1
|
Spieß P, Brześkiewicz J, Maulide N. Deprotective Lossen rearrangement: a direct and general transformation of Nms-amides to unsymmetrical ureas. Chem Sci 2024:d4sc04974h. [PMID: 39268216 PMCID: PMC11385062 DOI: 10.1039/d4sc04974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Ureas stand out as potent pharmacophores in drug development, rendering them a prime focus for synthesis. Herein, we present an appealing entry point for urea synthesis from protected amines (Nms-amides) and relying on a Lossen-type rearrangement process as an elegant example of deprotective functionalisation. The method developed exhibits an exceptionally broad tolerance towards various protected amines, encompassing numerous drug derivatives, and delivers high reaction yields.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Jakub Brześkiewicz
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
2
|
Spieß P, Brześkiewicz J, Meyrelles R, Just D, Maulide N. Deprotective Functionalization: A Direct Conversion of Nms-Amides to Carboxamides Using Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202318304. [PMID: 38501885 PMCID: PMC11497274 DOI: 10.1002/anie.202318304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 03/20/2024]
Abstract
The nature of protecting group chemistry necessitates a deprotection step to restore the initially blocked functionality prior to further transformation. As this aspect of protecting group manipulation inevitably adds to the step count of any synthetic sequence, the development of methods enabling simultaneous deprotection and functionalization ("deprotective functionalization"-distinct from "deprotection followed by functionalization") is appealing, as it has the potential to improve efficiency and streamline synthetic routes. Herein, we report a deprotective functionalization of the newly introduced Nms-amides guided by density functional theory (DFT) analysis, which exploits the inherent Nms reactivity. Mechanistic studies further substantiate and help rationalize the exquisite reactivity of Nms-amides, as other commonly used protecting groups are shown not to exhibit the same reactivity patterns. The practicality of this approach was ultimately demonstrated in selected case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Jakub Brześkiewicz
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringerstraße 381090ViennaAustria
| |
Collapse
|
3
|
Tatsumi T, Sasamoto K, Matsumoto T, Hirano R, Oikawa K, Nakano M, Yoshida M, Oisaki K, Kanai M. Practical N-to-C peptide synthesis with minimal protecting groups. Commun Chem 2023; 6:231. [PMID: 37884638 PMCID: PMC10603086 DOI: 10.1038/s42004-023-01030-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Accessible drug modalities have continued to increase in number in recent years. Peptides play a central role as pharmaceuticals and biomaterials in these new drug modalities. Although traditional peptide synthesis using chain-elongation from C- to N-terminus is reliable, it produces large quantities of chemical waste derived from protecting groups and condensation reagents, which place a heavy burden on the environment. Here we report an alternative N-to-C elongation strategy utilizing catalytic peptide thioacid formation and oxidative peptide bond formation with main chain-unprotected amino acids under aerobic conditions. This method is applicable to both iterative peptide couplings and convergent fragment couplings without requiring elaborate condensation reagents and protecting group manipulations. A recyclable N-hydroxy pyridone additive effectively suppresses epimerization at the elongating chain. We demonstrate the practicality of this method by showcasing a straightforward synthesis of the nonapeptide DSIP. This method further opens the door to clean and atom-efficient peptide synthesis.
Collapse
Affiliation(s)
- Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Sasamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryo Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuki Oikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Nakano
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Chang Z, Wang S, Huang J, Chen G, Tang Z, Wang R, Zhao D. Copper catalyzed Shono-type oxidation of proline residues in peptide. SCIENCE ADVANCES 2023; 9:eadj3090. [PMID: 37703373 PMCID: PMC10881060 DOI: 10.1126/sciadv.adj3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Liao WJ, Lin SY, Kuo YS, Liang CF. Site-Selective Acylation of Phenols Mediated by a Thioacid Surrogate through Sodium Thiosulfate Catalysis. Org Lett 2022; 24:4207-4211. [PMID: 35670502 DOI: 10.1021/acs.orglett.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium thiosulfate was used as the sulfur source that reacts with anhydrides to generate acyl-Bunte salts, after which a reaction with phenols was induced. This protocol can be applied for the site-selective acylation of the phenolic hydroxyl group in the presence of other alcoholic groups. The advantages of this acylation method are operational simplicity, high efficiency, and the use of odorless reagents with low toxicity.
