1
|
Ji X, Shen C, Ni Y, Si ZY, Wang Y, Zhi X, Zhao Y, Peng H, Liu L. Stereoselective Synthesis of Polysubstituted Conjugated Dienes Enabled by Photo-Driven Sequential Sigmatropic Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202400805. [PMID: 38587996 DOI: 10.1002/anie.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
We here reported a highly stereoselective method for the synthesis of polysubstituted conjugated dienes from α-aryl α-diazo alkynyl ketones and pyrazole-substituted unsymmetric aminals under mild conditions, which was promoted by photo-irridation and involved with 1,6-dipolar intermediate and quadruple sigmatropic rearrangements, was successfully developed. In this transformation, the cleavage of four bonds and the recombination of five bonds were implemented in one operational step. This protocol provided a modular tool for constructing dienes from amines, pyrazoles and α-alkynyl-α-diazoketones in one-pot manner. The results of mechanistic investigation indicated that the plausible reaction path underwent the 1,6-sigmatropic rearrangement instead of the 1,5-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Xin Ji
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuhao Ni
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zhi-Yao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuzhu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xinrong Zhi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuting Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Huiling Peng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
2
|
Nguyen TT, Bosse AT, Ly D, Suarez CA, Fu J, Shimabukuro K, Musaev DG, Davies HML. Diaryldiazoketones as Effective Carbene Sources for Highly Selective Rh(II)-Catalyzed Intermolecular C-H Functionalization. J Am Chem Soc 2024; 146:8447-8455. [PMID: 38478893 PMCID: PMC10979447 DOI: 10.1021/jacs.3c14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
A novel donor/acceptor carbene intermediate has been developed using diaryldiazoketones as carbene precursors. In the presence of the chiral dirhodium catalyst, Rh2(S-TPPTTL)4, diaryldiazoketones undergo highly regio-, stereo-, and diastereoselective C-H functionalization of activated and unactivated secondary and tertiary C-H bonds. Computational studies revealed that the arylketo group behaves differently than the carboxylate acceptor group because the orientation of the arylketo group predetermines which face of the carbene will be attacked.
Collapse
Affiliation(s)
| | | | - Duc Ly
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - Camila A. Suarez
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - Jiantao Fu
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - Kristin Shimabukuro
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | | | - Huw M. L. Davies
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Gilbert MM, Trenerry MJ, Longley VR, Castro AJ, Berry JF, Weix DJ. Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones. ACS Catal 2023; 13:11277-11290. [PMID: 39386022 PMCID: PMC11463996 DOI: 10.1021/acscatal.3c02643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reactions that cleave C-C bonds and enable functionalization at both carbon sites are powerful strategic tools in synthetic chemistry. Stereodefined cyclopropyl ketones have become readily available and would be an ideal source of 3-carbon fragments, but general approaches to net C-C activation / difunctionalization are unknown. Herein we demonstrate the cross-coupling of cyclopropyl ketones with organozinc reagents and chlorotrimethylsilane to form 1,3-difunctionalized, ring-opened products. A combination of experimental and theoretical studies rule out more established mechanisms and shed light on how cooperation between the redox-active terpyridine (tpy) ligand and the nickel atom enables the C-C bond activation step. The reduced (tpy•-)NiI species activates the C-C bond via a concerted asynchronous ring-opening transition state. The resulting alkylnickel(II) intermediate can then be engaged by aryl-, alkenyl-, and alkylzinc reagents to furnish cross-coupled products. This allows quick access to products that are difficult to make by conjugate addition methods, such as β-allylated and β -benzylated enol ethers. The utility of this approach is demonstrated in the synthesis of a key (±)-taiwaniaquinol B intermediate and the total synthesis of prostaglandin D1.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Michael J. Trenerry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - John F. Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| |
Collapse
|
4
|
Greenwood NS, Champlin AT, Ellman JA. Catalytic Enantioselective Sulfur Alkylation of Sulfenamides for the Asymmetric Synthesis of Sulfoximines. J Am Chem Soc 2022; 144:17808-17814. [PMID: 36154032 PMCID: PMC9650615 DOI: 10.1021/jacs.2c09158] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfoximines are increasingly incorporated in agrochemicals and pharmaceuticals, with the two enantiomers of chiral sulfoximines often having profoundly different binding interactions with biomolecules. Therefore, their application to drug discovery and development requires the challenging preparation of single enantiomers rather than racemic mixtures. Here, we report a general and fundamentally new asymmetric synthesis of sulfoximines. The first S-alkylation of sulfenamides, which are readily accessible sulfur compounds with one carbon and one nitrogen substituent, represents the key step. A broad scope for S-alkylation was achieved by rhodium-catalyzed coupling with diazo compounds under mild conditions. When a chiral rhodium catalyst was utilized with loadings as low as 0.1 mol %, the S-alkylation products were obtained in high yields and with enantiomeric ratios up to 98:2 at the newly generated chiral sulfur center. The S-alkylation products were efficiently converted to a variety of sulfoximines with complete retention of stereochemistry. The utility of this approach was further demonstrated by the asymmetric synthesis of a complex sulfoximine agrochemical.
