1
|
Chen P, Zhang MM, Rao L, Li YH, Jia Y, Tan Y, Xiao WJ, Lu LQ. Access to N-α-quaternary chiral morpholines via Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy. Sci Bull (Beijing) 2024:S2095-9273(24)00564-4. [PMID: 39183108 DOI: 10.1016/j.scib.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91 % yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.
Collapse
Affiliation(s)
- Peng Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mao-Mao Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan-Heng Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yue Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Gorad SS, Ghorai P. Organocatalytic Desymmetric Double Aza-Michael Addition Cascade: Enantioselective Synthesis of Fused Morpholines. Org Lett 2024; 26:5571-5576. [PMID: 38921656 DOI: 10.1021/acs.orglett.4c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Double aza-Michael addition (DAM) has become an emerging strategy for the construction of two carbon-nitrogen bonds in a single step, which can significantly simplify the synthesis of N-heterocycles. Hitherto, their asymmetric catalytic genre remains unattempted. Herein, we describe the judicious design of an organocatalytic enantioselective desymmetric double aza-Michael addition cascade to access a series of functionalized fused morpholines with excellent yields and diastereo- and enantioselectivities. A one-pot telescopic synthesis was demonstrated for a bridged triheterocyclic compound. In addition, scale-up synthesis and various attractive postsynthetic modifications of the title products amplify the significance of the current methodology.
Collapse
Affiliation(s)
- Sachin S Gorad
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, India
| |
Collapse
|
3
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
4
|
Li XZ, He YP, Wu H. Zinc chloride-catalyzed cyclizative 1,2-rearrangement enables facile access to morpholinones bearing aza-quaternary carbons. Commun Chem 2023; 6:216. [PMID: 37805578 PMCID: PMC10560277 DOI: 10.1038/s42004-023-01016-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
Morpholines and morpholinones are important building blocks in organic synthesis and pharmacophores in medicinal chemistry, however, C3-disubstituted morpholines/morpholinones are extremely difficult to access. Here we show the ZnCl2-catalyzed cyclizative 1,2-rearrangement for the efficient synthesis of morpholinones bearing aza-quaternary stereocenters. A series of structurally diverse C3-disubstituted morpholin-2-ones which are difficultly accessible by existing methods were efficiently constructed from readily available two achiral linear compounds. Notably, mechanistic studies reveal that this reaction proceeds via an unusual sequence of direct formal [4 + 2] heteroannulation regioselectively delivering specific α-iminium/imine hemiacetals followed by a 1,2-esters or amides shift process, which is different from the reported mechanism of the aza-benzilic ester rearrangements.
Collapse
Affiliation(s)
- Xing-Zi Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
5
|
An Y, Wu M, Li W, Li Y, Wang Z, Xue Y, Tang P, Chen F. The total synthesis of (-)-strempeliopine via palladium-catalyzed decarboxylative asymmetric allylic alkylation. Chem Commun (Camb) 2022; 58:1402-1405. [PMID: 34994369 DOI: 10.1039/d1cc06278f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the work reported herein, the concise and enantioselective total synthesis of the Schizozygine alkaloid (-)-strempeliopine was developed. This synthetic strategy featured the palladium-catalyzed decarboxylative asymmetric allylic alkylation of N-benzoyl lactam to set up the absolute configuration at the C20 position, a highly diastereoselective one-pot Bischler-Napieralski/lactamization and iminium reduction sequence for the construction of the pentacyclic core structure, and the late-stage dearomative addition of indole, leading to the otherwise difficult-to-achieve hexacyclic indoline framework with complete control of four neighbouring stereocenters.