Collapse
Affiliation(s)
- Wei-Jr Liao
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Sih-Yu Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Shan Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Wan C, Feng Y, Hou Z, Lian C, Zhang L, An Y, Sun J, Yang D, Jiang C, Yin F, Wang R, Li Z. Electrophilic Sulfonium-Promoted Peptide and Protein Amidation in Aqueous Media. Org Lett 2021; 24:581-586. [PMID: 34968069 DOI: 10.1021/acs.orglett.1c04017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel amidation strategy using electrophilic sulfonium, which is soluble and stable in aqueous conditions, was developed. The sulfoniums could activate thioacid and carboxyl acid to efficiently react with amines to afford amides. This method enables applications in amidation in both aqueous media and solid-phase peptide synthesis, peptide/protein modifications, and reactive lysines of a proteome at pH 10 with activity-based protein profiling. A peptide ligand-directed labeling of the USP7-UBL2 domain was also performed using this method.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| |
Collapse
|
7
|
Khatoon H, Abdulmalek E. A Focused Review of Synthetic Applications of Lawesson's Reagent in Organic Synthesis. Molecules 2021; 26:6937. [PMID: 34834028 PMCID: PMC8618327 DOI: 10.3390/molecules26226937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
Lawesson's reagent (LR) is a well-known classic example of a compound with unique construction and unusual chemical behavior, with a wide range of applications in synthetic organic chemistry. Its main functions were rounded for the thionation of various carbonyl groups in the early days, with exemplary results. However, the role of Lawesson's reagent in synthesis has changed drastically, and now its use can help the chemistry community to understand innovative ideas. These include constructing biologically valuable heterocycles, coupling reactions, and the thionation of natural compounds. The ease of availability and the convenient usage of LR as a thionating agent made us compile a review on the new diverse applications on some common functional groups, such as ketones, esters, amides, alcohols, and carboxylic acids, with biological applications. Since the applications of LR are now diverse, we have also included some new classes of heterocycles such as thiazepines, phosphine sulfides, thiophenes, and organothiophosphorus compounds. Thionation of some biologically essential steroids and terpenoids has also been compiled. This review discusses the recent insights into and synthetic applications of this famous reagent from 2009 to January 2021.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Clavé G, Vasseur JJ, Smietana M. The Sulfo-Click Reaction and Dual Labeling of Nucleosides. ACTA ACUST UNITED AC 2020; 83:e120. [PMID: 33238080 DOI: 10.1002/cpnc.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article contains detailed synthetic procedures for the implementation of the sulfo-click reaction to nucleoside derivatives. First, 3'-O-TBDMS-protected nucleosides are converted to their corresponding 4'-thioacid derivatives in three steps. Then, various conjugates are synthetized via a biocompatible and chemoselective coupling procedure using sulfonyl azide partners. Finally, to illustrate the potential of the sulfo-click reaction, a nucleoside bearing two orthogonal azido groups is synthesized and engaged in one-pot dual labeling through a sulfo-click/copper-catalyzed azide-alkyne cycloaddition (CuAAC) cascade. The high efficiency of the sulfo-click reaction as applied to nucleosides opens up new possibilities in the context of bioconjugation. © 2020 Wiley Periodicals LLC. Basic Protocol 1: General protocol for the synthesis of 4'-thioacid-nucleoside derivatives Basic Protocol 2: Implementation of the sulfo-click reaction Basic Protocol 3: Synthesis of 3'-azido-4'-(carboxamido)ethane-sulfonyl azide-3'-deoxythymidine Basic Protocol 4: Detailed synthetic procedure for one-pot double-click conjugations.
Collapse
|
9
|
Li Y, Huang S, Li J, Li J, Ji X, Liu J, Chen L, Peng S, Zhang K. Access to 2-pyridinylamide and imidazopyridine from 2-fluoropyridine and amidine hydrochloride. Org Biomol Chem 2020; 18:9292-9299. [PMID: 33164006 DOI: 10.1039/d0ob01904f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under catalyst-free conditions, an efficient method to synthesize 2-pyridinylamides has been developed, and the protocol uses inexpensive and readily available 2-fluoropyridine and amidine derivatives as the starting materials. Simultaneously, the copper-catalysed approach to imidazopyridine derivatives has been established with high chemoselectivity and regiospecificity. The results suggest that the nitrogen-heterocycles containing iodide substituents can also be compatible for the reaction via the cascade Ullmann-type coupling, and the nucleophilic substitution reaction provides the target products in a one-pot manner.