Collapse
Affiliation(s)
| | - Andrew T. Champlin
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| |
Collapse
|
5
|
Shi Y, Yang Y, Xu S. Iridium-Catalyzed Enantioselective C(sp 3 )-H Borylation of Aminocyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202201463. [PMID: 35194926 DOI: 10.1002/anie.202201463] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed regio- and stereo-controllable C-H functionalization remains a formidable challenge in asymmetric catalysis. Herein, we disclose the first example of iridium-catalyzed C(sp3 )-H borylation of aminocyclopropanes by using simple imides as weakly coordinating directing groups under mild reaction conditions. The reaction proceeded via a six-membered iridacycle, affording a vast range of chiral aminocyclopropyl boronates. The current method features a broad spectrum of functional groups (36 examples) and high enantioselectivities (up to 99 %). We also demonstrated the synthetic utility by a preparative scale C-H borylation, C-B bond transformations, and conversion of the directing group.
Collapse
Affiliation(s)
- Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
6
|
Kurose T, Itoga M, Nanjo T, Takemoto Y, Tsukano C. Total Synthesis of Lyconesidine B: Approach to a Three-Dimensional Tetracyclic Skeleton of Amine-Type Fawcettimine Core and Studies of Asymmetric Synthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Kurose
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501
| | - Chihiro Tsukano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502
| |
Collapse
|
7
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Shi Y, Yang Y, Xu S. Iridium‐Catalyzed Enantioselective C(sp
3
)−H Borylation of Aminocyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
9
|
Chen J, Han J, Wu T, Zhang J, Li M, Xu Y, Zhang J, Jiao Y, Yang Y, Jiang Y. Stereoselective Cyclopropanation of Enamides via C―C Bond Cleavage of Cyclopropenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00091a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes a straightforward protocol for the stereoselective synthesis of vinylcyclopropylamides in high E/Z and syn/anti ratios by cyclopropanation of N-tosyl substituted enamides with cyclopropenes in the presence of...
Collapse
|
10
|
Zhang Y, Yang Y, Xue Y. Elucidating mechanism and reactivity of reaction between donor-acceptor-acceptor 1,3-bisdiazo compound and cinnamyl alcohol catalyzed by Rh2(OAc)4: a DFT study. NEW J CHEM 2022. [DOI: 10.1039/d1nj05542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important for diazo compound to take part in organic synthesis. More theoretical and experimental studies focus on mono-diazo compound but fewer on bi-diazo compounds. Here, the mechanism and...
Collapse
|
11
|
Shojaei H, Bossi ML, Belov VN, Hell SW. Bis-Rhodamines Bridged with a Diazoketone Linker: Synthesis, Structure, and Photolysis. J Org Chem 2021; 87:56-65. [PMID: 34919387 PMCID: PMC8749961 DOI: 10.1021/acs.joc.1c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Two fluorophores
bound with a short photoreactive bridge are fascinating
structures and remained unexplored. To investigate the synthesis and
photolysis of such dyes, we linked two rhodamine dyes via a diazoketone
bridge (−COCN2−) attached to position 5′
or 6′ of the pendant phenyl rings. For that, the mixture of
5′- or 6′-bromo derivatives of the parent dye was prepared,
transformed into 1,2-diarylacetylenes, hydrated to 1,2-diarylethanones,
and converted to diazoketones Ar1COCN2Ar2. The high performance liquid chromatography (HPLC) separation
gave four individual regioisomers of Ar1COCN2Ar2. Photolysis of the model compound—C6H5COCN2C6H5—in
aqueous acetonitrile at pH 7.3 and under irradiation with 365 nm light
provided diphenylacetic acid amide (Wolff rearrangement). However,
under the same conditions, Ar1COCN2Ar2 gave mainly α-diketones Ar1COCOAr2.
The migration ability of the very bulky dye residues was low, and
the Wolff rearrangement did not occur. We observed only moderate fluorescence
increase, which may be explained by the insufficient quenching ability
of diazoketone bridge (−COCN2−) and its transformation
into another (weaker) quencher, 1,2-diarylethane-1,2-dione.