Collapse
Affiliation(s)
- Yi An
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mengjuan Wu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yaling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhenzhen Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yansong Xue
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
6
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Sun Jang H, Kim SG. Asymmetric catalytic [3 + 3]-cycloaddition of γ-hydroxy-α,β-unsaturated ketones with azaoxyallyl cations. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
9
|
Nie Y, Li J, Yan J, Yuan Q, Zhang W. Synthesis of Chiral 2-Substituted 1,4-Benzoxazin-3-ones via Iridium-Catalyzed Enantioselective Hydrogenation of Benzoxazinones. Org Lett 2021; 23:5373-5377. [PMID: 34213913 DOI: 10.1021/acs.orglett.1c01701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient iridium-catalyzed enantioselective hydrogenation of 2-alkylidene 1,4-benzoxazin-3-ones using our developed iPr-BiphPHOX as a ligand is reported. This method showed good functional group compatibility and delivered the corresponding reduced products in excellent yields (up to 99%) with excellent enantioselectivities (up to 99% ee). The reaction proceeded very well on a gram scale with low catalyst loadings (0.1 mol %), providing the product with no erosion in enantioselectivity. Additionally, three bioactive molecules can be easily obtained from the reduced products.
Collapse
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jing Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jun Yan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P. R. China
| |
Collapse
|
10
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
He YP, Wu H, Wang Q, Zhu J. Catalytic Enantioselective Synthesis of Morpholinones Enabled by Aza-Benzilic Ester Rearrangement. J Am Chem Soc 2021; 143:7320-7325. [PMID: 33955753 DOI: 10.1021/jacs.1c03915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral morpholinone is an important building block in organic synthesis and a pharmacophore in medicinal chemistry. However, catalytic enantioselective methods for the construction of this N,O-heterocycle remain scarce. We report herein a chiral phosphoric acid-catalyzed enantioselective synthesis of C3-substituted morpholinones from aryl/alkylglyoxals and 2-(arylamino)ethan-1-ols. The reaction proceeds through a domino [4 + 2] heteroannulation followed by a 1,2-aryl/alkyl shift of the resulting cyclic α-iminium hemiacetals. It represents formally an unprecedented asymmetric aza-benzilic ester rearrangement reaction. A concise synthesis of L-742,694, a neurokinin-1 receptor antagonist, featuring this reaction is documented.
Collapse
Affiliation(s)
- Yu-Ping He
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Hua Wu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
13
|
|
14
|
Cusumano AQ, Stoltz BM, Goddard WA. Reaction Mechanism, Origins of Enantioselectivity, and Reactivity Trends in Asymmetric Allylic Alkylation: A Comprehensive Quantum Mechanics Investigation of a C(sp 3)-C(sp 3) Cross-Coupling. J Am Chem Soc 2020; 142:13917-13933. [PMID: 32640162 PMCID: PMC7802888 DOI: 10.1021/jacs.0c06243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilize quantum mechanics to evaluate a variety of plausible mechanistic pathways for the entirety of the catalytic cycle for asymmetric decarboxylative allylic alkylation of allyl β-ketoesters. We present a mechanistic picture that unites all current experimental observations, including enantioinduction, reaction rate, catalyst resting state, enolate crossover experiments, water tolerance, and the effects of solvation on inner- and outer-sphere mechanisms. Experiments designed to evaluate the fidelity and predictive power of the computational models reveal the methods employed herein to be highly effective in elucidating the reactivity of the catalytic system. On the basis of these findings, we highlight a computational framework from which chemically accurate results are obtained and address the current limitations of the decarboxylative asymmetric allylic alkylation reaction.