Collapse
Affiliation(s)
- Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Shuo Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jiasheng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| |
Collapse
|
10
|
Koshizuka M, Makino K, Shimada N. Diboronic Acid Anhydride-Catalyzed Direct Peptide Bond Formation Enabled by Hydroxy-Directed Dehydrative Condensation. Org Lett 2020; 22:8658-8664. [PMID: 33044828 DOI: 10.1021/acs.orglett.0c03252] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the catalytic direct peptide bond formations via dehydrative condensation of β-hydroxy-α-amino acids, affording the serine, threonine, or β-hydroxyvaline-derived peptides in high to excellent yields with high functional group tolerance, minimum epimerization, and excellent chemoselectivity. The key to the success of these atom-economical transformations is the use of diboronic acid anhydride catalyst for the hydroxy-directed reactions.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
11
|
3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) catalysed metal-free amide bond formation from thioacids and amines at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Shah SS, Shee M, Venkatesh Y, Singh AK, Samanta S, Singh NDP. Organophotoredox‐Mediated Amide Synthesis by Coupling Alcohol and Amine through Aerobic Oxidation of Alcohol. Chemistry 2020; 26:3703-3708. [PMID: 31923326 DOI: 10.1002/chem.201904924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Sk. Sheriff Shah
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Maniklal Shee
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Yarra Venkatesh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Amit Kumar Singh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Samya Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - N. D. Pradeep Singh
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
13
|
Barragan E, Noonikara‐Poyil A, Bugarin A. π‐Conjugated Triazenes and Nitriles: Simple Photoinduced Synthesis of Anilides Using Mild and Metal‐Free Conditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Enrique Barragan
- Department of Chemistry and BiochemistryUniversity of Texas at Arlington Arlington TX 76019 USA
| | - Anurag Noonikara‐Poyil
- Department of Chemistry and BiochemistryUniversity of Texas at Arlington Arlington TX 76019 USA
| | - Alejandro Bugarin
- Department of Chemistry and PhysicsFlorida Gulf Coast University Fort Myers FL 33965 USA
| |
Collapse
|
14
|
Wang X, Wang P, Li D, Li M. 2,4-Dinitrobenzenesulfonamide-Directed S N2-Type Displacement Reaction Enables Synthesis of β-d-Glycosaminosides. Org Lett 2019; 21:2402-2407. [PMID: 30900906 DOI: 10.1021/acs.orglett.9b00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient protocol to construct β-d-gluco-/galactosaminosyl linkages was established using nonparticipating and strong electron-withdrawing C-2-2,4-dinitrobenzenesulfonamide (DNsNH)-directed SN2-like glycosylation of glycosyl ortho-hexynylbenzoates. The reaction is applicable to a wide range of O-, N-, and C-nucleophiles and features convenient conversion of DNsNH into AcNH in high yield under mild conditions. Oligomerization-ready trisaccharide, composed of β-d-(1→3)-glucosamino residues, has been achieved, setting a solid foundation for the synthesis of oligosaccharides associated with Neisseria meningitidis capsular polysaccharide.
Collapse
Affiliation(s)
- Xianyang Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Peng Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Dongwei Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Ming Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| |
Collapse
|
15
|
Roopesh Kumar L, Panduranga V, Vishwanatha TM, Shekharappa, Sureshbabu VV. Synthesis of thioureido peptidomimetics employing alkyl azides and dithiocarbamates. Org Biomol Chem 2019. [PMID: 29528353 DOI: 10.1039/c8ob00239h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An unprecedented approach for the assembly of thioureido peptidomimetics is developed employing alkyl azides and dithiocarbamates. Dithiocarbamates react with alkyl azides with the liberation of N2 and elemental sulfur thereby leading to thiourea in a traceless manner. Thioureido peptidomimetics are thus furnished in good yields with no epimerization. This process is mild, free from the use of a base, scalable and step economic. The practicability of this methodology has been highlighted by the synthesis of N,N'-orthogonally protected thioureido peptidomimetics.