Collapse
Affiliation(s)
- Heydar Shojaei
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry (MPIBPC), 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry (MPIBPC), 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry (MPIBPC), 37077 Göttingen, Germany.,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Drusgala M, Frühwirt P, Glotz G, Hogrefe K, Torvisco A, Fischer RC, Wilkening HMR, Kelterer A, Gescheidt G, Haas M. Isolable Geminal Bisgermenolates: A New Synthon in Organometallic Chemistry. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:23838-23842. [PMID: 38505802 PMCID: PMC10946821 DOI: 10.1002/ange.202111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/07/2022]
Abstract
We have synthesized the first isolable geminal bisenolates L2K2Ge[(CO)R]2 (R=2,4,6-trimethylphenyl (2 a,b), L=THF for (2 a) or [18]-crown-6 for (2 b)), a new synthon for the synthesis of organometallic reagents. The formation of these derivatives was confirmed by NMR spectroscopy and X-ray crystallographic analysis. The UV/Vis spectra of these anions show three distinct bands, which were assigned by DFT calculations. The efficiency of 2 a,b to serve as new building block in macromolecular chemistry is demonstrated by the reactions with two different types of electrophiles (acid chlorides and alkyl halides). In all cases the salt metathesis reaction gave rise to novel Ge-based photoinitiators in good yields.
Collapse
Affiliation(s)
- Manfred Drusgala
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - Philipp Frühwirt
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Gabriel Glotz
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Katharina Hogrefe
- Institute for Chemistry and Technology of MaterialsGraz University of TechnologyStremayrgasse 9/III8010GrazAustria
| | - Ana Torvisco
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - Roland C. Fischer
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - H. Martin R. Wilkening
- Institute for Chemistry and Technology of MaterialsGraz University of TechnologyStremayrgasse 9/III8010GrazAustria
| | - Anne‐Marie Kelterer
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Georg Gescheidt
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Michael Haas
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| |
Collapse
|
13
|
Drusgala M, Frühwirt P, Glotz G, Hogrefe K, Torvisco A, Fischer RC, Wilkening HMR, Kelterer A, Gescheidt G, Haas M. Isolable Geminal Bisgermenolates: A New Synthon in Organometallic Chemistry. Angew Chem Int Ed Engl 2021; 60:23646-23650. [PMID: 34464492 PMCID: PMC8596710 DOI: 10.1002/anie.202111636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/07/2022]
Abstract
We have synthesized the first isolable geminal bisenolates L2 K2 Ge[(CO)R]2 (R=2,4,6-trimethylphenyl (2 a,b), L=THF for (2 a) or [18]-crown-6 for (2 b)), a new synthon for the synthesis of organometallic reagents. The formation of these derivatives was confirmed by NMR spectroscopy and X-ray crystallographic analysis. The UV/Vis spectra of these anions show three distinct bands, which were assigned by DFT calculations. The efficiency of 2 a,b to serve as new building block in macromolecular chemistry is demonstrated by the reactions with two different types of electrophiles (acid chlorides and alkyl halides). In all cases the salt metathesis reaction gave rise to novel Ge-based photoinitiators in good yields.
Collapse
Affiliation(s)
- Manfred Drusgala
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - Philipp Frühwirt
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Gabriel Glotz
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Katharina Hogrefe
- Institute for Chemistry and Technology of MaterialsGraz University of TechnologyStremayrgasse 9/III8010GrazAustria
| | - Ana Torvisco
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - Roland C. Fischer
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| | - H. Martin R. Wilkening
- Institute for Chemistry and Technology of MaterialsGraz University of TechnologyStremayrgasse 9/III8010GrazAustria
| | - Anne‐Marie Kelterer
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Georg Gescheidt
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/II8010GrazAustria
| | - Michael Haas
- Institute of Inorganic ChemistryGraz University of TechnologyStremayrgasse 9/IV8010GrazAustria
| |
Collapse
|
14
|
Asymmetric intermolecular cyclopropanation of alkenes and N–H insertion of aminoesters by diazoacetylferrocene catalyzed by ruthenium and iron porphyrins. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Liu B, Xu M. Rhodium(I)‐Catalyzed Enantioselective C(sp
3
)—H Functionalization
via
Carbene‐Induced
Asymmetric Intermolecular C—H Insertion
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard Shenzhen Guangdong 518055 China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Ming‐Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard Shenzhen Guangdong 518055 China
| |
Collapse
|
16
|
Dong K, Gurung R, Xu X, Doyle MP. Enantioselective Catalytic Cyclopropanation-Rearrangement Approach to Chiral Spiroketals. Org Lett 2021; 23:3955-3959. [PMID: 33955755 DOI: 10.1021/acs.orglett.1c01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective synthesis of chiral heterobicyclic spiroketals is reported via a "one-pot" cyclopropanation-rearrangement (CP-RA) cascade reaction that is sequentially catalyzed by a chiral Rh(II) catalyst and tetrabutylammonium fluoride (TBAF). Exocyclic vinyl substrates form spirocyclopropanes with tert-butyldimethylsilyl-protected enoldiazoacetates in excellent yields and with excellent enantioselectivities when catalyzed by chiral dirhodium(II) carboxylates, and following desilylation with simultaneous rearrangement in the presence of TBAF, they give (S)-spiroketals in high yields with excellent chirality retention (>95% ee).