Collapse
Affiliation(s)
- Alexander Q Cusumano
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Das MK, Yadav A, Majumder S, Bisai A. Catalytic deacylative alkylations (DaA) of enolcarbonates: Total synthesis of (±)-Crinane. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wu B, Yang J, Gao M, Hu L. Ring-Strain-Enabled Catalytic Asymmetric Umpolung C–O Bond-Forming Reactions of 1,2-Oxazetidines for the Synthesis of Functionalized Chiral Ethers. Org Lett 2020; 22:5561-5566. [DOI: 10.1021/acs.orglett.0c01916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Binyu Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Jinggang Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Min Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
17
|
Reed CW, Lindsley CW. A general, enantioselective synthesis of 2-substituted thiomorpholines and thiomorpholine 1,1-dioxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Sun AW, Bulterys PL, Bartberger MD, Jorth PA, O'Boyle BM, Virgil SC, Miller JF, Stoltz BM. Incorporation of a chiral gem-disubstituted nitrogen heterocycle yields an oxazolidinone antibiotic with reduced mitochondrial toxicity. Bioorg Med Chem Lett 2019; 29:2686-2689. [PMID: 31383589 PMCID: PMC6711789 DOI: 10.1016/j.bmcl.2019.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 11/20/2022]
Abstract
gem-Disubstituted N-heterocycles are rarely found in drugs, despite their potential to improve the drug-like properties of small molecule pharmaceuticals. Linezolid, a morpholine heterocycle-containing oxazolidinone antibiotic, exhibits significant side effects associated with human mitochondrial protein synthesis inhibition. We synthesized a gem-disubstituted linezolid analogue that when compared to linezolid, maintains comparable (albeit slightly diminished) activity against bacteria, comparable in vitro physicochemical properties, and a decrease in undesired mitochondrial protein synthesis (MPS) inhibition. This research contributes to the structure-activity-relationship data surrounding oxazolidinone MPS inhibition, and may inspire investigations into the utility of gem-disubstituted N-heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Alexander W Sun
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Philip L Bulterys
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Michael D Bartberger
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peter A Jorth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brendan M O'Boyle
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Scott C Virgil
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
| |
Collapse
|
19
|
Faltracco M, Cotogno S, Vande Velde CML, Ruijter E. Catalytic Asymmetric Synthesis of Diketopiperazines by Intramolecular Tsuji-Trost Allylation. J Org Chem 2019; 84:12058-12070. [PMID: 31446758 PMCID: PMC6760471 DOI: 10.1021/acs.joc.9b01994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
report the intramolecular Tsuji–Trost reaction of Ugi
adducts to give spiro-diketopiperazines in high yield and with high
enantioselectivity. This approach allows the catalytic asymmetric
construction of a broad range of these medicinally important heterocycles
under mild conditions, in two steps from cheap, commercially available
starting materials.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Silvia Cotogno
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Christophe M L Vande Velde
- Advanced Reactor Technology, Faculty of Applied Engineering , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerpen , Belgium
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
20
|
Merten C, Golub TP, Kreienborg NM. Absolute Configurations of Synthetic Molecular Scaffolds from Vibrational CD Spectroscopy. J Org Chem 2019; 84:8797-8814. [PMID: 31046276 DOI: 10.1021/acs.joc.9b00466] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is one of the most powerful techniques for the determination of absolute configurations (AC), as it does not require any specific UV/vis chromophores, no chemical derivatization, and no growth of suitable crystals. In the past decade, it has become increasingly recognized by chemists from various fields of synthetic chemistry such as total synthesis and drug discovery as well as from developers of asymmetric catalysts. This perspective article gives an overview about the most important experimental aspects of a VCD-based AC determination and explains the theoretical analysis. The comparison of experimental and computational spectra that leads to the final conclusion about the AC of the target molecules is described. In addition, the review summarizes unique VCD studies carried out in the period 2008-2018 that focus on the determination of unknown ACs of new compounds, which were obtained in its enantiopure form either through direct asymmetric synthesis or chiral chromatography.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Tino P Golub
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| | - Nora M Kreienborg
- Ruhr Universität Bochum , Organische Chemie II , Universitätsstraße 150 , 44780 Bochum , Germany
| |
Collapse
|
21
|
James J, Jackson M, Guiry PJ. Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801575] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinju James
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Mark Jackson
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical BiologySchool of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
22
|
Shockley SE, Hethcox JC, Stoltz BM. Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkylation: An Evolutionary Account. Synlett 2018; 29:2481-2492. [PMID: 31754289 PMCID: PMC6870865 DOI: 10.1055/s-0037-1610217] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Our lab has long been interested in the development of methods for the creation of enantioenriched all-carbon quaternary stereocenters. Historically, our interest has centered on palladium-catalyzed allylic alkylation, though recent efforts have moved to include the study of iridium catalysts. Whereas palladium catalysts enable the preparation of isolated stereocenters, the use of iridium catalysts allows for the direct construction of vicinal stereocenters via an enantio-, diastereo-, and regioselective allylic alkylation. This account details the evolution of our research program from inception, which focused on the first iridium-catalyzed allylic alkylation to prepare stereodyads containing a single quaternary center, to our most recent discovery that allows for the synthesis of vicinal quaternary centers.