Collapse
Affiliation(s)
- L Roopesh Kumar
- Room No. 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University, Bangalore, 560001, India.
| | | | | | | | | |
Collapse
|
16
|
A magnetically recoverable copper–salen complex as a nano-catalytic system for amine protection via acetylation using thioacetic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-3702-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Srivastava V, Singh PK, Singh PP. Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Anderson ZJ, Hobson C, Needley R, Song L, Perryman MS, Kerby P, Fox DJ. NMR-based assignment of isoleucine vs. allo-isoleucine stereochemistry. Org Biomol Chem 2018; 15:9372-9378. [PMID: 29090723 DOI: 10.1039/c7ob01995e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple 1H and 13C NMR spectrometric analysis is demonstrated that permits differentiation of isoleucine and allo-isoleucine residues by inspection of the chemical shift and coupling constants of the signals associated with the proton and carbon at the α-stereocentre. This is applied to the estimation of epimerisation during metal-free N-arylation and peptide coupling reactions.
Collapse
Affiliation(s)
- Zoe J Anderson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Shi L, Liu H, Huo L, Dang Y, Wang Y, Yang B, Qiu S, Tan H. Site-selective phenol acylation mediated by thioacids via visible light photoredox catalysis. Org Chem Front 2018. [DOI: 10.1039/c8qo00041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-selective phenol acylation mediated by thioacids via photoredox catalysis is described. This protocol provided facile access to an array of phenolic esters with exclusive acylation priority of phenol hydroxyl group to alcoholic one. Its utility was also demonstrated by the modification of biologically meaningful natural product.
Collapse
Affiliation(s)
- Lili Shi
- Department of Chemistry
- Changzhi University
- Changzhi 046000
- China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Luqiong Huo
- Department of Chemistry
- Changzhi University
- Changzhi 046000
- China
- Program for Natural Product Chemical Biology
| | - Yaqian Dang
- Program for Natural Product Chemical Biology
- Key Laboratory Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Yu Wang
- Program for Natural Product Chemical Biology
- Key Laboratory Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Bao Yang
- Program for Natural Product Chemical Biology
- Key Laboratory Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Shengxiang Qiu
- Program for Natural Product Chemical Biology
- Key Laboratory Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Haibo Tan
- Program for Natural Product Chemical Biology
- Key Laboratory Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
20
|
Matsumoto T, Sasamoto K, Hirano R, Oisaki K, Kanai M. A catalytic one-step synthesis of peptide thioacids: the synthesis of leuprorelin via iterative peptide–fragment coupling reactions. Chem Commun (Camb) 2018; 54:12222-12225. [DOI: 10.1039/c8cc07935h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic one-step synthesis of peptide thioacids with suppressed epimerization was developed and applied to an iterative fragment coupling protocol.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Koki Sasamoto
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Ryo Hirano
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
21
|
N. N, Thimmalapura VM, Hosamani B, Prabhu G, Kumar LR, Sureshbabu VV. Thioacids – synthons for amide bond formation and ligation reactions: assembly of peptides and peptidomimetics. Org Biomol Chem 2018; 16:3524-3552. [DOI: 10.1039/c8ob00512e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of α-amino thioacids and peptide thioacids and their applications in chemoselective amide bond formation, ligation of peptides/proteins/glycopeptides and synthesis of peptidomimetics are reviewed.
Collapse
Affiliation(s)
- Narendra N.