Collapse
Affiliation(s)
- Kuioyng Dong
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Raj Gurung
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Michael P Doyle
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
17
|
Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth-Rhodium Paddlewheel Catalysts. J Am Chem Soc 2021; 143:5666-5673. [PMID: 33829767 PMCID: PMC8154533 DOI: 10.1021/jacs.1c01972] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/02/2023]
Abstract
Heterobimetallic bismuth-rhodium paddlewheel complexes with phenylglycine ligands carrying TIPS-groups at the meta-positions of the aromatic ring exhibit outstanding levels of selectivity in reactions of donor/acceptor and donor/donor carbenes; at the same time, the reaction rates are much faster and the substrate scope is considerably wider than those of previous generations of chiral [BiRh] catalysts. As shown by a combined experimental, crystallographic, and computational study, the new catalysts draw their excellent application profile largely from the stabilization of the chiral ligand sphere by London dispersion (LD) interactions of the peripheral silyl substituents.
Collapse
Affiliation(s)
| | | | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
18
|
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040364. [PMID: 33920838 PMCID: PMC8071193 DOI: 10.3390/ph14040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.
Collapse
Affiliation(s)
- Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Nikolett Éva Hajnal
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Katalin E. Szabó
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
19
|
Zhu DX, Xia H, Liu JG, Chung LW, Xu MH. Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C–H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst. J Am Chem Soc 2021; 143:2608-2619. [DOI: 10.1021/jacs.0c13191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dong-Xing Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-chongzhi Road, Shanghai 201203, China
| | - Hui Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Jian-Guo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-chongzhi Road, Shanghai 201203, China
| |
Collapse
|
20
|
Nam D, Steck V, Potenzino RJ, Fasan R. A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones. J Am Chem Soc 2021; 143:2221-2231. [DOI: 10.1021/jacs.0c09504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert J. Potenzino
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
21
|
Anada M, Hashimoto S, Ito M, Kondo Y, Namie R, Natori Y, Takeda K, Nambu H, Yamamoto Y. Diastereo- and Enantioselective Intramolecular 1,6-C–H Insertion Reaction of Diaryldiazomethanes Catalyzed by Chiral Dirhodium(II) Carboxylates. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
23
|
Zhang Y, Li Y, Zhou W, Zhang M, Zhang Q, Jia R, Zhao J. Assembly of polysubstituted chiral cyclopropylamines via highly enantioselective Cu-catalyzed three-component cyclopropene alkenylamination. Chem Commun (Camb) 2020; 56:12250-12253. [PMID: 32929423 DOI: 10.1039/d0cc01060j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enabled by a commercial bisphosphine ligand, the Cu-catalyzed three-component cyclopropene alkenylamination with alkenyl organoboron reagent and hyroxyamine esters proceeds with exceptionally high enantioselectivity to deliver poly-substituted cis-1,2-alkenylcyclopropylamines that contain up to all three stereogenic centers on the cyclopropane.
Collapse
Affiliation(s)
- Yu Zhang
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang HX, Li WP, Zhang MM, Xie MS, Qu GR, Guo HM. Synthesis of chiral pyrimidine-substituted diester D-A cyclopropanes via asymmetric cyclopropanation of phenyliodonium ylides. Chem Commun (Camb) 2020; 56:11649-11652. [PMID: 33000801 DOI: 10.1039/d0cc04536e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly enantioselective cyclopropanation to synthesize pyrimidine-substituted diester D-A cyclopropanes is reported. Various N1-vinylpyrimidines react well with phenyliodonium ylides, delivering chiral cyclopropanes in up to 97% yield with up to 99% ee. Through simple [3+2] annulation with benzaldehyde or ethyl glyoxylate, different chiral pyrimidine nucleoside analogues with a sugar ring could be obtained.
Collapse
Affiliation(s)
- Hai-Xia Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wen-Peng Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mi-Mi Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
25
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020; 59:18964-18969. [DOI: 10.1002/anie.202007068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
26
|
Davies HML. Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C-H Functionalization. J Org Chem 2019; 84:12722-12745. [PMID: 31525891 PMCID: PMC7232105 DOI: 10.1021/acs.joc.9b02428] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalyst-controlled C-H functionalization by means of the C-H insertion chemistry of rhodium carbenes has become a powerful synthetic method. The key requirements for the development of this chemistry are donor/acceptor carbenes and the chiral dirhodium tetracarboxylate catalysts. This perspective will describe the stages involved in developing this chemistry and illustrate the scope of the donor/acceptor carbene C-H functionalization.
