirmse Reaction. Org Lett 2019; 21:2654-2657. [PMID: 30924672 DOI: 10.1021/acs.orglett.9b00647] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A first example of low-energy blue-light-mediated formal Doyle-Kirmse reaction for gem-difluoroallylation of aryl diazoesters has been developed. A variety of highly functionalized gem-difluoroallyl containing esters bearing transformable sulfur and bromine groups were efficiently assembled with broad substrate scope under mild, catalyst-free, and additive-free conditions. The reaction represents a practical and environmentally friendly approach for C-CF2 bond formation based on rearrangement strategy, which will find potential applications among drug discovery and development.
Collapse
Affiliation(s)
- Jianhua Yang
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| | - Jiazhuang Wang
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| | - Hongtai Huang
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| | - Guiping Qin
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| | - Yubo Jiang
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| | - Tiebo Xiao
- Faculty of Science , Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
35
|
Zhang T, Zhao Q, Hao W, Tu S, Jiang B. Cu‐Catalyzed [4+1] Annulation toward Indolo[2,1‐
a
]isoquinolines through Oxidative C(sp
3
)/C(sp
2
)−H Bond Bifunctionalization. Chem Asian J 2019; 14:1042-1049. [DOI: 10.1002/asia.201900050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tian‐Shu Zhang
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Qi Zhao
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
36
|
Li Q, Swaroop TR, Hou C, Wang Z, Pan Y, Tang H. Electrochemical Dehydrogenative Coupling of Alcohols with Hydrogen Phosphoryl Compounds: A Green Protocol for P−O Bond Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801723] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qian‐Yu Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Toreshettahally R. Swaroop
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Qiang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of ChemistryPharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
37
|
Zhou Y, Chen J, Elsayed AA, Zhang Z, Bao Z, Yang Q, Yang Y, Ren Q. Organocatalyzed cross-dehydrogenative coupling for C(sp3)–O bonds formation: a rapid access to α-aminoxyl isochromans. Catal Letters 2019. [DOI: 10.1007/s10562-018-2640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Sharma S, Sharma A. Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Org Biomol Chem 2019; 17:4384-4405. [DOI: 10.1039/c9ob00092e] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights the recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
39
|
Ciszewski ŁW, Rybicka-Jasińska K, Gryko D. Recent developments in photochemical reactions of diazo compounds. Org Biomol Chem 2019; 17:432-448. [DOI: 10.1039/c8ob02703j] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemistry of diazo compounds is dominated by transition metal catalysis but recently, photoinitiated reactions of diazo compounds have attracted a lot of attention. This mini-review describes recent discoveries on the reactivity of diazo compounds under light irradiation.
Collapse
Affiliation(s)
- Łukasz W. Ciszewski
- Institute of Organic Chemistry Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
40
|
Kong Y, Xu W, Ye F, Weng J. Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Xu R, Cai C. Three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis. Org Biomol Chem 2019; 17:8541-8545. [DOI: 10.1039/c9ob01815h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis has been developed with a broad substrate scope.
Collapse
Affiliation(s)
- Rui Xu
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Chun Cai
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
- Key Laboratory of Organofluorine Chemistry
| |
Collapse
|
42
|
Xu R, Cai C. Three-component difluoroalkylation–thiolation of alkenes by iron-facilitated visible-light photoredox catalysis. Chem Commun (Camb) 2019; 55:4383-4386. [DOI: 10.1039/c9cc00730j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first difluoroalkylation–thiolation of alkenes catalyzed by iron-facilitated photoredox has been developed with a broad substrate scope under mild conditions.
Collapse
Affiliation(s)
- Rui Xu
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Chun Cai
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
- Key Laboratory of Organofluorine Chemistry
| |
Collapse
|
43
|
Xing S, Gu N, Wang X, Liu J, Xing C, Wang K, Zhu B. Substitution-Controlled Selective Formation of Hexahydrobenz[ e]isoindoles and 3-Benzazepines via In(OTf) 3-Catalyzed Tandem Annulations. Org Lett 2018; 20:5680-5683. [PMID: 30188133 DOI: 10.1021/acs.orglett.8b02406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A dramatic N-substituent controlled tandem annulation of 2-(2-(2-bromoethyl)phenyl)-1-sulfonylaziridines with 1,3-dicarbonyl compounds has been developed. When the N-substituent was a 4-methylbenzenesulfonyl group (Ts), sequential ring opening of aziridines, nucleophilic substitution, and lactamization took place to provide a series of hexahydrobenz[ e]isoindole compounds in good yields with good diastereoselectivities. By contrast, 3-benzazepine compounds were afforded in good yields via ring opening of aziridines and nucleophilic substitution when the N-substituent was the 4-nitrobenzenesulfonyl group (Ns).