- Department of Chemistry
- University College of Science
- Tumkur University
- Tumkur 572 103
- India
| | - Vishwanatha M. Thimmalapura
- Room No. 109
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Central College Campus
- Dr B. R. Ambedkar Veedhi
| | - Basavaprabhu Hosamani
- Room No. 109
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Central College Campus
- Dr B. R. Ambedkar Veedhi
| | - Girish Prabhu
- Room No. 109
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Central College Campus
- Dr B. R. Ambedkar Veedhi
| | - L. Roopesh Kumar
- Room No. 109
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Central College Campus
- Dr B. R. Ambedkar Veedhi
| | - Vommina V. Sureshbabu
- Room No. 109
- Peptide Research Laboratory
- Department of Studies in Chemistry
- Central College Campus
- Dr B. R. Ambedkar Veedhi
| |
Collapse
|
22
|
Das S, Ray S, Ghosh AB, Samanta PK, Samanta S, Adhikary B, Biswas P. Visible light driven amide synthesis in water at room temperature from Thioacid and amine using CdS nanoparticles as heterogeneous Photocatalyst. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sudipto Das
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Shounak Ray
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Abhisek Brata Ghosh
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Partha Kumar Samanta
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Suvendu Samanta
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Bibhutosh Adhikary
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| | - Papu Biswas
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711 103 West Bengal India
| |
Collapse
|
23
|
Vong KKH, Maeda S, Tanaka K. Propargyl-Assisted Selective Amidation Applied in C-terminal Glycine Peptide Conjugation. Chemistry 2016; 22:18865-18872. [PMID: 27731535 DOI: 10.1002/chem.201604247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/08/2022]
Abstract
Alkyl esters, such as propargyl esters, typically lack the electron-withdrawing inductive effects needed to participate in nucleophilic acyl substitution reactions. Herein, we report an unusual observation in which glycine propargyl ester derivatives displayed selective, base-independent reactivity towards linear alkylamines under mild, metal-free conditions. Through global reaction route mapping (GRRM) modeling calculations, it is predicted that these observations may be governed by factors related to hydrogen-bonding and intermolecular interactions, rather than electron-withdrawing inductive effects. Based on this concept of propargyl-assisted selective amidation, a direct application was made to develop a novel site-specific C-terminal glycine peptide bioconjugation technique as a proof-of-concept, which relies upon the selective reactivity of glycine propargyl esters over that of aspartate and glutamate side-chain-linked propargyl esters.
Collapse
Affiliation(s)
- Kenward King Ho Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.,JST, PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
24
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
25
|
|
26
|
Hutton CA, Shang J, Wille U. Synthesis of Peptides by Silver-Promoted Coupling of Carboxylates and Thioamides: Mechanistic Insight from Computational Studies. Chemistry 2016; 22:3163-9. [PMID: 26813415 DOI: 10.1002/chem.201503753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/05/2022]
Abstract
The mechanism of the recently described N→C direction peptide synthesis through silver-promoted coupling of N-protected amino acids with thioacetylated amino esters was explored by using density functional theory. Calculation of the potential energy surfaces for various pathways revealed that the reaction proceeds through silver-assisted addition of the carboxylate to the thioamide, which is followed by deprotonation and silver-mediated extrusion of sulfur as Ag2 S. The resulting isoimide is the key intermediate, which subsequently rearranges to an imide through a concerted pericyclic [1,3]-acyl shift (O-sp(2) N 1,3-acyl migration). The proposed mechanism clearly emphasises the requirement of two equivalents of Ag(I) and basic reaction conditions, which is in full agreement with the experimental findings. Alternative rearrangement pathways involving only one equivalent of Ag(I) or through O-sp(3) N 1,3-acyl migration can be excluded. The computations further revealed that peptide couplings involving thioformamides require significant conformational changes in the intermediate isoformimide, which slow down the rearrangement process.
Collapse
Affiliation(s)
- Craig A Hutton
- School of Chemistry and Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| | - Jing Shang
- School of Chemistry and Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
27
|
Park CM, Johnson BA, Duan J, Park JJ, Day JJ, Gang D, Qian WJ, Xian M. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides. Org Lett 2016; 18:904-7. [PMID: 26870874 PMCID: PMC4782721 DOI: 10.1021/acs.orglett.5b03557] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The development of
a functional disulfide, FmSSPy-A (Fm = 9-fluorenylmethyl;
Py = pyridinyl), is reported. It can effectively convert small molecule
and protein thiols (−SH) to form −S-SFm adducts under
mild conditions. This method allows for a H2S-free and
biomimetic protocol to generate highly reactive persulfides (in their
anionic forms). The high nucleophilicity of persulfides toward a number
of thiol-blocking reagents is also demonstrated. The method holds
promise for further understanding the chemical biology of persulfides
and S-sulfhydration.