Collapse
Affiliation(s)
- Huw M L Davies
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , Unites States
| |
Collapse
|
27
|
Shao X, Malcolmson SJ. Catalytic Enantio- and Diastereoselective Cyclopropanation of 2-Azadienes for the Synthesis of Aminocyclopropanes Bearing Quaternary Carbon Stereogenic Centers. Org Lett 2019; 21:7380-7385. [PMID: 31465235 PMCID: PMC6790987 DOI: 10.1021/acs.orglett.9b02692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the catalytic enantio- and diastereoselective preparation of aminocyclopropanes by the cyclopropanation of terminal and (Z)-internal 2-azadienes with donor/acceptor carbenes derived from α-diazoesters. The resulting cyclopropanes bear quaternary carbon stereogenic centers vicinal to the amino-substituted carbon and are formed as a single diastereomer in up to 99:1 er and 97% yield with 0.5 mol % of Rh2(DOSP)4 and only 1.5 equiv of the diazo reagent. Transformations with internal azadienes afford cyclopropanes with three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Xinxin Shao
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United State
| | - Steven J. Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United State
| |
Collapse
|
28
|
Zhang Y, Yang Y, Zhu R, Wang X, Xue Y. Catalyst-Dependent Chemoselectivity in the Dirhodium-Catalyzed Cyclization Reactions Between Enodiazoacetamide and Nitrosoarene: A Theoretical Study. Front Chem 2019; 7:586. [PMID: 31508409 PMCID: PMC6716548 DOI: 10.3389/fchem.2019.00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 12/05/2022] Open
Abstract
N-O heterocycle compounds play an important role in various fields. Doyle et al. (Cheng et al., 2017) have recently reported an efficient catalyst-controlled selective cyclization reactions of tert-butyldimethylsilyl (TBS)-protected enoldiazoacetamides with nitrosoarenes in which the multifunctionalized products 5-isoxazolones and 1,3-oxazin-4-ones were formed through [3+2]- and [5+1]-cyclizations using Rh2(oct)4 and Rh2(cap)4 as catalysts, respectively. The present work studied the mechanism of the reactions in question and the origins of the catalyst-dependent chemoselectivity by the density functional theory (DFT) calculations at the M06-D3/SMD/6-311+G(d,p)//B3LYP-D3/6-31G(d,p) level of theory. The computed results illustrate the importance of the different dirhodium catalysts to gain diversified N-O heterocycle compounds and suggest the specific interaction between the reactants by the real catalyst model. Meanwhile, it is the steric hindrance and electronic effect of the ligands of dirhodium catalysts that control the reaction mechanism. Furthermore, the other auxiliary theoretical analysis, natural bond orbital calculation and distortion/interaction analysis, make the electronic effects, and steric hindrance more distinct.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xue
- Key Lab of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Li Z, Zhang M, Zhang Y, Liu S, Zhao J, Zhang Q. Multicomponent Cyclopropane Synthesis Enabled by Cu-Catalyzed Cyclopropene Carbometalation with Organoboron Reagent: Enantioselective Modular Access to Polysubstituted 2-Arylcyclopropylamines. Org Lett 2019; 21:5432-5437. [DOI: 10.1021/acs.orglett.9b01650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhanyu Li
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mengru Zhang
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Liu
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinbo Zhao
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Functional Organic Molecule Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
30
|
Liu Y, Zhou C, Xiong M, Jiang J, Wang J. Asymmetric Rh(I)-Catalyzed Functionalization of the 3-C(sp3)–H Bond of Benzofuranones with α-Diazoesters. Org Lett 2018; 20:5889-5893. [PMID: 30192557 DOI: 10.1021/acs.orglett.8b02555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuanhong Liu
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Chao Zhou
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Miao Xiong
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Jijun Jiang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Jun Wang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China
| |
Collapse
|
31
|
Zhu D, Chen L, Zhang H, Ma Z, Jiang H, Zhu S. Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C−H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angew Chem Int Ed Engl 2018; 57:12405-12409. [DOI: 10.1002/anie.201805676] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/20/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lianfen Chen
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - He Zhang
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Zhiqiang Ma
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
32
|
Zhu D, Chen L, Zhang H, Ma Z, Jiang H, Zhu S. Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C−H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lianfen Chen
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - He Zhang
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Zhiqiang Ma
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering, of Guangdong Province; School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
33
|
Deng L, Chen M, Dong G. Concise Synthesis of (-)-Cycloclavine and (-)-5- epi-Cycloclavine via Asymmetric C-C Activation. J Am Chem Soc 2018; 140:9652-9658. [PMID: 29976068 PMCID: PMC6677407 DOI: 10.1021/jacs.8b05549] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To illustrate the synthetic significance of C-C activation methods, here we describe an efficient strategy for the enantioselective total syntheses of (-)-cycloclavine and (-)-5- epi-cycloclavine, which is enabled by an asymmetric Rh-catalyzed "cut-and-sew" transformation between benzocyclobutenones and olefins. Despite the compact structure of cycloclavine with five-fused rings, the total synthesis was accomplished in 10 steps with a 30% overall yield. Key features of the synthesis include (1) a Pd-catalyzed tandem C-N bond coupling/allylic alkylation sequence to construct the nitrogen-tethered benzocyclobutenone, (2) a highly enantioselective Rh-catalyzed carboacylation of alkenes to forge the indoline-fused tricyclic structure, and (3) a diastereoselective cyclopropanation for preparing the tetrasubstituted cyclopropane ring. Notably, an improved catalytic condition has been developed for the nitrogen-tethered cut-and-sew transformation, which uses a low catalyst loading and allows for a broad substrate scope with high enantioselectivity (94-99% e.e.). The C-C activation-based strategy employed here is anticipated to have further implications for syntheses of other natural products that contain complex fused or bridged rings.