Collapse
Affiliation(s)
| | | | - Brian M. Stoltz
- The Warren and Katherine Schlinger Laboratory for Chemistry and
Chemical Engineering, Division of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125,
USA
| |
Collapse
|
23
|
Xu JX, Wu XF. Palladium-Catalyzed Decarboxylative Carbonylative Transformation of Benzyl Aryl Carbonates: Direct Synthesis of Aryl 2-Arylacetates. Org Lett 2018; 20:5938-5941. [PMID: 30178672 DOI: 10.1021/acs.orglett.8b02631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A procedure on palladium-catalyzed decarboxylative alkoxycarbonylation of carbonates for the synthesis of aryl 2-arylacetates has been developed. A broad range of aryl 2-arylacetates were obtained in good yields under mild conditions under a carbon monoxide atmosphere. Interestingly, other alcohols can be added as nucleophiles as well, and the corresponding esters were also obtained in good yields.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V. , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V. , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|
24
|
Kumar N, Gavit VR, Maity A, Bisai A. Pd(0)-Catalyzed Chemoselective Deacylative Alkylations (DaA) of N-Acyl 2-Oxindoles: Total Syntheses of Pyrrolidino[2,3- b]indoline Alkaloids, (±)-Deoxyeseroline, and (±)-Esermethole. J Org Chem 2018; 83:10709-10735. [PMID: 30058340 DOI: 10.1021/acs.joc.8b01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an efficient Pd(0)-catalyzed deacylative allylation of N-acyl 3-substituted 2-oxindoles via the coupling of in situ generated nucleophiles (3 and 4) with allyl electrophiles for the synthesis of a variety of 2-oxindoles with C3-quaternary centers. Gratifyingly, this alkylation process is found to be highly chemoselective in nature, where a C-C bond formation is completely predominant over a C-N bond formation. A variety of key intermediates were synthesized utilizing an aforementioned methodology.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Vipin R Gavit
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Arindam Maity
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| | - Alakesh Bisai
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal , Madhya Pradesh 462 066 , India
| |
Collapse
|
25
|
Pawliczek M, Shimazaki Y, Kimura H, Oberg KM, Zakpur S, Hashimoto T, Maruoka K. Phase-transfer-catalysed asymmetric synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones. Chem Commun (Camb) 2018; 54:7078-7080. [PMID: 29877552 DOI: 10.1039/c8cc03635g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Benzoxazin-3-one is a scaffold which is found in a variety of biologically active molecules. Because of its unique structure and drug-like activities, 1,4-benzoxazin-3-ones have been widely used in drug discovery. However, just a few methods have been developed to access these molecules by catalytic asymmetric synthesis. We report herein the phase-transfer-catalysed asymmetric alkylation of 2-aryl-1,4-benzoxazin-3-ones as a new way for the highly enantioselective synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones.
Collapse
Affiliation(s)
- Martin Pawliczek
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Mamedov VA, Mamedova VL, Khikmatova GZ, Korshin DE, Sinyashin OG. 5-(α-Halobenzyl)- and 5-Benzylidene-2,2-dimethyl-1,3-oxazolidin-4-ones in Synthesis of α-Hydroxy Acids. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363217120088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Kondo H, Maeno M, Hirano K, Shibata N. Asymmetric synthesis of α-trifluoromethoxy ketones with a tetrasubstituted α-stereogenic centre via the palladium-catalyzed decarboxylative allylic alkylation of allyl enol carbonates. Chem Commun (Camb) 2018; 54:5522-5525. [DOI: 10.1039/c8cc03131b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Pd-catalyzed asymmetric decarboxylative allylic alkylation of trifluoromethoxy allyl enol carbonates is disclosed.