Collapse
Affiliation(s)
- Chung-Min Park
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Brett A Johnson
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jeong-Jin Park
- Tissue Imaging and Proteomics Laboratory, Washington State University , Pullman, Washington 99164, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - David Gang
- Tissue Imaging and Proteomics Laboratory, Washington State University , Pullman, Washington 99164, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
28
|
Hatanaka T, Yuki R, Saito R, Sasaki K. α-Methylphenacyl thioesters as convenient thioacid precursors. Org Biomol Chem 2016; 14:10589-10592. [DOI: 10.1039/c6ob02256a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-Methylphenacyl (Mpa) thioesters are described as precursors of thioacids.
Collapse
Affiliation(s)
- Toru Hatanaka
- Department of Chemistry
- Toho University
- Funabashi 274-8510
- Japan
| | - Ryosuke Yuki
- Department of Chemistry
- Toho University
- Funabashi 274-8510
- Japan
| | - Ryota Saito
- Department of Chemistry
- Toho University
- Funabashi 274-8510
- Japan
- Research Center for Materials with Integrated Properties
| | - Kaname Sasaki
- Department of Chemistry
- Toho University
- Funabashi 274-8510
- Japan
| |
Collapse
|
29
|
Giofrè SV, Romeo R, Mancuso R, Cicero N, Corriero N, Chiacchio U, Romeo G, Gabriele B. A new microwave-assisted thionation-heterocyclization process leading to benzo[c]thiophene-1(3H)-thione and 1H-isothiochromene-1-thione derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra01329e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first example of a MW-assisted tandem thionation/S-cyclization process, leading to benzothiophenethione and isothiochromenethione derivatives, is reported.
Collapse
Affiliation(s)
- Salvatore V. Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali
- Università di Messina
- 98168 Messina
- Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali
- Università di Messina
- 98168 Messina
- Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC)
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| | - Nicola Cicero
- Dipartimento di Scienze biomediche
- odontoiatriche e delle immagini morfologiche e funzionali
- Università di Messina
- 98125 Messina
- Italy
| | | | - Ugo Chiacchio
- Dipartimento di Chimica
- Università di Catania
- 95100 Catania
- Italy
| | - Giovanni Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali
- Università di Messina
- 98168 Messina
- Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC)
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- 87036 Arcavacata di Rende
- Italy
| |
Collapse
|
30
|
Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MAS, Danishefsky SJ. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides. J Am Chem Soc 2015; 137:13167-75. [PMID: 26401918 PMCID: PMC4617663 DOI: 10.1021/jacs.5b08754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.
Collapse
Affiliation(s)
- Andrew G. Roberts
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Eric V. Johnston
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Joseph P. Sondey
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Ronald C. Hendrickson
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Samuel J. Danishefsky
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
|
32
|
Xie S, Fukumoto R, Ramström O, Yan M. Anilide formation from thioacids and perfluoroaryl azides. J Org Chem 2015; 80:4392-7. [PMID: 25837012 DOI: 10.1021/acs.joc.5b00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A metal-free method for fast and clean anilide formation from perfluoroaryl azide and thioacid is presented. The reaction proved highly efficient, displaying fast kinetics, high yield, and good chemoselectivity. The transformation was compatible with various solvents and tolerant to a wide variety of functional groups, and it showed high performance in polar protic/aprotic media, including aqueous buffer systems.