Collapse
Affiliation(s)
- Lin Deng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mengqing Chen
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- The College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Mechanism and Diastereoselectivity of [3+3] Cycloaddition between Enol Diazoacetate and Azomethine Imine Catalyzed by Dirhodium Tetracarboxylate: A Theoretical Study. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Wang HX, Guan FJ, Xie MS, Qu GR, Guo HM. Construction of All-Carbon Quaternary Stereocenters via
Asymmetric Cyclopropanations: Synthesis of Chiral Carbocyclic Pyrimidine Nucleosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hai-Xia Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Fang-Juan Guan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| |
Collapse
|
36
|
Rodriguez KX, Pilato TC, Ashfeld BL. An unusual stereoretentive 1,3-quaternary carbon shift resulting in an enantioselective Rh II-catalyzed formal [4+1]-cycloaddition between diazo compounds and vinyl ketenes. Chem Sci 2018; 9:3221-3226. [PMID: 29844895 PMCID: PMC5931190 DOI: 10.1039/c8sc00020d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/17/2018] [Indexed: 12/17/2022] Open
Abstract
Enantioselective quaternary carbon construction in the assembly of cyclopentenones employing a RhII-catalyzed, formal [4+1]-cycloaddition is described. A Rh2(S-TCPTTL)4-catalyzed cyclopropanation of a vinyl ketene with a disubstituted diazo compound initiates a stereoretentive, accelerated ring expansion to provide the cycloadduct in good to excellent yields and enantioselectivity.
Collapse
Affiliation(s)
- Kevin X Rodriguez
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Tara C Pilato
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , USA .
| |
Collapse
|
37
|
Brandenberg OF, Prier CK, Chen K, Knight AM, Wu Z, Arnold FH. Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04423] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oliver F. Brandenberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Christopher K. Prier
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Anders M. Knight
- Division of Biology and Bioengineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Zachary Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Iacono CE, Stephens TC, Rajan TS, Pattison G. A Coupling Approach for the Generation of α,α-Bis(enolate) Equivalents: Regioselective Synthesis of gem-Difunctionalized Ketones. J Am Chem Soc 2018; 140:2036-2040. [PMID: 29381360 DOI: 10.1021/jacs.7b12941] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselective α,α-difunctionalization adjacent to a ketone is a significant synthetic challenge. Here, we present a solution to this problem through the transition-metal-free coupling of esters with geminal bis(boron) compounds. This forms an α,α-bis(enolate) equivalent which can be trapped with electrophiles including alkyl halides and fluorinating agents. This presents an efficient, convergent synthetic strategy for the synthesis of unsymmetrical blocked ketones.
Collapse
Affiliation(s)
- Carmelo E Iacono
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Thomas C Stephens
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Teena S Rajan
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Graham Pattison
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, U.K
| |
Collapse
|
39
|
Peng S, Wang Z, Zhang L, Zhang X, Huang Y. Streamlined asymmetric α-difunctionalization of ynones. Nat Commun 2018; 9:375. [PMID: 29371601 PMCID: PMC5785506 DOI: 10.1038/s41467-017-02801-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
Ynones are a unique class of structural motifs that show remarkable chemical versatility. Chiral ynones, particularly those possessing an α-stereogenic center, are highly attractive templates for structural diversification. So far, only very limited examples have been reported for asymmetric α-functionalization of ynones. Asymmetric double α-functionalization of ynones remains elusive. Here we describe a streamlined strategy for asymmetric α-difunctionalization of ynones. We developed a gold-catalyzed multicomponent condensation reaction from a simple ynone, an amine, and an electrophilic alkynylating reagent to generate a 1,2-dialkynyl enamine, a key stable and isolable intermediate. This intermediate can undergo asymmetric fluorination catalyzed by a chiral phosphoric acid derivative. Chiral ynones with an α-quaternary carbon and containing a fluorine and an alkyne can be synthesized in high yield and high ee. The synthetic utility of this method is demonstrated by the synthesis of enantioenriched tri(hetero)arylmethyl fluorides. Chiral ynones with an α-quaternary carbon are attractive synthetic building blocks for natural and pharmaceutical products. Here, the authors report an asymmetric α-difunctionalization of simple ynones, involving a gold-catalyzed step and yielding enantioenriched fluorinated quaternary stereocentres.