Collapse
Affiliation(s)
- Hiroya Kondo
- Department of Nanopharmaceutical Sciences
- and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Gokiso
- Showa-ku
| | - Mayaka Maeno
- Department of Nanopharmaceutical Sciences
- and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Gokiso
- Showa-ku
| | - Kazuki Hirano
- Department of Nanopharmaceutical Sciences
- and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Gokiso
- Showa-ku
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences
- and Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Gokiso
- Showa-ku
| |
Collapse
|
28
|
Bora PP, Sun GJ, Zheng WF, Kang Q. Rh/Lewis Acid Catalyzed Regio-, Diastereo- and Enantioselective Addition of 2-Acyl Imidazoles with Allenes. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Pranjal P. Bora
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; 155 Yangqiao Road West, Fuzhou Fujian 350002 China
| | - Gui-Jun Sun
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; 155 Yangqiao Road West, Fuzhou Fujian 350002 China
| | - Wei-Feng Zheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; 155 Yangqiao Road West, Fuzhou Fujian 350002 China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; 155 Yangqiao Road West, Fuzhou Fujian 350002 China
| |
Collapse
|
29
|
Shockley SE, Hethcox JC, Stoltz BM. Asymmetric Synthesis of All-Carbon Quaternary Spirocycles via a Catalytic Enantioselective Allylic Alkylation Strategy. Tetrahedron Lett 2017; 58:3341-3343. [PMID: 28867835 PMCID: PMC5578629 DOI: 10.1016/j.tetlet.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rapid access to enantioenriched spirocycles possessing a 1,4-dicarbonyl moiety spanning an all-carbon quaternary stereogenic spirocenter was achieved using a masked bromomethyl vinyl ketone reagent. The developed protocol entails an enantioselective palladium-catalyzed allylic alkylation reaction followed by a one-pot unmasking/RCM sequence that provides access to the spirocyclic compounds in good yields and selectivities.
Collapse
Affiliation(s)
| | | | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|
30
|
Starkov P, Moore JT, Duquette DC, Stoltz BM, Marek I. Enantioselective Construction of Acyclic Quaternary Carbon Stereocenters: Palladium-Catalyzed Decarboxylative Allylic Alkylation of Fully Substituted Amide Enolates. J Am Chem Soc 2017. [PMID: 28625056 DOI: 10.1021/jacs.7b04086] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a divergent and modular protocol for the preparation of acyclic molecular frameworks containing newly created quaternary carbon stereocenters. Central to this approach is a sequence composed of a (1) regioselective and -retentive preparation of allyloxycarbonyl-trapped fully substituted stereodefined amide enolates and of a (2) enantioselective palladium-catalyzed decarboxylative allylic alkylation reaction using a novel bisphosphine ligand.
Collapse
Affiliation(s)
- Pavel Starkov
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology , Technion City, Haifa 32000, Israel
| | - Jared T Moore
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Douglas C Duquette
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology , Technion City, Haifa 32000, Israel
| |
Collapse
|
31
|
Jiang X, Hartwig JF. Iridium-Catalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angew Chem Int Ed Engl 2017; 56:8887-8891. [PMID: 28597600 DOI: 10.1002/anie.201704354] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 02/03/2023]
Abstract
Enantioselective allylic substitution with enolates derived from aliphatic esters under mild conditions remains challenging. Herein we report iridium-catalyzed enantioselective allylation reactions of silyl ketene acetals, the silicon enolates of esters, to form products containing a quaternary carbon atom at the nucleophile moiety and a tertiary carbon atom at the electrophile moiety. Under relatively neutral conditions, the allylated aliphatic esters were obtained with excellent regioselectivity and enantioselectivity. These products were readily converted into primary alcohols, carboxylic acids, amides, isocyanates, and carbamates, as well as tetrahydrofuran and γ-butyrolactone derivatives, without erosion of enantiomeric purity.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Jiang X, Hartwig JF. Iridium-Catalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xingyu Jiang
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| |
Collapse
|
33
|
Bhat V, Welin ER, Guo X, Stoltz BM. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations. Chem Rev 2017; 117:4528-4561. [PMID: 28164696 PMCID: PMC5516946 DOI: 10.1021/acs.chemrev.6b00731] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.