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Nan Gu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Xin Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Jingyi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Chunyan Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| |
Collapse
|
44
|
Ma M, Hao W, Ma L, Zheng Y, Lian P, Wan X. Interception of Radicals by Molecular Oxygen and Diazo Compounds: Direct Synthesis of Oxalate Esters Using Visible-Light Catalysis. Org Lett 2018; 20:5799-5802. [DOI: 10.1021/acs.orglett.8b02487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meihua Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Weiwei Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
45
|
Weng WZ, Liang H, Zhang B. Visible-Light-Mediated Aerobic Oxidation of Organoboron Compounds Using in Situ Generated Hydrogen Peroxide. Org Lett 2018; 20:4979-4983. [DOI: 10.1021/acs.orglett.8b02095] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hao Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
46
|
Jurberg ID, Davies HML. Blue light-promoted photolysis of aryldiazoacetates. Chem Sci 2018; 9:5112-5118. [PMID: 29938043 PMCID: PMC5994880 DOI: 10.1039/c8sc01165f] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Aryldiazoacetates can undergo photolysis under blue light irradiation (460-490 nm) at room temperature and under air in the presence of numerous trapping agents, such as styrene, carboxylic acids, amines, alkanes and arenes, thus providing a straighforward and general platform for their mild functionalization.
Collapse
Affiliation(s)
- Igor D Jurberg
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , Campinas , São Paulo 13083-970 , Brazil .
| | - Huw M L Davies
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA
| |
Collapse
|
47
|
Xiao T, Mei M, He Y, Zhou L. Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chem Commun (Camb) 2018; 54:8865-8868. [DOI: 10.1039/c8cc04609c] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A blue light-promoted cross-coupling of two distinct diazo compounds was described. The reaction producesE-configured trisubstituted alkenes in good yields in the absence of catalysts and additives. The reactive free carbene intermediates were generatedviaselective photolysis of one of the two diazo compounds upon blue light irradiation.
Collapse
Affiliation(s)
- Tiebo Xiao
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
- Faculty of Science
| | - Mingjing Mei
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yuwei He
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Lei Zhou
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
48
|
Zuo Y, He X, Ning Y, Zhang L, Wu Y, Shang Y. Divergent synthesis of 3,4-dihydrodibenzo[b,d]furan-1(2H)-ones and isocoumarins via additive-controlled chemoselective C–C or C–N bond cleavage. NEW J CHEM 2018. [DOI: 10.1039/c7nj03799f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(iii)-Catalyzed C–C/C–O bond formation between cyclic 2-diazo-1,3-diketones and salicylamides with additive-controlled chemoselectivity.
Collapse
Affiliation(s)
- Youpeng Zuo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yi Ning
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Lanlan Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
49
|
Kumari S, Shakoor SMA, Khullar S, Mandal SK, Sakhuja R. An unprecedented tandem synthesis of fluorescent coumarin-fused pyrimidines via copper-catalyzed cross-dehydrogenative C(sp3)–N bond coupling. Org Biomol Chem 2018; 16:3220-3228. [DOI: 10.1039/c8ob00586a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed tandem strategy for the synthesis of coumarin-fused pyrimidin-5-ones involving in situ intramolecular cross-dehydrogenative C(sp3)–N bond formation.
Collapse
Affiliation(s)
- Santosh Kumari
- Department of Chemistry
- Birla Institute of Technology & Science
- Pilani
- India
| | | | - Sadhika Khullar
- Department of Chemistry
- D.A.V. University
- Jalandhar-Pathankot National Highway
- Jalandhar-144012
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| | - Rajeev Sakhuja
- Department of Chemistry
- Birla Institute of Technology & Science
- Pilani
- India
| |
Collapse
|
50
|
Claraz A, Serpier F, Darses S. Organoboron Initiated Rh-Catalyzed Asymmetric Cascade Reactions: A Subtle Switch in Regioselectivity Leading to Chiral 3-Benzazepine Derivatives. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00511] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aurélie Claraz
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie
Paris, 11 rue Pierre et
Marie Curie, 75005, Paris, France
| | - Fabien Serpier
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie
Paris, 11 rue Pierre et
Marie Curie, 75005, Paris, France
| | - Sylvain Darses
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie
Paris, 11 rue Pierre et
Marie Curie, 75005, Paris, France
| |
Collapse
|