Collapse
Affiliation(s)
- Siyu Peng
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Zhaofeng Wang
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Linxing Zhang
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Xinhao Zhang
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yong Huang
- Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
40
|
Simaan M, Marek I. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angew Chem Int Ed Engl 2018; 57:1543-1546. [PMID: 29320599 DOI: 10.1002/anie.201710707] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/23/2017] [Indexed: 01/08/2023]
Abstract
The catalytic asymmetric carbometalation of cyclopropenes followed by either an electrophilic oxidation or amination reaction provides a unique approach to the formation of diastereomerically pure and enantiomerically enriched cyclopropanol and cyclopropylamine derivatives, respectively.
Collapse
Affiliation(s)
- Marwan Simaan
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| |
Collapse
|
41
|
Simaan M, Marek I. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marwan Simaan
- The Mallat Family Laboratory of Organic Chemistry; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200009 Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200009 Israel
| |
Collapse
|
42
|
On the Structure of Chiral Dirhodium(II) Carboxylate Catalysts: Stereoselectivity Relevance and Insights. Catalysts 2017. [DOI: 10.3390/catal7110347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
43
|
Herlé B, Holstein PM, Echavarren AM. Stereoselective cis-Vinylcyclopropanation via a Gold(I)-Catalyzed Retro-Buchner Reaction under Mild Conditions. ACS Catal 2017; 7:3668-3675. [PMID: 28503355 PMCID: PMC5424441 DOI: 10.1021/acscatal.7b00737] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/17/2017] [Indexed: 01/16/2023]
Abstract
![]()
A highly
stereoselective gold(I)-catalyzed cis-vinylcyclopropanation
of alkenes has been developed. Allylic gold
carbenes, generated via a retro-Buchner reaction of 7-alkenyl-1,3,5-cycloheptatrienes,
react with alkenes to form vinylcyclopropanes. The gold(I)-catalyzed
retro-Buchner reaction of these substrates proceeds by simple heating
at a temperature much lower than that required for the reaction of
7-aryl-1,3,5-cycloheptatrienes (75 °C vs 120 °C). A newly
developed Julia–Kocienski reagent enables the synthesis of
the required cycloheptatriene derivatives in one step from readily
available aldehydes or ketones. On the basis of mechanistic investigations,
a stereochemical model for the cis selectivity was
proposed. An unprecedented gold-catalyzed isomerization of cis- to trans-cyclopropanes has also been
discovered and studied by DFT calculations.
Collapse
Affiliation(s)
- Bart Herlé
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Philipp M. Holstein
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
44
|
Key H, Dydio P, Liu Z, Rha JYE, Nazarenko A, Seyedkazemi V, Clark DS, Hartwig JF. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes. ACS CENTRAL SCIENCE 2017; 3:302-308. [PMID: 28470047 PMCID: PMC5408332 DOI: 10.1021/acscentsci.6b00391] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 05/11/2023]
Abstract
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. We postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, >70:1 dr, >75% yield, and ∼10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Together, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.
Collapse
Affiliation(s)
- Hanna
M. Key
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Paweł Dydio
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Zhennan Liu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jennifer Y.-E. Rha
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Andrew Nazarenko
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Vida Seyedkazemi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Douglas S. Clark
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
45
|
Boev VI, Moskalenko AI, Belopukhov SL, Nikonova GN. Stereoselective synthesis of 2-aryl-4-en-1-ols, promising synthons for the preparation of oxygen heterocycles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Huang KX, Xie MS, Zhao GF, Qu GR, Guo HM. Synthesis of Chiral Cyclopropyl Carbocyclic Purine NucleosidesviaAsymmetric Intramolecular Cyclopropanations Catalyzed by a Chiral Ruthenium(II) Complex. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ke-Xin Huang
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Ming-Sheng Xie
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Guo-Feng Zhao
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Gui-Rong Qu
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Hai-Ming Guo
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
47
|
Chanthamath S, Iwasa S. Enantioselective Cyclopropanation of a Wide Variety of Olefins Catalyzed by Ru(II)-Pheox Complexes. Acc Chem Res 2016; 49:2080-2090. [PMID: 27648664 DOI: 10.1021/acs.accounts.6b00070] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transition-metal-catalyzed asymmetric cyclopropanation of olefins with diazoacetates has become one of the most important methods for the synthesis of optically active cyclopropane derivatives, which are key pharmaceutical building blocks and present in a large number of natural products. To date, significant progress has been made in this area of research, and efficient stereocontrolled synthetic approaches to cyclopropane derivatives have been developed using rhodium, ruthenium, copper, and cobalt catalysts. However, the vast majority of these strategies are limited to electron-rich olefins, such as styrene derivatives, due to the electrophilicity of the metal-carbene intermediates generated from the reaction of the metal with the diazo