Collapse
Affiliation(s)
| | - Eric R. Welin
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
34
|
Litman ZC, Sharma A, Hartwig JF. Oxidation of Hindered Allylic C-H Bonds with Applications to the Functionalization of Complex Molecules. ACS Catal 2017; 7:1998-2001. [PMID: 29910970 DOI: 10.1021/acscatal.6b03648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the palladium-catalyzed oxidation of hindered alkenes to form linear allylic esters. The combination of palladium(II) benzoate, 4,5-diazafluoren-9-one, and benzoquinone catalyzes the mild oxidation of terminal alkenes with tert-butyl benzoyl peroxide as an oxidant in the presence of diverse functional groups. Selective oxidation of terminal alkenes in the presence of trisubstituted and disubstituted alkenes has been achieved, and the ability to conduct the reaction on a gram scale has been demonstrated. The mild conditions and high tolerance for auxiliary functionality make this method suitable for the synthesis and derivatization of complex molecules.
Collapse
Affiliation(s)
- Zachary C. Litman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ankit Sharma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Pritchett BP, Kikuchi J, Numajiri Y, Stoltz BM. A FISCHER INDOLIZATION STRATEGY TOWARD THE TOTAL SYNTHESIS OF (-)-GONIOMITINE. HETEROCYCLES 2017; 95:1245-1253. [PMID: 28706345 PMCID: PMC5502790 DOI: 10.3987/com-16-s(s)80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A Fischer indolization strategy toward the core of (-)-goniomitine is reported. Initial investigations into the Pd-catalyzed asymmetric allylic alkylation of dihydropyrido[1,2-a]indolone (DHPI) substrates are also discussed.
Collapse
Affiliation(s)
- Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd. MC101-20, Pasadena, CA 91125 (USA)
| | - Jun Kikuchi
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd. MC101-20, Pasadena, CA 91125 (USA)
| | - Yoshitaka Numajiri
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd. MC101-20, Pasadena, CA 91125 (USA)
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd. MC101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
36
|
Kumar N, Das MK, Ghosh S, Bisai A. Development of catalytic deacylative alkylations (DaA) of 3-acyl-2-oxindoles: total synthesis of meso-chimonanthine and related alkaloids. Chem Commun (Camb) 2017; 53:2170-2173. [PMID: 28144659 DOI: 10.1039/c6cc10228j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an effective deacylative alkylation strategy for the construction of a variety of 2-oxindoles bearing an all-carbon quaternary center at the pseudobenzylic position. A wide variety of products with quaternary centers could be accessed by employing simple Pd(0) catalysis under mild reaction conditions. Importantly, the same strategy works equally well for the dimeric 2-oxindole system, furnishing products with a vicinal quaternary center in favour of meso-isomer as the major product. Eventual application to the total syntheses of meso-chimonanthine and meso-folicanthine very well demonstrates the synthetic potential of this strategy.