Collapse
Affiliation(s)
- Sheng Xie
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Ryo Fukumoto
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Olof Ramström
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- †Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 36, S-10044 Stockholm, Sweden.,‡Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
33
|
Mandhapati AR, Rajender S, Shaw J, Crich D. The isothiocyanato moiety: an ideal protecting group for the stereoselective synthesis of sialic acid glycosides and subsequent diversification. Angew Chem Int Ed Engl 2015; 54:1275-8. [PMID: 25446629 PMCID: PMC4300277 DOI: 10.1002/anie.201409797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 01/14/2023]
Abstract
The preparation of a crystalline, peracetyl adamantanyl thiosialoside donor protected by an isothiocyanate group is described. On activation at -78 °C in the presence of typical carbohydrate acceptors, this donor gives high yields of the corresponding sialosides with exquisite α-selectivity. The high selectivity extends to the 4-O-benzyl-protected 3-OH acceptors, which are typically less reactive and selective than galactose 3,4-diols. Treatment of the α-sialosides with tris(trimethylsilyl)silane or allyltris(trimethylsilyl)silane results in replacement of the C5-N5 bond by a C-H or a C-C bond. The reaction of the isothiocyanate-protected sialosides with thioacids generates amides, while reaction with an amine gives a thiourea, which can be converted into a guanidine. The very high α-selectivities observed with the new donor and the rich chemistry of the isothiocyante function considerably extend the scope for optimization at the sialoside 5-position.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - Salla Rajender
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - Jonathan Shaw
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| |
Collapse
|
34
|
Mandhapati AR, Rajender S, Shaw J, Crich D. The Isothiocyanato Moiety: An Ideal Protecting Group for the Stereoselective Synthesis of Sialic Acid Glycosides and Subsequent Diversification. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Sumita A, Kurouchi H, Otani Y, Ohwada T. Acid-Promoted Chemoselective Introduction of Amide Functionality onto Aromatic Compounds Mediated by an Isocyanate Cation Generated from Carbamate. Chem Asian J 2014; 9:2995-3004. [DOI: 10.1002/asia.201402625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Indexed: 01/01/2023]
|
36
|
Agrigento P, Albericio F, Chamoin S, Dacquignies I, Koc H, Eberle M. Facile and Mild Synthesis of Linear and Cyclic Peptides via Thioesters. Org Lett 2014; 16:3922-5. [DOI: 10.1021/ol501669n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paola Agrigento
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Fernando Albericio
- Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain
- CIBER-BBN, Barcelona Science Park, Baldiri
Reixac 10, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
- School of Chemistry & Physics, University of Kwazulu-Natal, Durban 4001, South Africa
| | - Sylvie Chamoin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Isabelle Dacquignies
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Halil Koc
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Eberle
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
37
|
Ma Z, Jiang J, Luo S, Cai Y, Cardon JM, Kay BM, Ess DH, Castle SL. Selective Access to E- and Z-ΔIle-Containing Peptides via a Stereospecific E2 Dehydration and an O → N Acyl Transfer. Org Lett 2014; 16:4044-7. [DOI: 10.1021/ol5018933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhiwei Ma
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jintao Jiang
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Shi Luo
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yu Cai
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Joseph M. Cardon
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Benjamin M. Kay
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H. Ess
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L. Castle
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
38
|
Chou TC, Hsu YL, Lo LC. A Convenient Preparation of Bis(4-methoxyphenyl)methanethiol and Its Application in the Synthesis of Biotin Thioacid. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201300664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Mali SM, Gopi HN. Thioacetic Acid/NaSH-Mediated Synthesis of N-Protected Amino Thioacids and Their Utility in Peptide Synthesis. J Org Chem 2014; 79:2377-83. [DOI: 10.1021/jo402872p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sachitanand M. Mali
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
40
|
Bai J, Zambroń BK, Vogel P. Amides in One Pot from Carboxylic Acids and Amines via Sulfinylamides. Org Lett 2014; 16:604-7. [DOI: 10.1021/ol403508j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jianfei Bai
- Laboratoire de Glycochimie
et de Synthèse Asymétrique, Swiss Federal Institute of Technology (EPFL), Batochime, CH 1015 Lausanne, Switzerland
| | - Bartosz K. Zambroń
- Laboratoire de Glycochimie
et de Synthèse Asymétrique, Swiss Federal Institute of Technology (EPFL), Batochime, CH 1015 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratoire de Glycochimie
et de Synthèse Asymétrique, Swiss Federal Institute of Technology (EPFL), Batochime, CH 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Pourvali A, Cochrane JR, Hutton CA. A new method for peptide synthesis in the N→C direction: amide assembly through silver-promoted reaction of thioamides. Chem Commun (Camb) 2014; 50:15963-6. [DOI: 10.1039/c4cc07601j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ag(i)-promoted coupling of peptide-acids with thioamides generates peptide-imides, which was exploited in the synthesis of peptides in the N→C direction.