compound. Recently, the D2-symmetric Co(II)-phophyrin complexes developed by Zhang et al. were shown to be the most efficient catalysts for the asymmetric cyclopropanation of electron-deficient olefins. This catalytic system is mechanistically distinct from the previous rhodium and copper catalytic systems, proceeding via radical intermediates. However, the asymmetric cyclopropanation of vinyl carbamates, allenes, and α,β-unsaturated carbonyl compounds has rarely been reported. Therefore, the development of new powerful catalysts for the asymmetric cyclopropanation of a wide range of olefinic substrates is the next challenge in this field. In this Account, we summarize our recent studies on the Ru(II)-Pheox-catalyzed asymmetric cyclopropanation of various olefins, including vinyl carbamates, allenes, and α,β-unsaturated carbonyl compounds. We demonstrate that the developed catalytic system effectively promotes the asymmetric cyclopropanation of a wide variety of olefins to produce the desired cyclopropane products in high yields with excellent stereocontrol. The use of succinimidyl-, ketone-, and ester-functionalized diazoacetates as carbene sources was found to be crucial for the high stereoselectivity of the cyclopropanation reactions. In addition, we describe reusable chiral Ru(II)-Pheox catalysts, namely, water-soluble Ru(II)-hm-Pheox and polymer-supported PS-Ru(II)-Pheox, which can be reused at least five times in inter- and intramolecular cyclopropanation reactions without any significant loss of catalytic activity or enantioselectivity. These Ru(II)-Pheox-catalyzed asymmetric cyclopropanation reactions provide an elegant method to access a series of optically active cyclopropane derivatives, including cyclopropylamines, dicarbonyl cyclopropanes, alkylidenecyclopropanes, and cyclopropane-fused γ-lactones, which are intermediates in the syntheses of various biologically active compounds. The novel chiral Ru(II)-Pheox complexes are readily synthesized in high yield from inexpensive, commercially available benzoyl chloride and amino alcohols, then fully characterized using X-ray diffraction analysis, NMR, and elemental analysis. These catalysts are easy to handle and stable under ordinary temperatures and conditions and can be used after three months of storage without any loss of catalytic activity or stereoselectivity.
Collapse
Affiliation(s)
- Soda Chanthamath
- Department of Environmental
and Life Sciences, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Seiji Iwasa
- Department of Environmental
and Life Sciences, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
48
|
Su Y, Li QF, Zhao YM, Gu P. Preparation of Optically Active cis-Cyclopropane Carboxylates: Cyclopropanation of α-Silyl Stryenes with Aryldiazoacetates and Desilylation of the Resulting Silyl Cyclopropanes. Org Lett 2016; 18:4356-9. [DOI: 10.1021/acs.orglett.6b02117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Su
- School of Chemistry & Chemical Engineering, Key Laboratory of Energy Sources & Engineering, and Ningxia Engineering and Research Center for Natural Medicines, Ningxia University, Yinchuan 750021, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qing-Fang Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Energy Sources & Engineering, and Ningxia Engineering and Research Center for Natural Medicines, Ningxia University, Yinchuan 750021, China
| | - Yu-Ming Zhao
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Peiming Gu
- School of Chemistry & Chemical Engineering, Key Laboratory of Energy Sources & Engineering, and Ningxia Engineering and Research Center for Natural Medicines, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
49
|
Xie MS, Zhou P, Niu HY, Qu GR, Guo HM. Enantioselective Intermolecular Cyclopropanations for the Synthesis of Chiral Pyrimidine Carbocyclic Nucleosides. Org Lett 2016; 18:4344-7. [DOI: 10.1021/acs.orglett.6b02104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Sheng Xie
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peng Zhou
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Ying Niu
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School
of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Gui-Rong Qu
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Key
Laboratory of Green Chemical Media and Reactions, Ministry of Education,
Collaborative Innovation Center of Henan Province for Green Manufacturing
of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
50
|
Adly FG, Gardiner MG, Ghanem A. Design and Synthesis of Novel Chiral Dirhodium(II) Carboxylate Complexes for Asymmetric Cyclopropanation Reactions. Chemistry 2016; 22:3447-3461. [PMID: 26833989 DOI: 10.1002/chem.201504817] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/10/2022]
Abstract
A novel approach to the design of dirhodium(II) tetracarboxylates derived from (S)-amino acid ligands is reported. The approach is founded on tailoring the steric influences of the overall catalyst structure by reducing the local symmetry of the ligand's N-heterocyclic tether. The application of the new approach has led to the uncovering of [Rh2 (S-tert PTTL)4 ] as a new member of the dirhodium(II) family with extraordinary selectivity in cyclopropanation reactions. The stereoselectivity of [Rh2 (S-tert PTTL)4 ] was found to be comparable to that of [Rh2 (S-PTAD)4 ] (up to >99 % ee), with the extra benefit of being more synthetically accessible. Correlations based on X-ray structures to justify the observed enantioinduction are also discussed.
Collapse
Affiliation(s)
| | - Michael G Gardiner
- School of Physical Sciences, Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Ashraf Ghanem
- Biomedical science department, University of Canberra, ACT, 2601, Australia.
| |
Collapse
|