Collapse
Affiliation(s)
- Nivesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Mrinal Kanti Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Santanu Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| |
Collapse
|
37
|
|
38
|
Nascimento de Oliveira M, Fournier J, Arseniyadis S, Cossy J. A Palladium-Catalyzed Asymmetric Allylic Alkylation Approach to α-Quaternary γ-Butyrolactones. Org Lett 2016; 19:14-17. [DOI: 10.1021/acs.orglett.6b02971] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marllon Nascimento de Oliveira
- Laboratoire de
Chimie Organique,
Institute of Chemistry, Biology and Innovation (CBI) - ESPCI Paris/CNRS
(UMR8231), PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Jeremy Fournier
- Laboratoire de
Chimie Organique,
Institute of Chemistry, Biology and Innovation (CBI) - ESPCI Paris/CNRS
(UMR8231), PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Stellios Arseniyadis
- Laboratoire de
Chimie Organique,
Institute of Chemistry, Biology and Innovation (CBI) - ESPCI Paris/CNRS
(UMR8231), PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Janine Cossy
- Laboratoire de
Chimie Organique,
Institute of Chemistry, Biology and Innovation (CBI) - ESPCI Paris/CNRS
(UMR8231), PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
39
|
Pritchett BP, Kikuchi J, Numajiri Y, Stoltz BM. Enantioselective Pd-Catalyzed Allylic Alkylation Reactions of Dihydropyrido[1,2-a
]indolone Substrates: Efficient Syntheses of (−)-Goniomitine, (+)-Aspidospermidine, and (−)-Quebrachamine. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Beau P. Pritchett
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering; Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| | - Jun Kikuchi
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering; Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| | - Yoshitaka Numajiri
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering; Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering; Division of Chemistry and Chemical Engineering; California Institute of Technology; 1200 E. California Blvd. MC 101-20 Pasadena CA 91125 USA
| |
Collapse
|
40
|
Pritchett BP, Kikuchi J, Numajiri Y, Stoltz BM. Enantioselective Pd-Catalyzed Allylic Alkylation Reactions of Dihydropyrido[1,2-a]indolone Substrates: Efficient Syntheses of (-)-Goniomitine, (+)-Aspidospermidine, and (-)-Quebrachamine. Angew Chem Int Ed Engl 2016; 55:13529-13532. [PMID: 27666731 DOI: 10.1002/anie.201608138] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/07/2016] [Indexed: 01/06/2023]
Abstract
The successful application of dihydropyrido[1,2-a]indolone (DHPI) substrates in Pd-catalyzed asymmetric allylic alkylation chemistry facilitates rapid access to multiple alkaloid frameworks in an enantioselective fashion. Strategic bromination at the indole C3 position greatly improved the allylic alkylation chemistry and enabled a highly efficient Negishi cross-coupling downstream. The first catalytic enantioselective total synthesis of (-)-goniomitine, along with divergent formal syntheses of (+)-aspidospermidine and (-)-quebrachamine, are reported herein.
Collapse
Affiliation(s)
- Beau P Pritchett
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| | - Jun Kikuchi
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| | - Yoshitaka Numajiri
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 101-20, Pasadena, CA, 91125, USA.
| |
Collapse
|
41
|
Geibel I, Dierks A, Schmidtmann M, Christoffers J. Formation of δ-Lactones by Cerium-Catalyzed, Baeyer-Villiger-Type Coupling of β-Oxoesters, Enol Acetates, and Dioxygen. J Org Chem 2016; 81:7790-8. [PMID: 27494288 DOI: 10.1021/acs.joc.6b01441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of δ-lactones is observed when cyclopentanone-2-carboxylates are converted in a cerium-catalyzed reaction with α-aryl vinyl acetates under oxidative conditions. The products of this transformation possess a 1,4-dicarbonyl constitution together with a quaternary carbon center. Atmospheric oxygen is the oxidant in this process, which can be regarded as ideal from economic and ecological points of view. Further advantages of this new C-C coupling and oxidation reaction are its operational simplicity and the application of nontoxic and inexpensive CeCl3·7 H2O as precatalyst. This so far unprecedented reaction is proposed to proceed via 1,2-dioxane derivatives, which decompose under formation of an oxycarbenium cation in a Baeyer-Villiger-type pathway. This mechanistic picture is supported by the observation that electron-rich (donor substituted or heteroaromatic) enol esters give higher yields than electron deficient congeners. Apart from 1,4-diketones and α-hydroxylated β-oxoesters formed as byproducts, the yields of δ-lactones range from moderate to good (up to 74%).