Collapse
Affiliation(s)
- Aysa Pourvali
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- , Australia
| | - James R. Cochrane
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- , Australia
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- , Australia
| |
Collapse
|
42
|
Pira SL, Boll E, Melnyk O. Synthesis of Peptide Thioacids at Neutral pH Using Bis(2-sulfanylethyl)amido Peptide Precursors. Org Lett 2013; 15:5346-9. [DOI: 10.1021/ol402601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvain L. Pira
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| | - Emmanuelle Boll
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161, Pasteur Institute of Lille 59021 Lille, France
| |
Collapse
|
43
|
Fécourt F, Delpech B, Melnyk O, Crich D. Se-(9-Fluorenylmethyl) Selenoesters; Preparation, Reactivity, and Use as Convenient Synthons for Selenoacids. Org Lett 2013; 15:3758-61. [DOI: 10.1021/ol401677a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fabien Fécourt
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, CNRS UMR 8161, Univ. Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Bernard Delpech
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, CNRS UMR 8161, Univ. Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Oleg Melnyk
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, CNRS UMR 8161, Univ. Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - David Crich
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, CNRS UMR 8161, Univ. Lille Nord de France, Institut Pasteur de Lille, 59021, Lille, France, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
44
|
Mali SM, Bhaisare RD, Gopi HN. Thioacids Mediated Selective and Mild N-Acylation of Amines. J Org Chem 2013; 78:5550-5. [DOI: 10.1021/jo400701v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sachitanand M. Mali
- Department
of Chemistry, Indian Institute of Science Education and Research,
Dr. Homi Bhabha Road, Pune 411 008, India
| | - Rupal D. Bhaisare
- Department
of Chemistry, Indian Institute of Science Education and Research,
Dr. Homi Bhabha Road, Pune 411 008, India
| | - Hosahudya N. Gopi
- Department
of Chemistry, Indian Institute of Science Education and Research,
Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
45
|
Zhang Y, Xu C, Lam HY, Lee CL, Li X. Protein chemical synthesis by serine and threonine ligation. Proc Natl Acad Sci U S A 2013; 110:6657-62. [PMID: 23569249 PMCID: PMC3637748 DOI: 10.1073/pnas.1221012110] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An efficient method has been developed for the salicylaldehyde ester-mediated ligation of unprotected peptides at serine (Ser) or threonine (Thr) residues. The utility of this peptide ligation approach has been demonstrated through the convergent syntheses of two therapeutic peptides--ovine-corticoliberin and Forteo--and the human erythrocyte acylphosphatase protein (∼11 kDa). The requisite peptide salicylaldehyde ester precursor is prepared in an epimerization-free manner via Fmoc-solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ci Xu
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hiu Yung Lam
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Chi Lung Lee
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
46
|
Wang YZ, Deng XX, Li L, Li ZL, Du FS, Li ZC. One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym Chem 2013. [DOI: 10.1039/c2py20927f] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Chen W, Shao J, Hu M, Yu W, Giulianotti MA, Houghten RA, Yu Y. A traceless approach to amide and peptide construction from thioacids and dithiocarbamate-terminal amines. Chem Sci 2013. [DOI: 10.1039/c2sc21317f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
48
|
Wu X, Stockdill JL, Park PK, Danishefsky SJ. Expanding the limits of isonitrile-mediated amidations: on the remarkable stereosubtleties of macrolactam formation from synthetic seco-cyclosporins. J Am Chem Soc 2012; 134:2378-84. [PMID: 22280518 DOI: 10.1021/ja2103372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The scope of isonitrile-mediated amide bond-forming reactions is further explored in this second-generation synthetic approach to cyclosporine (cyclosporin A). Both type I and type II amidations are utilized in this effort, allowing access to epimeric cyclosporins A and H from a single precursor by variation of the coupling reagents. This work lends deeper insight into the relative acylating ability of the formimidate carboxylate mixed anhydride (FCMA) intermediate, while shedding light on the far-reaching impact of remote stereochemical changes on the effective preorganization of seco-cyclosporins.
Collapse
Affiliation(s)
- Xiangyang Wu
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
49
|
Namelikonda NK, Manetsch R. Sulfo-click reaction via in situ generated thioacids and its application in kinetic target-guided synthesis. Chem Commun (Camb) 2012; 48:1526-8. [DOI: 10.1039/c1cc14724b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Mali SM, Jadhav SV, Gopi HN. Copper(ii) mediated facile and ultra fast peptide synthesis in methanol. Chem Commun (Camb) 2012; 48:7085-7. [DOI: 10.1039/c2cc32581k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|