Collapse
Affiliation(s)
- Irina Geibel
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg , 26111 Oldenburg, Germany
| | - Anna Dierks
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg , 26111 Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg , 26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg , 26111 Oldenburg, Germany
| |
Collapse
|
42
|
Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. Uniting C1-Ammonium Enolates and Transition Metal Electrophiles via Cooperative Catalysis: The Direct Asymmetric α-Allylation of Aryl Acetic Acid Esters. J Am Chem Soc 2016; 138:5214-7. [DOI: 10.1021/jacs.6b01694] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kevin J. Schwarz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Jessica L. Amos
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - J. Cullen Klein
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Dung T. Do
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Thomas N. Snaddon
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Meyer AG, Smith JA, Hyland C, Williams CC, Bissember AC, Nicholls TP. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/b978-0-08-100755-6.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Kazmaier U. Non-stabilized enolates – versatile nucleophiles in transition metal-catalysed allylic alkylations. Org Chem Front 2016. [DOI: 10.1039/c6qo00192k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers new developments in the transition metal-catalyzed allylic alkylations of non-stabilized enolates, preferentially generated from ketone, esters or amides.
Collapse
Affiliation(s)
- Uli Kazmaier
- Institute of Organic Chemistry
- Saarland University
- 66041 Saarbrücken
- Germany
| |
Collapse
|
45
|
Kita Y, Numajiri Y, Okamoto N, Stoltz BM. Construction of Tertiary Chiral Centers by Pd-catalyzed Asymmetric Allylic Alkylation of Prochiral Enolate Equivalents. Tetrahedron 2015; 71:6349-6353. [PMID: 26273114 DOI: 10.1016/j.tet.2015.05.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The palladium-catalyzed decarboxylative allylic alkylation of enol carbonates derived from lactams and ketones is described. Employing these substrates with an electronically tuned Pd catalyst system trisubstituted chiral centers are produced. These stereocenters have been previously challenging to achieve using Pd complex/chiral P-N ligand systems.
Collapse
Affiliation(s)
- Yusuke Kita
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Yoshitaka Numajiri
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Noriko Okamoto
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Craig RA, Stoltz BM. Synthesis and Exploration of Electronically Modified ( R)-5,5-Dimethyl-( p-CF 3) 3- i-PrPHOX in Palladium-Catalyzed Enantio- and Diastereoselective Allylic Alkylation: A Practical Alternative to ( R)-( p-CF 3) 3- t-BuPHOX. Tetrahedron Lett 2015; 56:4670-4673. [PMID: 26257445 DOI: 10.1016/j.tetlet.2015.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis of the novel electronically modified phosphinooxazoline (PHOX) ligand, (R)-5,5-dimethyl-(p-CF3)3-i-PrPHOX, is described. The utility of this PHOX ligand is explored in both enantio- and diastereoselective palladium-catalyzed allylic alkylations. These investigations prove (R)-5,5-dimethyl-(p-CF3)3-i-PrPHOX to be an effective and cost-efficient alternative to electronically modified PHOX ligands derived from the prohibitively expensive (R)-t-leucine.
Collapse
Affiliation(s)
- Robert A Craig
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
47
|
Luescher MU, Bode JW. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Luescher MU, Bode JW. Catalytic Synthesis of N-Unprotected Piperazines, Morpholines, and Thiomorpholines from Aldehydes and SnAP Reagents. Angew Chem Int Ed Engl 2015. [PMID: 26212589 DOI: 10.1002/anie.201505167] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Commercially available SnAP (stannyl amine protocol) reagents allow the transformation of aldehydes and ketones into a variety of N-unprotected heterocycles. By identifying new ligands and reaction conditions, a robust catalytic variant that expands the substrate scope to previously inaccessible heteroaromatic substrates and new substitution patterns was realized. It also establishes the basis for a catalytic enantioselective process through the use of chiral ligands.
Collapse
Affiliation(s)
- Michael U Luescher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland) http://www.bode.ethz.ch
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland) http://www.bode.ethz.ch.
| |
Collapse
|